УДК 546.161;549.454;548.55;536.21

РОСТ КРИСТАЛЛОВ И ТЕПЛОПРОВОДНОСТЬ КОНГРУЭНТНО ПЛАВЯЩЕГОСЯ ТВЕРДОГО РАСТВОРА Cd_{0.77}Sr_{0.23}F₂

© 2019 г. Д. Н. Каримов^{1,} *, И. И. Бучинская¹, Н. И. Сорокин^{1,} **, П. А. Попов², Б. П. Соболев¹

¹Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" Российской академии наук, Россия, 119333 Москва, Ленинский пр., 59

²Брянский государственный университет им. акад. И.Г. Петровского, Россия, 241036 Брянск, ул. Бежицкая, 14 *e-mail: dnkarimov@gmail.ru

> **e-mail: nsorokin1@yandex.ru Поступила в редакцию 15.06.2018 г. После доработки 26.11.2018 г. Принята к публикации 10.12.2018 г.

Кристаллы твердого раствора $Cd_{0.77}Sr_{0.23}F_2$ (пр. гр. $Fm\overline{3}m$, параметр решетки a = 5.4882(1) Å), отвечающие температурному минимуму на кривых плавкости системы CdF_2 —SrF₂, выращены из расплава методом вертикальной направленной кристаллизации. Изучена их теплопроводность в интервале температур 50—300 К. Для кристаллов $Cd_{0.77}Sr_{0.23}F_2$ наблюдается слабая зависимость коэффициента теплопроводности от температуры к(*T*). Получены значения $\kappa_{50} = 1.9$ и $\kappa_{300} = 1.5$ Bt/(м K) при T = 50 и 300 K соответственно. Проведен сравнительный анализ теплофизических свойств конгруэнтно плавящихся флюоритовых кристаллов $M_{1-x}Sr_xF_2$ (M = Cd, Ca, Ba) с общим компонентом SrF₂. Величина κ_{300} кристаллов $Cd_{0.77}Sr_{0.23}F_2$ по сравнению с $Ba_{0.66}Sr_{0.34}F_2$ и $Ca_{0.59}Sr_{0.41}F_2$ меньше в 2.1 и 2.7 раз соответственно.

Ключевые слова: рост кристаллов, неорганические фториды, твердые растворы, теплопроводность **DOI:** 10.1134/S0002337X19050087

ВВЕДЕНИЕ

Переход от однокомпонентных к многокомпонентным кристаллам является эффективным методом создания материалов с необходимыми для практики свойствами. Дифториды MF_2 (M = Ca, Sr, Ba, Cd и Pb), принадлежащие к структурному типу флюорита (CaF₂, пр. гр. $Fm\overline{3}m, Z=4$), являются важными функциональными фторидными материалами. Ассортимент однокомпонентных флюоритовых кристаллов MF₂ можно значительно увеличить за счет изоструктурных твердых растворов $M_{1-x}M'_{x}F_{2}$, где M, M' – разные двухвалентные катионы. В системах MF₂-M'F₂ с парными комбинациями катионов Ca-Sr, Ca-Ba, Ba-Sr, Cd-Sr и Pb-Cd флюоритовые твердые растворы $M_{1-x}M'_{x}F_{2}$ обладают температурным минимумом на линиях ликвидуса и солидуса [1-6]. Отвечающий составу минимума твердый раствор плавится конгруэнтно, что обеспечивает выращивание однородных кристаллов.

Повышенная механическая прочность (по сравнению с однокомпонентными кристаллами MF_2), сохраняющаяся оптическая прозрачность в широком диапазоне длин волн, высокая ионная электропроводность делают кристаллы $M_{1-x}M'_xF_2$ конгруэнтно плавящихся составов перспективными материалами для сцинтилляторов в физике высоких энергий, оптических элементов в конструкционной оптике, матриц твердотельных лазеров, твердых электролитов в высокотемпературной ионике твердого тела [7, 8].

