УДК 535.361

КОМБИНАЦИОННОЕ РАССЕЯНИЕ СВЕТА В МОНОКРИСТАЛЛАХ И КЕРАМИКЕ НИОБАТА И ТАНТАЛАТА ЛИТИЯ

© 2019 г. В. С. Горелик^{1, 2, *}, С. Д. Абдурахмонов¹, Н. В. Сидоров³, М. Н. Палатников³

¹Физический институт им. П.Н. Лебедева Российской академии наук, Россия, 119991 Москва, Ленинский пр., 53 ²Московский государственный технический университет им. Н.Э. Баумана,

Россия, 105005 Москва, 2-ая Бауманская ул., 5, стр. 1

³Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева КНЦ Российской академии наук, Россия, 184209 Мурманская обл., Апатиты, Академгородок, 26а

> *e-mail: gorelik@sci.lebedev.ru Поступила в редакцию 06.10.2018 г. После доработки 27.11.2018 г. Принята к публикации 30.11.2018 г.

Установлены условия для экспресс-регистрации спектров комбинационного рассеяния (КР) света в монокристаллах ниобата и танталата лития, а также в керамике, синтезированной на основе этих соединений. Для регистрации спектров КР была использована 180-градусная геометрия рассеяния и миниспектрометр с многоэлементным приемником. Установлено отличие частот поперечных и продольных оптических мод в спектрах КР, зарегистрированных при двух ориентациях монокристаллов относительно направления возбуждающего излучения. В керамиках основной вклад в спектр КР был связан с поперечными оптическими модами.

Ключевые слова: комбинационное рассеяние, ниобат лития, танталат лития, керамика, оптические моды, спектр, лазер, миниспектрометр

DOI: 10.1134/S0002337X19050063

введение

Кристаллы ниобата лития представляют собой высокотемпературные сегнетоэлектрики, которые обладают высоким значением спонтанной поляризации ($P_s = 5 \times 10^{-5} \text{ Кл/см}^2$) при 20°С [1, 2]. Это обуславливает большое значение напряженности внутреннего эффективного поля в монокристалле. В случае танталата лития сегнетоэлектрический фазовый переход происходит при $t_c = 625^{\circ}$ C. Структура этого кристалла в пироэлектрической фазе такая же, как и в ниобате лития (при $t < t_C$). Использование обсуждаемых кристаллов для генерации оптических гармоник осуществляется благодаря отсутствию центра инверсии в точечной группе симметрии (C_{3v}) и высоким значениям нелинейно-оптических коэффициентов. Необходимость детальных исследований спектров колебаний кристаллической решетки [3-7] этих кристаллов и керамик, создаваемых на их основе, обусловлена эффективным применением этих веществ в качестве нелинейно-оптических материалов.

Эксперименты по исследованию спектров комбинационного рассеяния (**КР**) в этих кристаллах выполнялись в работах [6–15]. Ранее исследования спектров **КР** в кристаллах ниобата и танталата лития проводились с использованием двойного монохроматора и классической (90-градусной) геометрии рассеяния. При этом регистрация спектра КР осуществлялась в одноканальном режиме, при непрерывной развертке спектра, что требовало большой экспозиции для получения информации о полном спектре КР в широком диапазоне частот колебательного спектра.

Как выяснилось в результате экспериментальных исследований, в реальных кристаллах ниобата и танталата лития присутствуют вакансии и дефекты роста, зависящие от технологии выращивания кристаллов. Особый интерес представляют также керамики обсуждаемых соединений, колебательные спектры которых могут существенным образом зависеть от условий синтеза и присутствия дефектов структуры, а также примесей.

В данной работе ставилась задача разработки метода экспресс-регистрации спектров КР от монокристаллов и керамик ниобата и танталата лития для получения количественной информации о колебательных спектрах этих веществ в зависимости от условий роста и присутствия дефектов.

Рис. 1. Схема миниспектрометра с использованием волоконно-оптического возбуждения спектров КР: 1 – лазер, 2 – световод, 3 – зонд, 4 – корпус, 5 – линза, 6 – образец, 7 – подложка, 8 – световод, 9 – фокусатор, 10 – линза, 11 – фотонный кристалл, 12 – линза, 13 – миниспектрометр, 14 – компьютер; а – схема для регистрации спектров КР монокристаллов при геометрии рассеяния $Z(XX;YY;XY)\overline{Z}$, 6 – схема для регистрации спектров КР монокристаллов при геометрии рассеяния $X(ZZ;ZY)\overline{X}$, в – схема для регистрации спектров КР керамик.

