УДК 532.138:539.32:666.1

ЭФФЕКТИВНЫЙ МОДУЛЬ УПРУГОСТИ И ПАРАМЕТР ГРЮНАЙЗЕНА ХАЛЬКОГЕНИДНЫХ СТЕКОЛ СИСТЕМЫ As-TI-S

© 2019 г. Д. С. Сандитов^{1, 2, *}, М. В. Дармаев^{1, **}

¹Бурятский государственный университет, Россия, 670000 Улан-Удэ, ул. Смолина, 24а ²Институт физического материаловедения СО Российской академии наук, Россия, 670047 Улан-Удэ, ул. Сахьяновой, 6

> *e-mail: sanditov@bsu.ru **e-mail: darmaev@bsu.ru Поступила в редакцию 20.06.2018 г. После доработки 25.12.2018 г. Принята к публикации 27.12.2018 г.

Произведение плотности твердого тела на квадрат средней квадратичной скорости волн деформации, обладающее характерными для упругих модулей признаками, названо эффективным модулем упругости. Показано, что у бескислородных халькогенидных стекол отношение модуля объемного сжатия к эффективному модулю упругости является однозначной функцией коэффициента Пуассона, как и у оксидных стекол. Эффективный модуль упругости тесно связан с параметром Грюнайзена, служащим мерой ангармонизма. На основе однозначной связи коэффициента Пуассона с параметром Грюнайзена обсуждается природа взаимосвязи гармонических (линейных) и ангармонических (нелинейных) величин.

Ключевые слова: взаимосвязь линейных и нелинейных свойств, коэффициент Пуассона, ангармонизм

DOI: 10.1134/S0002337X19060150

введение

Для кубических кристаллов квадрат среднеквадратичной скорости волн деформации v_k^2 является инвариантом суммы квадратов скоростей распространения продольных (v_l) и поперечных (v_s) акустических волн [1, 2]

$$v_k^2 = \frac{v_l^2 + 2v_s^2}{3}.$$
 (1)

Это соотношение оказалось оправданным не только для кристаллов с другими решетками, но и для оксидных неорганических стекол [2, 3]. Произведение плотности ρ на квадрат среднеквадра-

тичной скорости v_k^2 было названо усредненным модулем упругости [3]

$$K = \rho v_k^2. \tag{2}$$

Это название не совсем удачно, поскольку известные упругие модули E, G и B также относятся к усредненным величинам. Поэтому предлагаем назвать K эффективным (или характерным) модулем упругости.

Настоящая работа посвящена исследованию природы величины *К* и установлению ее связи с

упругими модулями и коэффициентом Пуассона применительно к бескислородным халькогенидным стеклам на примере стекол системы As-Tl-S, для которых известны необходимые экспериментальные данные об акустических и упругих свойствах [4] (табл. 1). Представляет интерес проверка применимости полученных ранее разработок [3] к халькогенидным стеклообразным твердым телам.

Поскольку эффективный модуль упругости связан с параметром Грюнайзена и в свою очередь параметр Грюнайзена является однозначной функцией коэффициента Пуассона (см. далее), нами обсуждается проблема взаимосвязи линейных (гармонических) и нелинейных (ангармонических) характеристик твердых тел.

ЭФФЕКТИВНЫЙ МОДУЛЬ УПРУГОСТИ, МОДУЛЬ ОБЪЕМНОГО СЖАТИЯ И КОЭФФИЦИЕНТ ПУАССОНА

Из формулы модуля объемного сжатия *В* кубических кристаллов

$$B = \frac{C_{11} + 2C_{12}}{3},\tag{3}$$

Таблица 1. Плотность (ρ), скорости распространения продольных (v_l) и поперечных (v_s) акустических волн, упругие постоянные (μ , *G*, *B*) [4] и рассчитанные из них параметр Грюнайзена (γ_D) и эффективный модуль упругости (*K*) для стекол составов *x*As₂S₃ · (1 – *x*)Tl₂S