К семейству конгруэнтно плавящихся твердых растворов $M_{1-x}M'_{x}F_{2}$ относятся кристаллы Cd_{0.77}Sr_{0.23}F₂, для которых выполнены исследования оптических, механических и электрофизических свойств [9, 10]. Кристаллы $Cd_{0.77}Sr_{0.23}F_2$ прозрачны в ИК-диапазоне спектра до длин волн λ~10 мкм, имеют микротвердость $\hat{H}_{\mu} = 1.9 \pm 0.4$ ГПа и ионную проводимость $\sigma = 5.7 \times 10^{-6}$ и $1.3 \times \times 10^{-2}$ См/см при T == 373 и 673 К соответственно. Для кристаллов состава Cd_{0.7}Sr_{0.3}F₂, легированных редкоземельными ионами Er³⁺ (1 мол. %) и Yb³⁺ (4 мол. %), исследованы спектрально-генерационные характеристики при комнатной температуре [11]. Отмечено, что кристаллы $Cd_{0.7}Sr_{0.3}F_{2}:(Er^{3+}, Yb^{3+})$ имеют хорошее оптическое качество и перспективны для твердотельных лазеров видимой области. Однако теплофизические свойства кристаллов $Cd_{0.77}Sr_{0.23}F_2$ детально не изучались.

Целью работы является выращивание кристаллов $Cd_{0.77}Sr_{0.23}F_2$, отвечающих точке минимума на кривых плавкости флюоритового твердого раствора в системе CdF_2 —SrF2, исследование их теплопроводности в диапазоне от субазотных до

Рис. 1. Изменение положения минимума на кривых плавкости в системах CdF_2 -SrF₂ [1] (*1*), CaF_2 -SrF₂ [5] (*2*) и BaF_2 -SrF₂ [3] (*3*).

комнатной температуры и сравнение теплофизических свойств конгруэнтно плавящихся кристаллов $Cd_{0.77}Sr_{0.23}F_2$, $Ca_{0.59}Sr_{0.41}F_2$ и $Ba_{0.66}Sr_{0.34}F_2$. Материалы исследования частично публиковались в работе [12].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

На рис. 1 приведены фазовые диаграммы систем MF_2 -SrF₂ (M = Cd, Ca, Ba) (по данным [1, 9, 10]). Составы твердых растворов, соответствующие точке минимума в системах MF_2 -SrF₂, равны 23 ± 2 ($Cd_{0.77}Sr_{0.23}F_2$), 34 ± 2 ($Ba_{0.66}Sr_{0.34}F_2$) и 41 ± 2 мол. % SrF₂ ($Ca_{0.59}Sr_{0.41}F_2$). Температуры плавления твердых растворов $Cd_{0.77}Sr_{0.23}F_2$, $Ba_{0.66}Sr_{0.34}F_2$ и $Ca_{0.59}Sr_{0.41}F_2$ составляют 1025 ± 10, 1305 ± 10 и 1362 ± 10°С соответственно.

В качестве исходных реактивов использовали коммерческие порошки SrF₂ и CdF₂ квалификации "ос. ч.", которые предварительно проплавляли для глубокой очистки от кислородсодержащих примесей в атмосфере продуктов пиролиза политетрафторэтилена. Кристаллы Cd_{0.77}Sr_{0.23}F₂ выращивали направленной кристаллизацией по методу Бриджмена. Температурный градиент в ростовой зоне печи составлял 80 ± 5°C/см. Скорость опускания тигля с расплавом составляла 4 мм/ч. Скорость охлаждения кристаллов ~100°C/ч. Потери вещества на испарение при кристаллизации не превышали 1 мас. %. Были получены кристаллические були диаметром до 40 и длиной до 80 мм.

Рентгенофазовый анализ кристаллов проводили на порошковом рентгеновском дифрактометре Rigaku MiniFlex 600 на излучении Си K_{α} в диапазоне углов дифракции 2 $\theta = 10^{\circ}-120^{\circ}$. Для расчета параметров решетки использовали пакет программ JANA 2006. Параметр кубической решетки для Cd_{0.77}Sr_{0.23}F₂ равен a = 5.4882(1) Å.