МЕТОДИКА ЭКСПЕРИМЕНТА

На рис. 1 представлена схема экспериментальной установки для регистрации спектров КР. Источником излучения был выбран лазер (1) с длиной волна $\lambda = 785$ нм и мощностью 200 мВт. Излучение лазера далее вводилось в световод (2) и зонд (3). Линза (5) применялась для фокусировки излучения на образце (6), представляющем собой поликристаллический порошок. Сигнал КР, возникающий в образце, попадал на второй световод (8), фильтровался в рефокусаторе (9) с помощью фотонного кристалла (11). Далее сигнал попадал на вход миниспектрометра (13) с многоэлементным приемником. В качестве устройства цифровой обработки и накопления спектров КР использовался компьютер (14). Спектральное разрешение при записи спектров КР составляло 1 см⁻¹. Используемый волоконно-оптический метод регистрации спектров КР позволил регистрировать спектры КР от небольших количеств поликристаллических образцов (менее 1 мг) за время экспозиции от 1 до 10 с.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 2 приведены зарегистрированные спектры КР в монокристаллах ниобата лития при 180-градусной геометрии рассеяния (рассеяние "назад"), соответствующей установкам: $Z(XX;YY;XY)\overline{Z}$ (рис. 2а) и $X(ZZ;ZY)\overline{X}$ (рис. 2б). На рис. 3 приведены спектры КР, зарегистрированные в монокристаллах танталата лития при 180-градусной геометрии рассеяния (рассе-"назад"), соответствующей установкам: яние $Z(XX;YY;XY)\overline{Z}$ (рис. 3а) и $X(ZZ;ZY)\overline{X}$ (рис. 3б). В зарегистрированных спектрах КР монокристаллов ниобата и танаталата лития (рис. 2 и 3), согласно правилам отбора, проявляются поперечные (TO) и продольные (LO) полярные колебания А1- и Е-типов. Ранее [15] был проведен расчет частот колебаний поперечных оптических мод в кристаллах ниобата и танталата лития при комнатной температуре. Частоты соответствующих комбинационных спутников представлены в табл. 1 и 2. Как видно из рис. 2 и 3, спектры состоят из большого числа узких полос. Судя по приве-

ГОРЕЛИК и др.

Номер и тип симметрии колебания	Поляризация колебания	v, cm^{-1}				
		расчет [15]	эксперимент	расчет [15]	эксперимент	
		LiNbO ₃		LiTaO ₃		
$1A_1(Z)$	ТО	239	251	209	208	
$1A_1(Z)$	LO	—	274	—	255	
$2A_1(Z)$	ТО	289	275	286	256	
$2A_1(Z)$	LO	—	332	—	355	
$3A_1(Z)$	ТО	353	333	376	358	
$3A_1(Z)$	LO	—	436	—	405	
$4A_1(Z)$	ТО	610	631	591	600	
$4A_1(Z)$	LO	—	878	—	864	

Таблица 1. Значения частот невырожденных $A_1(Z)$ полярных колебаний кристаллической решетки кристаллов ниобата и танталата лития

Таблица 2. Значения частот двукратно вырожденных $E_1(X,Y)$ полярных колебаний кристаллической решетки кристаллов ниобата и танталата лития

Номер и тип симметрии колебания	Поляризация колебания	ν, cm ⁻¹				
		расчет [15]	эксперимент	расчет [15]	эксперимент	
		LiNbO ₃		LiTaO ₃		
1E(X,Y)	ТО	148	152	144	142	
1E(X,Y)	LO	—	196	_	190	
2E(X,Y)	ТО	216	238	199	208	
2E(X,Y)	LO	—	251	_	_	
3E(X,Y)	ТО	262	265	253	256	
3E(X,Y)	LO	_	275	_	279	
4E(X,Y)	ТО	323	320	319	314	
4E(X,Y)	LO	—	364	_	_	
5E(X,Y)	ТО	380	365	409	381	
5E(X,Y)	LO	—	430	_	380	
6E(X,Y)	ТО	391	431	420	381	
6E(X,Y)	LO	_	475	_	453	
7E(X,Y)	ТО	423	580	459	462	
7E(X,Y)	LO	_	600	_	_	
8E(X,Y)	ТО	579	663	590	591	
8E(X,Y)	LO	_	670	_	660	
9E(X,Y)	ТО	667	739	669	661	
9E(X,Y)	LO	_	878	_	864	