Состав стекла	Tl ₂ S, мол. %	ρ, г/м ³	<i>v</i> _l , м/с	<i>v_s</i> , м/с	μ	$G \times 10^{-8},$ H/m^2	$\begin{array}{c} B \times 10^{-8}, \\ H/m^2 \end{array}$	γ _D (12)	γ _D (13)	$K \times 10^{-8},$ H/m^2
As ₂ S ₃	0	3.187	2650	1400	0.306	62	139	1.80	1.81	116
AsS _{1.57} Tl _{0.14}	12.3	3.765	2680	1420	0.309	76	174	1.85	1.83	141
$AsS_{1.65}Tl_{0.3}$	23.1	4.24	2580	1350	0.311	77	178	1.83	1.84	146
$AsS_{1.7}Tl_{0.4}$	28.6	4.474	2550	1320	0.317	78	187	1.88	1.88	149
$AsS_{1.74}Tl_{0.48}$	32.4	4.72	2510	1280	0.324	77	193	1.92	1.93	151
$AsS_{1.85}Tl_{0.7}$	41.2	5.04	2440	1210	0.337	74	202	2.03	2.03	149
AsS ₂ Tl	50	5.36	2320	1130	0.344	68	195	2.07	2.08	142

а также из соотношения для произведения плотности и квадрата среднеквадратичной скорости звука v_{k}^{2} [2]

$$\rho v_k^2 = \frac{C_{11} + 2C_{44}}{3},\tag{4}$$

видно, что при выполнении условия Коши $C_{12} = C_{44}$, когда между однородно деформированными областями кубической решетки действуют центральные силы, величина $K = \rho v_k^2$ совпадает с модулем объемного сжатия K = B. Во всех других случаях произведение ρv_k^2 отлично от *B*. Здесь C_{11} , C_{12} и C_{44} – упругие постоянные 2-го порядка.

Убедимся, что так же, как и отношение модуля сдвига G к модулю объемного сжатия B [5]

$$\frac{G}{B} = \frac{3}{2} \left(\frac{1 - 2\mu}{1 + \mu} \right),$$
(5)

величины *G/K* и *B/K* являются однозначными функциями коэффициента Пуассона µ.

Разделив $G = \rho v_s^2$ на $K = \rho v_k^2$, получаем соотношение

$$\frac{G}{K} = \frac{v_s^2}{v_k^2}.$$
(6)

С помощью формулы (1) правую часть этого равенства выразим через квадраты продольной и поперечной скоростей звука

$$\frac{v_s^2}{v_k^2} = 3\left(\frac{v_l^2}{v_s^2} + 2\right)^{-1}.$$
 (7)

В теории упругости отношение (v_l^2/v_s^2) у изотропных тел является функцией коэффициента Пуассона [5]

$$\frac{v_l^2}{v_s^2} = 2\left(\frac{1-\mu}{1-2\mu}\right).$$
 (8)

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 55 № 6 2019

Подставив (8) в выражение (7), а затем (7) в соотношение (6), приходим к заключению, что отношение G/K является функцией только коэффициента Пуассона

$$\frac{G}{K} = \frac{3}{2} \left(\frac{1 - 2\mu}{2 - 3\mu} \right).$$
(9)

Из комбинации данной формулы с равенством (5) следует, что отношение B/K также есть однозначная функция μ

$$\frac{B}{K} = \frac{1+\mu}{2-3\mu}.$$
(10)

Этот результат был получен ранее иным способом [3] (с помощью более сложных выкладок с привлечением уравнений Леонтьева [2] и Беломестных— Теслевой [6], а также с использованием искусственного приема и некоторого ограничения).

Таким образом, во-первых, как и модуль сдви-

га, величина $K = \rho v_k^2$ выражается через произведение плотности на квадрат скорости звука и, вовторых, при выполнении условия Коши она совпадает с модулем объемного сжатия. В-третьих, так же, как и отношения упругих модулей, величины G/K и B/K являются однозначными функциями коэффициента Пуассона. Поэтому произведение ρv_k^2 названо эффективным модулем упругости.

При установлении зависимости *B/K* от коэффициента Пуассона в виде (10) были использованы соотношения для изотропных кристаллов с кубическими решетками. Тем не менее, ранее было показано, что зависимость (10) применима к оксидным стеклам [3]. Рассмотрим применение выражения (10) к бескислородным халькогенидным стеклам мышьяк—сера—таллий.

Как видно из рис. 1, зависимость отношения B/K от функции коэффициента Пуассона (1 + $+\mu$)/(2 - 3μ) является линейной, причем в соот-

Рис. 1. Зависимость отношения модуля объемного сжатия к эффективному модулю упругости (B/K) от функции коэффициента Пуассона $(1 + \mu)/(2 - 3\mu)$ для халькогенидных стекол мышьяк–сера–таллий при различных содержаниях компонентов (использованы данные [4]).