Образец для исследования теплофизических характеристик изготовлен из средней части (выросшей в условиях, максимально близких к стационарным) кристаллической були в виде прямоугольного бруска с размерами $8 \times 8 \times 30$ мм. Теплопроводность к(T) исследована абсолютным стационарным методом продольного теплового потока, описание экспериментальной методики приведено в [13, 14]. Резистивный нагреватель помещался на торцевую поверхность образца для создания в нем плоской формы изотермических поверхностей. Температурный интервал теплофизических измерений составлял 50–300 К. Относительная погрешность определения величины к не превышала 6%.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Температурные зависимости теплопроводности кристаллов $Cd_{0.77}Sr_{0.23}F_2$, $Ca_{0.59}Sr_{0.41}F_2$ [15] и $Ba_{0.66}Sr_{0.34}F_2$ [16] показаны на рис. 2. Для кристалла $Cd_{0.77}Sr_{0.23}F_2$ величина коэффициента теплопроводности при 300 К равна $\kappa_{300} = 1.5$ Вт/(м К). С уменьшением температуры до 50 К она лишь незначительно возрастает ($\kappa_{50}/\kappa_{300} \approx 1.2$). Изменения теплопроводности кристаллов $Ca_{0.59}Sr_{0.41}F_2$ и $Ba_{0.66}Sr_{0.34}F_2$ в этом интервале температур более существенны. Для кристаллов $Ca_{0.59}Sr_{0.41}F_2$ и $Ba_{0.66}Sr_{0.34}F_2$ отношение $\kappa_{50}/\kappa_{300} \approx 7$ ($\kappa_{300} \approx$ ≈ 4.0 Вт/(м К)) и $\kappa_{50}/\kappa_{300} \approx 5.9$ ($\kappa_{300} \approx 3.1$ Вт/(м К)) соответственно.

Рассчитана длина свободного пробега фононов в кристаллах $Cd_{0.77}Sr_{0.23}F_2$ с использованием модели Дебая (методика расчета приведена в [14, 17]). Значения средней длины свободного пробега фононов l(T) определяли из дебаевского выражения

$$\kappa = Cvl/3$$
,

где *С* – теплоемкость единицы объема кристалла и *v* – средняя скорость распространения фононов. Для оценки значений *С* и *v* для твердого раствора $Cd_{0.77}Sr_{0.23}F_2$ использовали метод линейной интерполяции с учетом соответствующих характеристик для компонентов CdF_2 ($C_{50} =$ = 0.60 МДж/(м³ K), $C_{300} = 2.92$ МДж/(м³ K), *v* = = 2.46 × 10³ м/с) и SrF₂ ($C_{50} = 0.40$ МДж/(м³ K), $C_{300} = 2.37$ МДж/(м³ K), *v* = 3.20 × 10³ м/с) [18]. Значения длины свободного пробега фононов в $Cd_{0.77}Sr_{0.23}F_2$ равны $l_{50} = 39$ Å и $l_{300} = 6$ Å при 50 и 300 К соответственно. Очевидно, незначительное снижение l(T) вместе с близким по величие ростом теплоемкости C(T) определяют выявленную слабую температурную зависимость теплопроводности, не характерную ни для монокристаллов,

Рис. 2. Температурные зависимости теплопроводности монокристаллов $Cd_{0.77}Sr_{0.23}F_2$ (*1*), $Ca_{0.59}Sr_{0.41}F_2$ [15] (*2*) и $Ba_{0.66}Sr_{0.34}F_2$ [16] (*3*).

ни для стекол. Полученная величина l_{300} практически совпадает со значением параметра элементарной ячейки (a = 5.4882 Å) этого соединения. Аналогичная ситуация наблюдалась для теплопроводности флюоритового твердого раствора Pb_{0.679}Cd_{0.321}F₂ (пр. гр. $Fm\overline{3}m$, a = 5.75963 Å), отвечающего минимуму на кривых плавкости системы PbF₂–CdF₂ [14].

Таблица 1. Теплопроводность кристаллов конгруэнтно плавящихся изовалентных твердых растворов $M_{1-x}Sr_xF_2$ (M = Cd, Ca, Ba), флюоритовых матриц MF₂ (M = Cd, Ca, Sr, Ba) и гетеровалентных твердых растворов Cd_{1-x}R_xF_{2+x} (R = Nd, Ho, Er)

