УДК 546.776

КРАСНЫЕ ЛЮМИНОФОРЫ (Ca,Mg)₉Gd_{1 – x}Eu_x(PO₄)₇, АКТИВИРОВАННЫЕ Gd³⁺ и Eu³⁺

© 2019 г. И. В. Никифоров^{1, *}, Д. В. Дейнеко¹, Д. А. Спасский², Б. И. Лазоряк¹

¹Московский государственный университет им. М.В. Ломоносова, Россия, 119991 Москва, Ленинские горы, 1 ²Научно-исследовательский институт ядерной физики им. Д.В. Скобельцына,

Россия, 119991 Москва, Ленинские горы, 1, корп. 2

*e-mail: niva.nli@yandex.ru Поступила в редакцию 21.12.2018 г. После доработки 05.02.2019 г. Принята к публикации 11.02.2019 г.

Получены твердые растворы фосфатов на основе семейства витлокита $Ca_9Gd_{1-x}Eu_x(PO_4)_7$ и $Ca_8MgGd_{1-x}Eu_x(PO_4)_7$. Образцы исследованы комплексом методов, таких как рентгенофазовый анализ, генерация второй оптической гармоники, люминесцентная спектроскопия. Изучены оптические характеристики веществ, времена жизни в активном состоянии, квантовый выход. Синтезированные образцы демонстрируют интенсивную люминесценцию при возбуждении 395 нм, соответствующую оранжево-красной области спектра. Определены оптимальные концентрации катионов Eu^{3+} для получения наиболее интенсивной люминесценции в красной области спектра: x = 0.75 для $Ca_8MgGd_{1-x}Eu_x(PO_4)_7$ и x = 1 для $Ca_9Gd_{1-x}Eu_x(PO_4)_7$. Установлен эффективный перенос энергии $Gd^{3+} \rightarrow Eu^{3+}$, повышающий интенсивность фотолюминесценции в 2.5 раза. Значения квантового выхода исследованных твердых растворов достигают 49.5%, что в 2 раза превосходит коммерческий люминофор на основе Y_2O_3 : Eu^{3+} .

Ключевые слова: фосфаты, люминесцентная спектроскопия, витлокит, красные люминофоры, перенос энергии

DOI: 10.1134/S0002337X19070121

введение

Белые светодиоды активно используются в освещении за счет низкого потребления энергии, высокой эффективности электрооптического преобразования, экологичности, надежности и долговечности [1]. Наиболее используемым методом получения белых светодиодов является возбуждение желтого люминофора (например, Y₃Al₅O₁₂:Ce³⁺) синим чипом InGaN [2]. Однако недостатками такого метода являются низкий индекс цветопередачи и цветовой температуры. Чтобы улучшить данные характеристики за счет введения люминофора с соответствующим электронным переходом, добавляют красную спектральную составляющую [3], что увеличивает область применения белых светодиодов. В связи с этим поиск интенсивных люминофоров, излучающих в области 500-650 нм, является актуальной задачей.

Среди катионов РЗЭ соответствующие доминирующие электронные переходы имеют Eu^{3+} и Sm³⁺. В то же время, было показано, что в идентичных кристаллических решетках Eu^{3+} излучает намного интенсивнее, чем Sm³⁺. Хорошо извест-

ны неорганические матрицы для реализации люминесцентных свойств, такие как нитраты, бораты, молибдаты и силикаты, однако данные вещества характеризуются низкой химической стабильностью и сложностью синтеза [2–4]. Кристаллическая структура витлокита универсальна для проявления люминесцентных свойств катионов РЗЭ за счет своего кристаллохимического строения, а также высокой химической и термической стабильности [5].

Структурный тип витлокит, включающий синтетический фосфат β -Ca₃(PO₄)₂, за счет своего кристаллохимического строения создает предпосылки для формирования разнообразных физических свойств [6]. В структуре β -Ca₃(PO₄)₂ (Z = 21) катионы Ca²⁺ распределяются по пяти неэквивалентным кристаллографическим позициям M1–M5. Замещение Ca²⁺ на двухвалентный катион оказывает влияние на люминесцентные свойства РЗЭ [7, 8] за счет искажения координационного окружения и изменения симметрии; ранее был показан положительный эффект такого рода замещений [3, 7].

Помимо введения в структуру катионов-заместителей, регулировать люминесцентные свой-

Рис. 1. Дифрактограммы $Ca_9Gd_{1-x}Eu_x(PO_4)_7$ (x = 0.75 (I), 1.00 (2)) и $Ca_8MgGd_{1-x}Eu_x(PO_4)_7$ (x = 0.75 (3), 1.00 (4)); штрих-дифрактограмма приведена для $Ca_{10.5}(PO_4)_7$ (PDF 70-2065).

ства катионов-люминофоров можно с помощью т.н. со-допантов, т.е. дополнительно вводимых катионов в малых количествах, таких как самарий [3], гадолиний [9] и другие. Целью такого введения является накопление энергии (energy pump) [9], повышение квантового выхода [3], смещение спектра результирующего излучения (color tuning) [1], улучшение люминесцентных характеристик [3] за счет близости электронных уровней.