ветствии с равенством (10) прямая проходит через начало координат с наклоном, равным единице, что подтверждает справедливость формулы (10) для рассматриваемых халькогенидных стекол. Необходимые экспериментальные данные взяты из работы [4] (табл. 1). Справедливость равенства (10) была установлена для силикатных стекол [3, 7]. Представляет интерес применимость зависимости (10) к другим оксидным неорганическим стеклам. Как видно из рис. 2, эта зависимость хо-

Рис. 2. Линейная корреляция между B/Kи $(1 + \mu)/(2 - 3\mu)$ для стеклообразных метафосфатов щелочноземельных металлов MO-P₂O₅ при различных содержаниях MO (M = Mg, Ca, Sr, Ba) (использованы данные [8]).

рошо выполняется для метафосфатов щелочноземельных металлов (по данным [8], табл. 2).

ЭФФЕКТИВНЫЙ МОДУЛЬ УПРУГОСТИ И АНГАРМОНИЗМ КОЛЕБАНИЙ РЕШЕТКИ

Одной из особенностей величины $K = \rho v_k^2$ является ее связь с параметром Грюнайзена γ_D , который служит характеристикой нелинейности силы межатомного взаимодействия и ангармонизма колебаний решетки. Параметр Грюнайзена выражает изменение частоты нормальных ко-

Таблица 2. Физико-механические характеристики [8] и рассчитанные из них параметр Грюнайзена γ_D и эффективный модуль упругости *К* для стеклообразных метафосфатов щелочноземельных металлов MO–P₂O₅, где M = Mg, Ca, Sr, Ba

Состав стекла	$0 \Gamma/M^3$	v M/c	v M/c	$G \times 10^{-8}$,	$B \times 10^{-8}$,		γ_D		$K \times 10^{-8}$,
по синтезу	p, 1/ M	<i>v</i> /, m/c	v_s , m/c	Н/м ²	Н/м ²	μ	(12)	(13)	Н/м ²
$0.51 \mathrm{MgO} \cdot 0.49 \mathrm{P}_2 \mathrm{O}_5$	2.475	5267	3110	239	367	0.233	1.42	1.42	388
$0.50 \text{MgO} \cdot 0.50 \text{P}_2\text{O}_5$	2.474	5264	3108	239	367	0.233	1.42	1.42	388
$0.49 \text{MgO} \cdot 0.51 \text{P}_2\text{O}_5$	2.477	5289	3121	241	371	0.233	1.42	1.42	392
$0.51 \text{CaO} \cdot 0.49 \text{P}_2\text{O}_5$	2.604	5051	2858	213	381	0.264	1.57	1.57	363
$0.50 \text{CaO} \cdot 0.50 \text{P}_2\text{O}_5$	2.618	5086	2869	216	390	0.267	1.58	1.59	369
$0.49\text{CaO} \cdot 0.51\text{P}_2\text{O}_5$	2.604	5051	2857	213	381	0.265	1.57	1.57	363
$0.51 \mathrm{SrO} \cdot 0.49 \mathrm{P}_2 \mathrm{O}_5$	3.048	4603	2568	201	378	0.274	1.62	1.62	349
$0.50 \mathrm{SrO} \cdot 0.50 \mathrm{P}_2 \mathrm{O}_5$	3.030	4610	2577	201	376	0.273	1.62	1.62	349
$0.49 \mathrm{SrO} \cdot 0.51 \mathrm{P}_2 \mathrm{O}_5$	3.020	4612	2584	202	373	0.271	1.61	1.61	349
$0.51 \operatorname{BaO} \cdot 0.49 \operatorname{P}_2 \operatorname{O}_5$	3.411	4160	2269	176	356	0.288	1.70	1.70	314
$0.50 \text{BaO} \cdot 0.50 \text{P}_2\text{O}_5$	3.413	4178	2278	177	360	0.288	1.71	1.70	317
$0.49 \text{BaO} \cdot 0.51 \text{P}_2\text{O}_5$	3.385	4186	2291	177	356	0.286	1.69	1.69	316

Рис. 3. Корреляция между значениями параметра Грюнайзена, рассчитанными по формулам Леонтьева γ_D (Л) и Беломестных—Теслевой γ_D (БТ), для халькогенидных стекол мышьяк—сера—таллий при различных содержаниях компонентов (использованы данные [4]).

