УДК 53.09

АП-КОНВЕРСИЯ ЭРБИЯ-ИТТЕРБИЯ В ПЛЕНКАХ ПОЛИВИНИЛХЛОРИДА

© 2019 г. С. И. Расмагин^{1, *}, В. И. Крыштоб¹, И. К. Новиков²

¹Институт общей физики им. А.М. Прохорова Российской академии наук, Россия, 119991 Москва, ул. Вавилова, 38 ²Национальный исследовательский ядерный университет "МИФИ", Россия, 115409 Москва, Каширское ш., 31

> *e-mail: rasmas123@yandex.ru Поступила в редакцию 11.07.2018 г. После доработки 17.12.2018 г. Принята к публикации 21.01.2019 г.

Изготовлена серия композитов поливинилхлорид-оксисульфид иттрия с внедренными в них ионами иттербия и эрбия. Измерены спектры фотолюминесценции при ап-конверсии и объемное удельное сопротивление полученных композитов. Обнаружено, что интенсивность фотолюминесценции в зеленом диапазоне для полученного композита значительно выше, чем для образца оксисульфида иттрия с эрбием и иттербием. Удельное сопротивление полученного композита при нагреве падает на 8 порядков. При этом при ап-конверсии увеличивается интенсивность фотолюминесценции в зеленом и красном диапазонах с ростом концентрации пар ионов эрбия и иттербия, появляются дополнительные пики фотолюминесценции в двух зеленых и одном красном диапазонах благодаря штарковскому расщеплению термов эрбия под влиянием хлора в поливинилхлориде, при нагревании происходит переход композита PVC- $Y_2O_2S:Yb^{3+}/Er^{3+}$ в полупроводящее состояние.

Ключевые слова: люминофоры, ап-конверсия, фотолюминесценция эрбия, иттербий, полупроводящие полимеры

DOI: 10.1134/S0002337X19070133

введение

Исследование оптических свойств ап-конверсионных частиц в различных матрицах имеет научный и практический интерес. Ап-конверсионные частицы проявляют нелинейный эффект преобразования длинноволнового возбуждающего излучения в коротковолновое или другими словами, ап-конверсию посредством передачи энергии (ETU). Частным случаем данного нелинейного эффекта является преобразование инфракрасного излучения в фотолюминесценцию видимого диапазона. Так. например. при облучении в диапазоне длин волн 900-1100 нм ап-конверсионных частиц происходит преобразование света в видимый диапазон различных цветов. Данный эффект находит практическое применение в следующих областях: биомедицинская визуализация, солнечные батареи, технология дисплеев. улучшение характеристик приборов ночного видения и визуализаторы ИК-излучения от светодиодов и лазеров [1-3]. Так, например, в работе [4] для получения ап-конверсии внедряли редкоземельную пару Yb³⁺/Er³⁺ в стекла с целью создания визуализаторов ИК-лазеров при возбуждении излучением с длиной волны 975 нм.

При ИК-облучении в интервале длин волн 1400-1600 нм ап-конверсионных частиц также наблюдается преобразование излучения в видимый диапазон. Данное преобразование интересно тем. что возбуждающее излучение лежит в диапазоне 1400-1600 нм, в котором работает современное телекоммуникационное волоконнооптическое оборудование. Для создания апконверсии в веществе необходимо иметь метастабильные промежуточные энергетические уровни с длительным временем жизни порядка 10-100 мкс. Такие времена имеют, например, энергетические уровни редкоземельных элементов (РЗЭ). Одними из самых используемых ионов РЗЭ являются Er³⁺ и Yb³⁺. Чтобы получить апконверсию в материале с внедренными ионами Er³⁺, используется процесс двухфотонного поглощения: сначала один фотон переводит ион Er³⁺ из основного в возбужденное состояние, затем второй фотон поглощается с уже полученного возбужденного состояния. Относительная эффективность данного механизма ап-конверсии составляет порядка $\eta \approx 10^{-5}$. Для получения ап-конверсии (ETU) с более высокой эффективностью $n \approx 10^{-3}$ была выбрана пара РЗЭ Yb³⁺/Er³⁺ в оксисульфиде иттрия (Y_2O_2S) , внедренном в матрицу поливинилхлорида. Ап-конверсию в композите (поливинилхлорид—оксисульфид иттрия) с внедренными в него парами ионов Yb³⁺/Er³⁺ можно обеспечить благодаря процессам одновременной или последовательной передачи энергии.