денным спектрограммам монокристаллов ниобата и танталата лития, при геометрии рассеяния $Z(XX;YY;XY)\overline{Z}$ возбуждаются продольные оптические фононы типа $A_1(LO)$. В спектре монокристалла ниобата лития (рис. 2а) наблюдается интенсивная полоса в области 878 см⁻¹, соответствующая продольной моде $4A_1(LO)$. При этом она существенно сдвинута по частоте (878 см⁻¹) относительно полос типа E(TO). В случае геометрии рассеяния $X(ZZ;ZY)\overline{X}$ (рис. 26) в спектре наблюдаются интенсивные полосы типа E(TO), запрещенные правилами отбора при геометрии рассея-

(б)

Рис. 2. Вид спектров КР в монокристаллах ниобата лития при 180-градусной геометрии рассеяния с использованием волоконно-оптического возбуждения (см. рис. 1): а – при рассеянии вдоль оси Z (геометрия $Z(XX;YY;XY)\overline{Z})$, б – перпендикулярно оси Z (геометрия $X(ZZ;ZY)\overline{X})$).

Рис. 3. Вид спектров КР в монокристаллах танталата лития при 180-градусной геометрии рассеяния с использованием волоконно-оптического возбуждения (см. рис. 1): а – при рассеянии вдоль оси Z (геометрия $Z(XX;YY;XY)\overline{Z}$), б – пер-пендикулярно оси Z (геометрия $X(ZZ;ZY)\overline{X}$).

ния X(ZZ)Y. Для монокристалла танталата лития при геометрии рассеяния $Z(XX;YY;XY)\overline{Z}$ (рис. 3а) обнаруживаются интенсивные линии типа $2A_1(LO)$ и $4A_1(LO)$. Отличие в спектрах КР монокристаллов для геометрий рассеяния $Z(XX;YY;XY)\overline{Z}$ и

 $X(ZZ;ZY)\overline{X}$ связано с тем, что соответствующие продольные и поперечные A_1 - и *E*-моды имеют различные частоты.

На рис. 4 представлены спектры КР для керамики ниобата и танталата лития, которые имеют

Рис. 4. Вид спектров КР керамик ниобата лития (а) и танталата лития (б), зарегистрированных при комнатной температуре в диапазоне частот 50–1000 см⁻¹.

вид широких континуальных линий. Как видно из рис. 4, в спектрах керамики ниобата и танталата лития проявляются основные типы колебаний, которые близки по частотам к спектрам монокристаллов. Это свидетельствует о сохранении кристаллической структуры в керамике. На рис. 5 и 6 представлены спектры монокристаллов ниобата и танталата лития в сравнении со спектрами КР соответствующих керамик. Можно наблюдать существенные отличия в колебательных спектрах керамик и монокристаллов. Континуальные линии в спектрах керамик ниобата и

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 55 № 5 2019

Рис. 5. Спектры КР монокристалла ниобата лития при геометрии рассеяния $Z(XX;YY;XY)\overline{Z}$ (1) (a), $X(ZZ;ZY)\overline{X}$ (1) (б) и керамик ниобата лития (2), зарегистрированные при комнатной температуре в диапазоне частот 50–1000 см⁻¹.

танталата лития имеют интенсивный характер. Можно сказать, что уменьшение размеров кристаллитов в объеме образца приводит к заметному уширению некоторых фундаментальных линий КР света в колебательном спектре керамик, что свидетельствует о разупорядочении структуры.

ЗАКЛЮЧЕНИЕ

Волоконно-оптическое возбуждение монокристаллов и керамики ниобата и танталата лития позволяет при небольшой экспозиции получить полную информацию о колебательных спектрах этих кристаллов. Показано, что при использова-

Рис. 6. Спектры КР монокристалла танталата лития при геометрии рассеяния $Z(XX;YY;XY)\overline{Z}$ (1) (a), $X(ZZ;ZY)\overline{X}$ (1) (б) и керамик танталата лития (2), зарегистрированные при комнатной температуре в диапазоне частот 50–1000 см⁻¹.