лебаний решетки в зависимости от изменения объема системы и вычисляется по уравнению

$$\gamma_D = \frac{\beta V B}{C_V},\tag{11}$$

где β — коэффициент объемного теплового расширения, C_V и V — молярные теплоемкость и объем, B — изотермический модуль объемного сжатия. Наряду с уравнением Грюнайзена (11) для расчета γ_D используются другие соотношения. Заслуживают внимания, например, формулы Леонтьева [2]

$$\gamma_D = \frac{3}{2} \left(\frac{B}{\rho v_k^2} \right) \tag{12}$$

и Беломестных-Теслевой [6]

$$\gamma_D = \frac{3}{2} \left(\frac{1+\mu}{2-3\mu} \right). \tag{13}$$

Примечательно то обстоятельство, что соотношения (12) и (13) находятся в согласии с уравнением Грюнайзена (11) для металлов, ионных и молекулярных кристаллов [3, 6]. Рис. 3 подтверждает согласие между уравнениями (12) и (13)

Таблица 3. Параметр Грюнайзена и коэффициент Пуассона натриево-силикатных стекол Na₂O–SiO₂ [9]

Состав,	мол. %		γ_D		
SiO ₂	Na ₂ O	μ			
100	_	0.17	1.2		
85	15	0.20	1.3		
75	25	0.23	1.4		
65	35	0.25	1.5		

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 55 № 6 2019

применительно к рассматриваемым халькогенидным стеклам (табл. 1).

Из сравнения соотношения (10) с формулой Беломестных—Теслевой (13) следует взаимосвязь эффективного модуля упругости K и параметра Грюнайзена γ_D

$$K = \frac{3}{2} \left(\frac{B}{\gamma_D} \right). \tag{14}$$

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В работе [4] показано (табл. 1), что при увеличении содержания сульфида таллия Tl₂S у стекол в системе As-S-Tl по сечению As₂S-Tl₂S наблюдается непрерывное возрастание коэффициента Пуассона от $\mu = 0.306$ до $\mu = 0.344$; соответственно, согласно формуле (13), так же непрерывно и монотонно возрастает и параметр Грюнайзена, от $\gamma_D = 1.8$ до $\gamma_D = 2.1$. Это указывает на ослабление каркаса стекол и разрыхление их структуры, что согласуется со снижением энергии активации вязкого течения [4]. Здесь наблюдается некоторая аналогия с щелочно-силикатными стеклами. Известно, что при росте содержания ионов щелочных металлов R^+ (содержания R_2O , R = Li, Na, K) в щелочно-силикатных стеклах R₂O-SiO₂ возрастает степень ионности межатомных связей и происходит переход от сетчатой структуры (у кварцевого стекла SiO₂) с направленными силами межатомного взаимодействия к преимушественно ионной разветвленной цепочечной структуре (у стекол R_2O-SiO_2). Например, у натриево-силикатных стекол Na₂O-SiO₂ при увеличении содержания Na₂O (ионов Na⁺) от 0 до 35 мол. % μ и γ_D возрастают от $\mu = 0.17$ и $\gamma_D = 1.2$ до значений $\mu = 0.25$ и $\gamma_D = 1.5$ (табл. 3) [9], характерных для центральных сил взаимодействия ансамбля частиц. При этом у них убывает энергия активации вязкого течения.

Формула Беломестных—Теслевой (13) однозначно связывает гармоническую (линейную) μ и ангармоническую (нелинейную) γ_D характеристики. Встречаются другие подобные корреляции [10–12], например, известное эмпирическое правило Баркера [9], выражающее связь модуля упругости *E* с коэффициентом теплового расши-

рения β : $\beta^2 E \cong \text{const.}$ Однако в настоящее время природа этого явления остается во многом неясной. Известны лишь попытки качественного приближенного объяснения данного факта [11–13].

В рамках одномерной модели твердого тела потенциальная энергия межатомного взаимодействия двух смежных атомов записывается в виде

$$U=\frac{ax^2}{2}-\frac{bx^3}{6},$$

где $a = (d^2 U/dx^2)_{r=r_0}$ – гармонический, $b = -(1/2) \times (d^3 U/dx^3)_{r=r_0}$ – ангармонический коэффициенты в разложении функции U(x) в ряд по смещениям атомов из равновесного положения $x = r - r_0$. Используя в приведенных производных уравнение Ми: $U = -Ar^{-m} + Br^{-n}$, Конторова [11] получает следующую взаимосвязь гармонического и ангармонического коэффициентов

$$b = \left(\frac{m+n+3}{2r_0}\right)a\tag{15}$$

и устанавливает функциональную зависимость β , *E* и подобных свойств от коэффициентов *a* и *b*. И отсюда объясняет обсуждаемое явление наличием связи между *a* и *b* типа (15) и зависимостью от них линейных и нелинейных величин.