Целью данной работы было создание и исследование люминесцентных и электрофизических свойств композитов поливинилхлорид—оксисульфид иттрия с внедренными парами ионов Yb^{3+}/Er^{3+} (PVC— $Y_2O_2S:Yb^{3+}/Er^{3+}$).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для получения композитов в виде пленок приготовили раствор 4%-ного поливинилхлорида массой 4 г марки С-7059 в растворителе тетрагилрофуране (**ТГФ**) объемом 100 мл с помошью магнитной мешалки при $t = 40^{\circ}$ C. Полученный раствор разлили в разные чашки Петри с равным объемом 20 мл. Сухой агломерированный порошок оксисульфида иттрия с внедренной парой Yb³⁺/Er³⁺ (Y₂O₂S:Yb³⁺/Er³⁺) растворили в ТГФ в соотношении 1 г Y₂O₂S:Yb³⁺/Er³⁺ в 5 мл ТГФ. В результате получили суспензионный раствор $Y_2O_2S:Yb^{3+}/Er^{3+}$ в ТГФ. Затем в уже полученный раствор поливинилхлорида добавляли разное количество суспензионного раствора Y₂O₂S:Yb³⁺/Er³⁺ в разных чашках Петри. В результате были получены смешанные растворы поливинилхлорида и $Y_2O_2S:Yb^{3+}/Er^{3+}$ в растворителе ТГФ. Всего получили 4 раствора с равным объемом содержимого, но с разной концентрацией Yb³⁺/Er³⁺: раствор 1 - 25 мг/мл, раствор 2 - 50 мг/мл, раствор 3 -100 мг/мл, раствор 4 – 200 мг/мл. Далее растворы подвергались сушке в термопечи при $t = 70^{\circ}$ C. В итоге было получено четыре композита в виде пленок с разной толщиной и разной массой (концентрацией) Yb³⁺/Er³⁺: образец 1 – толщина пленки 36 мкм (25 мг), 2 – 35 мкм (50 мг), 3 – 34 мкм (100 мг), 4 – 35 мкм (200 мг). Диаметр для всех пленок составил 2.5 см. Композит обозначен $PVC-Y_2O_2S:Yb^{3+}/Er^{3+}$. В качестве контрольных образцов были созданы следующие: образец $Y_2O_2S:Yb^{3+}/Er^{3+}$ условно обозначим 5 и исходный поливинилхлорид обозначим 6.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Для полученных пленок композита поливинилхлорид—оксисульфид иттрия с внедренными в них редкоземельными парами ионов Yb³⁺/Er³⁺ и исходного образца поливинилхлорида были измерены удельное объемное сопротивление ρ_V в зависимости от температуры и спектры фотолюминесценции при ап-конверсии. Необходимым условием ап-конверсионного преобразования для пары редкоземельных ионов иттербий/эрбий является процесс передачи энергии иона донора Yb^{3+} на основное или промежуточное возбужденное состояние иона акцептора Er^{3+} . Данный процесс передачи энергии является в основном безызлучательным [5]. Безызлучательная передача энергии между ионами Yb^{3+} и Er^{3+} происходит благодаря обмену электронов между донором и акцептором [6]. Основным механизмом передачи энергии между ионом донора Yb^{3+} и ионом акцептора Er^{3+} в ап-конверсионных материалах является ферстеровский механизм, основанный на диполь-дипольном взаимодействии [7]. В общем случае вероятность обменного взаимодействия (передачи энергии) может быть описана формулой Декстера

$$W_{da} = (1/\tau_d) \left(R_0 / R \right)^S, \qquad (1)$$

где W_{da} — вероятность передачи энергии между донором (Yb³⁺) и акцептором (Er³⁺), τ_d — время жизни возбужденного состояния донора, R — расстояние между донором и акцептором, R_0 — радиус Ферстера, S — мультипольность взаимодействия, например S = 6 для диполь-дипольного взаимодействия. При этом стоит отметить, что эффективность передачи энергии зависит в основном от концентрации ионов иттербия и не зависит от концентрации эрбия [8].