нии миниспектрометра с волоконно-оптическим возбуждением спектров КР при 180-градусной геометрии рассеяния за 1–10 с можно получить информацию о полных колебательных спектрах монокристаллов ниобата и танталата лития и соответствующих керамик. В спектрах КР керамик ниобата и танталата лития проявляются основные типы колебаний, присутствующих в монокристаллах. Это свидетельствует о сохранении кристаллической структуры и сегнетоэлектрического фазового перехода в ниобате и танталате лития при уменьшении размеров кристаллитов.

БЛАГОДАРНОСТЬ

Работа выполнена при частичной поддержке РФФИ (гранты № 18-02-00181, 18-32-00259).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Abrahams S.C., Reddy J.M., Bernstein J.L.* Ferroelectric Lithium Niobate. Single Crystal X-ray Diffraction Study at 24°C // J. Phys. Chem. Solids. 1966. V. 27. № 6–7. P. 997–1012.
- Bergman J.G., Ashkin A., Ballman A.A., Dziedzic J.M., Levinstein H.J., Smith R.G. Curie Temperature, Birefringence, and Phase-Matching Temperature Variations in LiNbO₃ as a Function of Melt Stoichiometry // Appl. Phys. Lett. 1968. V. 12. № 3. P. 92–94.
- 3. *Schirmer O.F., Thiemann O., Wohlecke M.J.* Defects in LiNbO₃–I. Experimental Aspects // J. Phys. Chem. Solids. 1991. V. 52. № 1. P. 185–200.
- Schaufele R.F., Weber M.J. Raman Scattering by LiNbO₃ // Phys. Rev. 1966. V. 152. № 2. P. 705–709.
- Johnston W.D., Jr., Kaminov J.P. Temperature Dependence of Raman and Rayleigh Scattering in LiNbO₃ and LiTaO₃ // Phys. Rev. 1968. V. 168. № 3. P. 1045–1054.
- Okamoto Y., Wang Ping-chu, Scott J.F. Analysis of Quasielastic Light Scattering in LiNbO₃ near t_C // Phys. Rev. B. 1985. V. 32. № 10. P. 6787–6792.
- Surovtsev N.V., Pugachev A.M., Malinovsky V.K., Shebanin A.P., Kojima S. Low-Frequency Raman Spectra in LiNbO₃ Within and Beyond the Standard Paradigm of Ferroelectric Dynamics // Phys. Rev. B. 2005. V. 72. № 10. P. 104303.
- 8. Горелик В.С., Иванова С.В., Кучерук И.П., Струков Б.А., Халезов А.А. Температурная зависимость

спектров комбинационного рассеяния в LiNbO₃ // ФТТ. 1976. Т. 18. № 8. С. 2297–2300.

- 9. Горелик В.С. Аномалия температурной зависимости спектральной интенсивности неупругого рассеяния вблизи точки сегнетоэлектрического фазового перехода // Изв. РАН. Сер. физ. 1985. Т. 49. № 2. С. 282–286.
- Горелик В.С., Свербиль П.П. Комбинационное рассеяние света на продольных и поперечных оптических колебаниях в монокристаллах ниобата лития // Неорган. материалы. 2015. Т. 51. № 11. С. 1190–1196.
- Горелик В.С., Свербиль П.П., Водчиц А.И., Войнов Ю.П. Изочастотная опалесценция в сегнетоэлектриках // Изв. РАН. Сер. физ. 2018. Т. 82. № 3. С. 299–302.
- 12. Горелик В.С., Пятышев А.Ю. Комбинационное рассеяние света на эффективной мягкой моде в кристаллах ниобата лития // Изв. РАН. Сер. физ. 2018. Т. 82. № 3. С. 344–349.
- Сидоров Н.В., Палатников М.Н. Спектры комбинационного рассеяния света сильно легированных магнием и цинком кристаллов ниобата лития // Оптика и спектроскопия. 2016. Т. 121. № 6. С. 907–915.
- Gorelik V.S., Tochilin S.D., Sushchinsky M.M. The Phenomenon of Nonelastic Opalescence near the Phase Transition Point in Crystals // J. Mol. Struct. 1986. V. 143. P. 83–86.
- Sanna S., Neufeld S., Rüsing M., Berth G., Zrenner A., Schmidt W.G. Raman Scattering Efficiency in LiTaO₃ and LiNbO₃ Crystals // Phys. Rev. B. 2015. V. 91. P. 224302.