Кристалл	$\kappa(T), BT/(MK)$		
	100 K	300 K	
$Cd_{0.77}Sr_{0.23}F_2$	1.65	1.5	
$Ca_{0.59}Sr_{0.41}F_2$	9.0	4.0	
$Ba_{0.66}Sr_{0.34}F_2$	7.2	3.1	
CaF ₂	46	10.1	
SrF ₂	41	9.3	
BaF ₂	32	6.8	
CdF_2	13.6	4.4	
$Cd_{0.97}Nd_{0.03}F_{2.03}$	7.7	3.9	
$Cd_{0.85}Ho_{0.15}F_{2.15}$	1.4	1.9	
$Cd_{0.9}Er_{0.1}F_{2.1}$	1.6	1.3	

Таблица 2. Ионные радиусы r_{ion} , электронные поляризуемости α_{el} и относительные атомные массы *m* катионов M^{2+}

M ²⁺	r _{ion} , Å [19]	$\alpha_{el}^{}, Å^{3} [22]$	т, а.е.м.
$\begin{array}{c} Cd^{2+}\\ Ca^{2+}\\ Sr^{2+}\\ Ba^{2+}\\ \end{array}$	1.24 1.26 1.40 1.56	$ \begin{array}{r} 1.7 \\ 0.9 \\ 1.4 \\ 2.4 \end{array} $	112.41 40.078 87.62 137.33

В табл. 1 для сравнения приведены теплофизические характеристики кристаллов $Cd_{0.77}Sr_{0.23}F_2$, изовалентных твердых растворов $M_{1-x}Sr_xF_2$ (M = Ca, Ba), однокомпонентных кристаллов MF_2 (M = Cd, Ca, Sr, Ba) и гетеровалентных твердых растворов $Cd_{1-x}R_xF_{2+x}$ (R = Nd, Ho, Er) со структурой флюорита, данные для которых взяты из [15, 16, 18]. Абсолютные значения теплопроводности и поведение температурной зависимости к(T) кристаллов $Cd_{0.77}Sr_{0.23}F_2$ близки к теплофизическим характеристикам изоструктурных гетеровалентных твердых растворов $Cd_{0.85}Ho_{0.15}F_{2.15}$ и $Cd_{0.9}Er_{0.1}F_{2.1}$ на основе флюоритовой матрицы CdF_2 [16, 18].

Существенно более низкая теплопроводность кристаллов $Cd_{0.77}Sr_{0.23}F_2$ по сравнению с твердыми растворами $Ca_{0.59}Sr_{0.41}F_2$ и $Ba_{0.66}Sr_{0.34}F_2$ (табл. 1) обусловлена наличием компонента CdF2, отличающегося по характеристикам от дифторидов шелочноземельных элементов. В табл. 2 даны ионные радиусы r_{ion} (в системе "кристаллических" радиусов для к.ч. = 8 [19]), электронные поляризуемости Осели и относительные атомные массы т катионов M^{2+} (M = Cd, Ca, Sr, Ba). Можно видеть, что в ряду $CaF_2 - SrF_2 - BaF_2$ величины r_{ion} , α_{el} и т изменяются монотонно. В то же время, несмотря на близость ионных радиусов Cd²⁺ и Ca²⁺, их относительные атомные массы и электронные поляризуемости сильно различаются. Для CdF₂ нарушается монотонный характер изменения свойств катионов в ряду $CdF_2 - CaF_2 - SrF_2 - BaF_2$.

Поведение температурной зависимости $\kappa(T)$ для кристаллов $Cd_{0.77}Sr_{0.23}F_2$ и $Ca_{0.59}Sr_{0.41}F_2$ с общим компонентом Sr²⁺ и с близкими по ионному радиусу компонентами Cd²⁺ и Ca²⁺ также сильно различается (рис. 2). Различие в характере изменений к(Т) связано с тем, что кристаллы $Cd_{0.77}Sr_{0.23}F_2$ по сравнению с $Ca_{0.59}Sr_{0.41}F_2$ имеют большую степень разупорядочения флюоритовой структуры. На это указывает существенно более высокая ионная проводимость (чувствительная к структурным изменениям) кристаллов $Cd_{0.77}Sr_{0.23}F_2$ [10] по сравнению с Ca_{0.59}Sr_{0.41}F₂ [15]. Обратная корреляция между теплопроводностью и ионной проводимостью флюоритовых фторидов установлена в [12, 20, 21]. К сожалению, дефектная структура твердого раствора $Cd_{0.77}Sr_{0.23}F_2$ не изучена.