Для измерения спектров фотолюминесценции был использован спектрометр USB-2000+ и светодиод с длиной волны 950 нм. При возбуждении образцов излучением с длиной волны 950 нм происхолит фотолюминесшениия ионов эрбия в коротковолновой области, т.е. наблюдается ап-конверсия (рис. 1). Из спектров фотолюминесценции можно видеть, что амплитуда для перехода ${}^{2}S_{3/2} \rightarrow {}^{4}I_{15/2}$ (548 нм) сильно увеличивается с ростом концентрации пары ионов Yb³⁺/Er³⁺ в матрице PVC-Y₂O₂S, а для перехода ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ (659 нм) увеличивается незначительно (см. рис. 1). На рис. 2 показана схема энергетических уровней 4fⁿ иона Er³⁺; основные электронные переходы: ${}^{2}H_{11/2} \rightarrow {}^{4}I_{15/2}$ (526 нм), ${}^{2}S_{3/2} \rightarrow {}^{4}I_{15/2}$ (548 нм) и ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ (659 нм). На рис. 3 показаны спектры фотолюминесценции Yb3+/Er3+ в матрице Y2O2S (образец 5) и в матрице PVC-Y₂O₂S (образец 4). Стоит отметить следующие экспериментальные факты для композита $PVC-Y_2O_2S:Yb^{3+}/Er^{3+}$:

1) увеличение амплитуды фотолюминесценции перехода ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ (548 нм) приблизительно в 1.6 раза и расщепление возбуждающего уровня ${}^{4}S_{3/2}$ на два штарковских подуровня 548 и 554 нм;

2) расщепление возбуждающего уровня ${}^{4}F_{9/2}$ на четыре штарковских подуровня 656, 661, 665 и 669 нм (в образце 5 нет расщепления подуровней);

2019

Рис. 1. Спектры фотолюминесценции для образцов 1-4 (см. текст) с разной концентрацией Yb³⁺ и Er³⁺.

3) проявление (отсутствует в образце 5) и расщепление возбуждающего уровня ${}^{2}H_{11/2}$ на два штарковский подуровня 523 и 527 нм.

Расщепление возбуждающих уровней ${}^{2}H_{11/2}$, ${}^{4}S_{3/2}$ и ${}^{4}F_{9/2}$ на штарковские подуровни происходит, вероятнее всего, под действием электрического поля анионного окружения, которое образуется в результате взаимодействия ионов эрбия и атомов хлора, присутствующих в поливинилхлориде. Подобные рассуждения приведены в работе [9].

Рост интенсивности фотолюминесценции перехода ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ (548 нм) в композите PVC-Y₂O₂S:Yb³⁺/Er³⁺ по сравнению с образцом Y₂O₂S:Yb³⁺/Er³⁺ можно объяснить увеличением эффективности переноса энергии между донором и акцептором Yb³⁺-Er³⁺ (электронный переход ${}^{4}F_{5/2} \rightarrow {}^{4}I_{11/2}$), т.к. эффективность переноса энергии между ионами Yb³⁺-Er³⁺ сильно зависит от матрицы, в которую они внедрены [10].

Для измерения удельного объемного сопротивления пленок от температуры нагрева была использована методика, подробно и в разных вариантах описанная в работах [11–13]. Из рис. 4 видим, что удельное сопротивление пленки поливинилхлорида (образец *6*) уменьшается на 3 порядка. Но после охлаждения возвращается к своему исходному диэлектрическому состоянию с удельным сопротивлением порядка 5×10^{14} Ом см. Из рис. 4 также видно, что удельное сопротивление сопротивление пленки композита PVC–Y₂O₂S:Yb³⁺/Er³⁺ (образец *4*) сильно уменьшается начиная с $t = 51^{\circ}$ С и достигает своего минимального значения порядка 12×10^4 Ом см при $t = 85^{\circ}$ С. После охлаждения ком-

Рис. 2. Схема энергетических уровней ионов $Yb^{3+}-Er^{3+}$.

позита до $t = 22^{\circ}$ С $\rho_{V} \approx 12 \times 10^{4}$ Ом см. Таким образом, после нагрева и охлаждения композит уже не переходит в состояние диэлектрика, а величина удельного сопротивления уменьшается на 8 порядков, т.е. композит PVC–Y₂O₂S:Yb³⁺/Er³⁺ при нагревании переходит в полупроводящее со-

Рис. 3. Спектры фотолюминесценции: образец 4 – $PVC-Y_2O_2S:Yb^{3+}/Er^{3+}$, образец 5 – $Y_2O_2S:Yb^{3+}/Er^{3+}$.

Рис. 4. Зависимости объемного удельного сопротивления от обратной температуры: образец $4 - PVC - Y_2O_2S:Yb^{3+}/Er^{3+}$, образец 6 - поливинилхлорид.

стояние и остается в нем при охлаждении до комнатной температуры.