Таким образом, подход Конторовой указывает на принципиальную возможность реализации корреляции между, казалось бы, совершенно различными по своей природе физическими свойствами, в том числе между гармоническими и анграмоническими характеристиками твердых тел. Представляет интерес теория Пинеда [12], в рамках которой интерпретируются согласованные изменения коэффициента Пуассона μ и параметра Грюнайзена γ_D в опытах по структурной релаксации и всестороннему сжатию металлических стекол.

Тем не менее продолжает оставаться не совсем ясной природа однозначной связи параметра линейной теории упругости μ с мерой нелинейности силы межатомного взаимодействия γ_D .

Среди работ, посвященных природе коэффициента Пуассона (коэффициента поперечной деформации, как иногда называют), заслуживает внимания подход Берлина, Ротенбурга и Басерста [14], где предложена модель случайно упакованных сфер, взаимодействующих друг с другом в месте контакта двумя видами сил: перпендикулярных к плоскости контакта (центральных сил) и тангенциальных (сил трения), действующих по касательной к данной плоскости. Предполагается, что нормальные f_n и тангенциальные f_t силы пропорциональны соответствующим смещениям x_n и x_t

$$f_n = a_n x_n, \quad f_t = a_t x_t,$$

где a_n и a_t — нормальная и тангенциальная жесткости. Из модели следует, что коэффициент Пуассона определяется отношением этих (сдвиговых и изгибных) жесткостей $\lambda = a_t/a_n$ [14]

$$\mu = \frac{1 - \lambda}{4 + \lambda}.$$
 (16)

При $\lambda = 0$ ($a_n \gg a_l$) имеем $\mu = 0.25$, что соответствует ансамблю частиц с центральными силами. С ростом λ величина μ уменьшается, и при $\lambda = 1 \ \mu = 0$. Интересно отметить, что формула (16) предсказывает нижний предел коэффициента Пуассона $\mu = -1 \ при \ \lambda \to \infty \ (a_t \ge a_n)$. В самом деле, по теории упругости, как показали Ландау и Лифшиц [5], величина μ может меняться в пределах: $-1 \le \mu \le 0.5$.

Поскольку тангенциальная жесткость a_t связана с силой трения (с диссипацией энергии деформирования), можно ожидать зависимости параметра $\lambda = a_t/a_n$ от нелинейных эффектов, в частности, от ангармонизма. В самом деле, зависимость $\lambda(\gamma_D)$ следует из соотношений (13) и (16)

$$\lambda = \frac{(1.5 - \gamma_D)}{\gamma_D}.$$
 (17)

Это означает, что в формуле (16) в неявном виде заложена зависимость коэффициента Пуассона μ от ангармонизма, мерой которого служит параметр Грюнайзена γ_D .

Ангармонизм колебаний решетки и нелинейность силы межатомного взаимодействия проявляются в пластической деформации стеклообразных твердых тел [15, 16], что вполне естественно. Предел текучести σ_y – напряжение, выше которого наблюдается пластичность стекла, – определяется отношением модуля упругости к параметру Грюнайзена [16]

$$\sigma_y = \frac{1}{6} \left(\frac{E}{\gamma_D} \right). \tag{18}$$

Обращает на себя внимание аналогичное отношение (B/γ_D) в формуле для величины K (14). В процессе пластической деформации, например стеклообразных полимеров, усиливается ангармонизм (растет γ_D) и снижаются потенциальные барьеры межмолекулярного происхождения в сравнении с недеформированным состоянием, которое характеризуется межмолекулярным взаимодействием, определяемым модулем упругости E [15, 16].

Из соотношений (14) и (18) с привлечением известной формулы для *В* следует, что у стеклообразных материалов одного типа, у которых $\mu \approx \cos t$, предел текучести пропорционален эффективному модулю упругости *К*

$$\sigma_y = \left(\frac{1-2\mu}{3}\right)K.$$
 (19)

По формулам (12)–(14) и (18) можно вычислять параметр Грюнайзена на основе данных только механических испытаний, тогда как по известному уравнению Грюнайзена (11) величина γ_D рассчитывается главным образом по данным о теплофизических характеристиках. Приведенные выше примеры могут оказаться полезными при анализе механических свойств стекол с учетом ангармонизма [15, 16].