ЗАКЛЮЧЕНИЕ

Методом вертикальной направленной кристаллизации получены кристаллы твердого раствора $Cd_{0.77}Sr_{0.23}F_2$ и измерена их теплопроводность. С ростом температуры от 50 до 300 К величина теплопроводности $Cd_{0.77}Sr_{0.23}F_2$ уменьшается в 1.2 раза и составляет $\kappa_{300} = 1.5$ Вт/(м К) при 300 К. Проведен сравнительный анализ теплофизических свойств конгруэнтно плавящихся флюоритовых кристаллов $M_{1-x}Sr_xF_2$ (M = Cd, Ca, Ba) с общим компонентом SrF₂. Установлена существенно более

низкая теплопроводность кристаллов $Cd_{0.77}Sr_{0.23}F_2$ в сравнении с $Ca_{0.59}Sr_{0.41}F_2$ и $Ba_{0.66}Sr_{0.34}F_2$, а также другая зависимость к(*T*) (значения к слабо уменьшаются с ростом температуры). Определяющим фактором поведения к(*T*) для кристаллов $Cd_{0.77}Sr_{0.23}F_2$ является наличие компонента CdF_2 , приводящего к более существенному разупорядочению структуры флюоритового твердого раствора. Рассчитана средняя длина сводного пробега фононов в $Cd_{0.77}Sr_{0.23}F_2$, которая при 300 К составляет $l_{300} = 6$ Å, что близко по величине к параметру элементарной ячейки этого твердого раствора.

БЛАГОДАРНОСТЬ

Работа выполнена при поддержке Министерства науки и высшего образования в рамках выполнения работ по Государственному заданию ФНИЦ "Кристаллография и фотоника" РАН с использованием оборудования центров коллективного пользования ФНИЦ "Кристаллография и фотоника" РАН и Брянского государственного университета им. акад. И.Г. Петровского.

СПИСОК ЛИТЕРАТУРЫ

- Kozak A., Samuel M., Chretien A. Miscibilite Cristalline des Fluorures de Calcium, de Strontium et de Plomb dans le Fluorure de Cadmium: Fluorure Double Cd₂BaF₆ // Rev. Chim. Miner. 1971. V. 8. № 6. P. 805–811.
- 2. Федоров П.П., Бучинская И.И., Ивановская Н.А., Коновалова В.В., Лаврищев С.В., Соболев Б.П. Фазовая диаграмма системы CaF₂-BaF₂ // Доклады РАН. 2005. Т. 401. № 5. С. 652-654.
- Nafziger R.H. High-Temperature Phase Transformation in BaF₂−SrF₂ System // J. Am. Ceram. Soc. 1971. V. 54. № 9. P. 467.
- Klimm D., Rabe M., Bertram R., Uecker R., Parthier L. Phase Diagram Analysis and Crystal Growth of Solid Solutions Ca_{1-x}Sr_xF₂ // J. Cryst. Growth. 2008. V. 310. № 1. P. 152–155. doi 10.1016/j.jcrysgro.2007.09.031
- 5. Урусов В.С., Григораш Ю.П., Казакевич М.В., Карелин В.В. Изовалентный изоморфизм в кристаллах со структурой флюорита // Геохимия. 1980. № 11. С. 1700–1709.
- Сорокин Н.И., Бучинская И.И., Соболев Б.П. Ионная проводимость монокристаллов Pb_{0.67}Cd_{0.33}F₂ и Pb_{0.67}Cd_{0.33}F₂:Ce³⁺ // ЖНХ. 1992. Т. 37. № 12. С. 2653–2656.
- Sobolev B.P. The Rare Earth Trifluorides. Pt 2. Introduction to Materials Science of Multicomponent Metal Fluoride Crystals. Moscow Institute of Crystallography and Institut d'Estudis Catalans. Barcelona, 2001. 460 p.
- Sobolev B.P., Sorokin N.I., Bolotina N.B. Nonstoichiometric Single Crystals M_{1-x}R_xF_{2+x} and R_{1-y}M_yF_{3-y} (M – Ca, Sr, Ba; R – Rare Earth Elements) as Fluorine-Conducting Solid Electrolytes // Photonic & Electronic Properties of Fluoride Materials / Eds. Tressaud A., Poeppelmeier K. Amsterdam: Elsevier, 2016. P. 465–491.
- 9. *Бучинская И.И., Федоров П.П.* Новая оптическая среда монокристалл Cd_{0.75}Sr_{0.25}F₂ // Кристалло-графия. 2004. Т. 49. № 2. С. 334–336.