ЗАКЛЮЧЕНИЕ

Исследованы оптические и электрофизические свойства полученного композита PVC– Y₂O₂S:Yb³⁺/Er³⁺. Установлены следующие закономерности:

 увеличение интенсивности фотолюминесценции в зеленом и красном диапазонах при апконверсии с ростом концентрации пар ионов эрбия и иттербия;

2) увеличение интенсивности фотолюминесценции в 1.6 раза при ап-конверсии в зеленом диапазоне композита $PVC-Y_2O_2S:Yb^{3+}/Er^{3+}$ по сравнению с $Y_2O_2S:Yb^{3+}/Er^{3+}$;

 появление дополнительных пиков фотолюминесценции при ап-конверсии в двух зеленых и одном красном диапазонах благодаря штарковскому расщеплению термов эрбия под влиянием хлора в поливинилхлориде;

4) резкий переход композита $PVC-Y_2O_2S:Yb^{3+}/Er^{3+}$ при нагревании в полупроводящее состояние и нахождение в этом состоянии длительное время после охлаждения.

Таким образом, создан органо-неорганический композит $PVC-Y_2O_2S:Yb^{3+}/Er^{3+}$ с более сильной фотолюминесценцией в зеленом диапазоне при ап-конверсии, проявляющий стабильные по времени полупроводниковые свойства.

СПИСОК ЛИТЕРАТУРЫ

- 1. Хайдуков Е.В., Рочева В.В., Семчишен В.А., Семиногов В.Н., Соколов В.И. и др. Оптическая визуализация опухолевых тканей с применением антистоксовых наночастиц // Вестн. Российского фонда фундаментальных исследований. 2014. Т. 84. № 4. С. 7–17.
- Gnach A., Bednarkiewicz A. Lanthanide-Doped Up-Converting Nanoparticles: Merits and Challenges // Nano Today. 2012. V. 6. № 7. P. 532–563.
- 3. *Nadort A., Zhao J., Goldys E.M.* Lanthanide Upconversion Luminescence at the Nanoscale: Fundamentals and Optical Properties // Nanoscale. 2016. V. 27. № 8. P. 13099–13130.
- 4. Савикин А.П., Будруев А.В., Шушунов А.Н., Тихонова Е.Л., Шастин К.В., Гришин И.А. Фторидное и теллуритное стекла для пленочных визуализаторов ИК-излучения // Неорган. материалы. 2014. Т. 50. № 11. С. 1261.
- 5. *Auzel F.* Upconversion and Anti-Stokes Processes with f and d Ions in Solids // Chem. Rev. 2004. V. 104. № 1. P. 139–173.
- Dexter D.L. A Theory of Sensitized Luminescence in Solids // J. Chem. Phys. 1953. V. 21. P. 836.
- Förster Th. Zwischenmolekulare Energiewanderung und Fluoreszenz // Ann. Phys. 1948. V. 437. № 1–2. P. 55–75.
- Андреев П.О., Сальникова Е.И., Андреев О.В., Денисенко Ю.Г., Ковенский И.М. Синтез и спектры апконверсионной люминесценции твердых растворов (Y_{1-x-y}Yb_xEr_y)₂O₂S // Неорган. материалы. 2017. Т. 53. № 2. С. 185–191.
- Холодков А.В., Голант К.М., Исхакова Л.Д. Особенности люминесценции Er³⁺ в легированном галогенами аморфном диоксиде кремния // Тр. ИОФАН. 2008. Т. 64. С. 66–80.
- Скопцов Н.А., Денисов И.А., Маляревич А.М., Юмашев К.В., Дымшиц О.С., Жилин А.А., Алексеева И.П. Люминесценция прозрачной стеклокерамики, содержащей нанокристаллы титанатов-цирконатов Er³⁺ и Yb³⁺ // Журн. прикл. спектроскопии. 2011. Т. 78. № 5. С. 697–706.
- Крыштоб В.И., Расмагин С.И. Анализ свойств дегидрохлорированных пленок поливинилхлорида (08) // ЖТФ. 2017. Т. 87. № 11. С. 1687–1689.
- Новиков И.К., Крыштоб В.И., Расмагин С.И. Изменение электрических и оптических свойств поливинилхлорида в результате термообработки // Прикладная физика. 2017. № 5. С. 71–75.
- Rasmagin S.I., Krasovskii V.I., Novikov I.K., Krystob V.I., Feofanov I.N. Optical Methods for Controlling the Degree Dehydrochlorination of Polyvinylchloride // Proc. SPIE 10614. Int. Conf. on Atomic and Molecular Pulsed Lasers XIII, 106140B (16 April 2018). doi 10.1117/12.230298110.1117/12.2302981