ЗАКЛЮЧЕНИЕ

Рассмотрен эффективный модуль упругости К халькогенилных стекол системы мышьяк-сераталлий. Установлено, что у исследованных стекол отношение модуля объемного сжатия к эффективному модулю упругости К является однозначной функцией коэффициента Пуассона. У стеклообразных твердых тел одного класса с одинаковыми (близкими) коэффициентами Пуассона предел текучести пропорционален эффективному модулю упругости. Особенностью величины К является его тесная связь с параметром Грюнайзена. В связи с однозначной зависимостью коэффициента Пуассона от параметра Грюнайзена поднимается вопрос о природе корреляции между гармоническими и ангармоническими величинами. На данном этапе приходится допускать зависимость коэффициента Пуассона от ангармонизма, что требует в дальнейшем детального обоснования.

БЛАГОДАРНОСТЬ

Работа выполнена при финансовой поддержке Минобрнауки РФ (грант № 3.5406.2017/8.9).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Киттель Ч.* Введение в физику твердого тела. М.: Физматгиз, 1962. 270 с.
- Леонтьев К.Л. О связи упругих и тепловых свойств веществ // Акуст. журн. 1981. Т. 27. Вып. 4. С. 554–561.
- Сандитов Д.С., Беломестных В.Н. Взаимосвязь параметров теории упругости и усредненный модуль объемного сжатия твердых тел // ЖТФ. 2011. Т. 81. Вып. 11. С. 77–81.
- Щукина Н.Е., Орлова Г.М., Чалабян Г.А. Вязкость и упругие свойства стекол системы мышьяк–сера– таллий // Физика и химия стекла. 1979. Т. 5. № 2. С. 223–228.

- 5. Ландау Л.Д., Лифшиц Е.М. Теория упругости. М.: Наука, 1987. 248 с.
- Беломестных В.Н., Теслева Е.П. Взаимосвязь ангармонизма и поперечной деформации квазиизотропных поликристаллических тел // ЖТФ. 2004. Т. 74. Вып. 8. С. 140–142.
- Сандитов Д.С., Дармаев М.В. Коэффициент Пуассона и упругие модули многокомпонентных оптических стекол // Вестн. Бурятского госуниверситета. Химия. Физика. 2014. Вып. 3. С. 136–139.
- 8. *Гурович Е.А., Ильин А.А., Пронкин А.А., Стржалковский М.Е.* Скорость звука в стеклообразных метафосфатных щелочноземельных металлов // Физика и химия стекла. 1979. Т. 5. № 3. С. 383–384.
- 9. Сандитов Д.С. О природе коэффициента Пуассона органических аморфных полимеров и неорганических стекол // Высокомолек. соединения. Сер. А. 2016. Т. 58. № 5. С. 112–128.
- Barker R. An Approximate Relation between Elastic Module and Thermal Expansivities // J. Appl. Phys. 1963. V. 34. № 1. P. 107–116.
- Конторова Т.А. О связи между механическими и тепловыми характеристиками кристаллов // Некоторые проблемы прочности твердых тел. М.: Изд-во АН СССР, 1959. С. 99–107.
- Pineda E. Theoretical Approach to Poisson Ratio Behavior during Structural Changes in Metallic Glasses // Phys. Rev. B. 2006. V. 73. P. 104109-1–104109-6.
- 13. Кузьменко В.А. Новые схемы деформирования твердых тел. Киев: Наукова думка, 1973. 200 с.
- 14. Берлин А.А., Ротенбург Л., Басэрст Р. Структура изотропных материалов с отрицательным коэффициентом Пуассона // Высокомолек. соед. Сер. Б. 1991. Т. 33. № 8. С. 619–621.
- 15. Сандитов Д.С., Козлов Г.В. Ангармонизм межатомных и межмолекулярных связей и физико-механические свойства стеклообразных систем // Физ. и хим. стекла. 1995. Т. 21. № 6. С. 549–578.
- Козлов Г.В., Сандитов Д.С. Ангармонические эффекты и физико-механические свойства полимеров. Новосибирск: Наука, 1994. 261 с.