- Сорокин Н.И., Бучинская И.И., Сульянова Е.А., Соболев Б.П. Ионный транспорт в изо- и гетеровалентных твердых растворах на основе CdF₂ // Электрохимия. 2005. Т. 41. № 5. С. 627–632.
- Kelai R., Diaf M., Boulma E., Boubekri H., Jouart J.P. Optical Properties of Er³⁺–Yb³⁺ Codoped Cd_{0.7}Sr_{0.3}F₂ Mixed Single Crystals // J. Lumin. 2018. V. 197. P. 310–316. doi 10.1016/j.jlumin.2018.01.006
- Сорокин Н.И., Каримов Д.Н., Бучинская И.И., Попов П.А., Соболев Б.П. Электро- и теплопроводность конгруэнтно плавящихся монокристаллов изовалентных твердых растворов М_{1-x}M'_x F₂ в связи с их дефектной флюоритовой структурой // Кристаллография. 2015. Т. 60. № 4. С. 586–590. doi 10.7868/S0023476115040219
- Popov P.A., Sidorov A.A., Kul'chenkov E.A., Anishchenko A.M., Avetissov I.Ch., Sorokin N.I., Fedorov P.P. Thermal Conductivity and Expansion of PbF₂ Single Crystals // Ionics. 2017. V. 23. № 1. P. 233–239. doi 10.1007/s11581-016-1802-2
- 14. Попов П.А., Матовников А.В., Моисеев Н.В., Бучинская И.И., Каримов Д.Н., Сорокин Н.И., Сульянова Е.А., Соболев Б.П., Крутов М.А. Теплофизические характеристики кристаллов твердого раствора Pb_{0.679}Cd_{0.321}F₂ // Кристаллография. 2015. Т. 60. № 1. С. 111-115. doi 10.7868/S0023476115010178
- Каримов Д.Н., Комарькова О.Н., Сорокин Н.И., Бежанов В.А., Чернов С.П., Попов П.А., Соболев Б.П. Рост конгруэнтно плавящихся кристаллов Ca_{0.59}Sr_{0.41}F₂ и исследование их свойств // Кристаллография. 2010. Т. 55. № 3. С. 556–563.
- Попов П.А., Федоров П.П., Конюшкин В.А., Накладов А.Н., Басиев Т.Т. Переход от кристаллического к стеклообразному характеру зависимости теплопроводности в твердом Sr_{0.16}Ba_{0.54}La_{0.3}F_{2.3} // Неорган. материалы. 2010. Т. 46. № 5. С. 621–625. doi 10.1134/S0002337X10050209
- Иванов-Шиц А.К., Сорокин Н.И., Арутюнян С.Р., Додокин А.П., Федоров П.П., Соболев Б.П., Кралева Б. Теплопроводность ионных проводников: твердые растворы со структурой флюорита // ФТТ. 1986. Т. 28. № 4. С. 1235–1237.
- 18. Попов П.А. Теплопроводность твердотельных оптических материалов на основе неорганических оксидов и фторидов: Дис. ... докт. физ.-мат. наук. Москва: МГТУ им. Баумана, 2015. 532 с.
- Shannon R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides // Acta Crystallogr., Sect. A. 1976. V. 32. № 5. P. 751–767.
- Федоров П.П., Попов П.А. Принцип эквивалентности источников беспорядка и теплопроводность твердых тел // Наносистемы: физика, химия, математика. 2013. Т. 4. С. 148–159.
- Федоров П.П., Сорокин Н.И., Попов П.А. Обратная корреляция ионной проводимости и теплопроводности монокристаллов твердых растворов М_{1-x}R_xF_{2+x} (M = Ca, Ba, R – редкоземельные элементы) флюоритовой структуры // Неорган. материалы. 2017. Т. 53. № 6. С. 626–632. doi 10.7868/S0002337X17060033
- Jorgensen C.K. Continuum Effects Indicated by Hard and Soft Anti-Bases (Lewis Acides) and Bases // Top. Curr. Chem. 1975. V. 56. P. 1–66.

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 55 № 5 2019