Таким образом, целью данной работы являются синтез и исследование эффективных люминофоров на основе фосфатов со структурой витлокита — $Ca_9Gd_{1-x}Eu_x(PO_4)_7$ и $Ca_8MgGd_{1-x}Eu_x(PO_4)_7$, сравнение свойств и изучение влияния катионов-заместителей Mg^{2+} и Gd^{3+} на спектрально-кинетические, люминесцентные характеристики, а также цветовые координаты (CIE) и значения квантового выхода.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образцы сложных фосфатов получали методом твердофазного синтеза в алундовых тиглях посредством ступенчатого нагревания до 1100°С с промежуточной гомогенизацией, общая продолжительность реакции составляла 50 ч. В качестве прекурсоров использовали CaHPO₄ · 2H₂O ("ч. д. а."), CaCO₃ ("ч. д. а."), MgO ("ч. д. а."), R₂O₃ (R – Gd³⁺, Eu³⁺) ("ч. д. а."), проверенные методом рентгенофазового анализа на содержание примесных фаз.

Рентгенофазовый анализ проведен на порошковом дифрактометре Thermo ARL с помощью программ Crystallographica Search-Match и Jana2006 [10]. Исследования методом генерации второй оптической гармоники (**ГВГ**) проводили на лазерной установке по схеме "на отражение" (источник излучения – импульсный YAG: Nd-лазер Minilite-I с $\lambda_{\omega} = 1064$ нм).

Спектры возбуждения фотолюминесценции сняты с помощь спектрографа Lot-Oriel MS-257, оснащенного детектором Marconi CCD. Кривые затухания люминесценции сняты на приборе Cary Eclipse Fluorescence Spectrophotometer. Значения квантовых выходов измерялись на спектрофлуориметре Edinburgh Instruments FS5, оснащенном интегрирующим сферическим модулем SC-30 и Hamamatsu PMT R928P.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Полученные дифрактограммы приведены на рис. 1. Количество и положение пиков соответствуют фосфату Ca_{10.5}(PO₄)₇ (PDF 70-2065). Таким образом, синтезированные образцы однофазные и кристаллизуются в структурном типе витлокита, установлена граница однофазной области при x = 1. Твердые растворы Ca₉Gd_{1-x}Eu_x(PO₄)₇ кристаллизуются в полярной пр. гр. *R*3*c*, в то время как Ca₈MgGd_{1-x}Eu_x(PO₄)₇ характеризуется неполярной пр. гр. *R*3*c* [5, 6]. Подтверждением этого является существование низкого сигнала ГВГ (≈1–1.5 единиц кварцевого эталона) для Ca₉Gd_{1-x}Eu_x(PO₄)₇ и полное отсутствие сигнала ГВГ для Ca₈MgGd_{1-x}Eu_x(PO₄)₇.

Параметры элементарных ячеек представлены в табл. 1. Рассчитанные параметры элементарной ячейки для твердых растворов Ca₈MgGd_{1-x}Eu_x(PO₄)₇ существенно меньше по сравнению с Ca₉Gd_{1-x}Eu_x(PO₄)₇, что связано с замещением катиона Ca²⁺ ($r_{\text{VIII}} = 1.00$ Å) на Mg²⁺ с меньшим радиусом ($r_{\text{VIII}} = 0.89$ Å) [11].

Спектры возбуждения фотолюминесценции при $\lambda_{em} = 615$ нм для Ca₈MgGd_{1-x}Eu_x(PO₄)₇ и Ca₉Gd_{1-x}Eu_x(PO₄)₇ представлены на рис. 2. Широкий пик в области 220–300 нм соответствует полосе с переносом заряда (Charge Transfer Band – CTB), которая связана с электронным переходом от кислорода на уровни 4*f* катионов РЗЭ, в данном случае по связям O²⁻–Eu³⁺ и O²⁻–Gd³⁺ [12]. Серия линий при 362, 378, 394, и 415 нм отвечает электронным переходам ⁷F₀ \rightarrow ⁵D₄, ⁷F₀ \rightarrow ⁵C_{2.4}, ⁷F₀ \rightarrow ⁵L₆ и ⁷F₀ \rightarrow ⁵D₃ катиона Eu³⁺.

На рис. 3 представлены спектры фотолюминесценции синтезированных твердых растворов, зарегистрированные при $\lambda_{ex} = 395$ нм. Для $Ca_9Gd_{1-x}Eu_x(PO_4)_7$ и $Ca_8MgGd_{1-x}Eu_x(PO_4)_7$ при x > 0 на спектрах присутствуют характерные линии в красной области видимого спектра при 580, 590, 615, 650 и 695 нм, которые соотносятся с КРАСНЫЕ ЛЮМИНОФОРЫ (Ca,Mg)₉Gd_{1-x}Eu_x(PO₄)₇

x	a, Å	c, Å	<i>V</i> , Å ³	<i>a</i> , Å	c, Å	<i>V</i> , Å ³
	$Ca_8MgGd_{1-x}Eu_x(PO_4)_7$			$Ca_9Gd_{1-x}Eu_x(PO_4)_7$		
0.00	10.358(1)	37.078(4)	3445.1(4)	10.453(1)	37.377(3)	3536.6(2)
0.25	10.358(5)	37.081(0)	3445.6(2)	10.453(6)	37.384(4)	3537.6(2)
0.50	10.358(8)	37.083(6)	3446.0(9)	10.454(2)	37.391(5)	3538.6(4)
0.75	10.359(2)	37.086(1)	3446.5(7)	10.454(7)	37.398(6)	3539.6(5)
1.00	10.359(5)	37.088(7)	3447.0(4)	10.455(2)	37.405(7)	3540.6(7)

Таблица 1. Кристаллографические параметры элементарных ячеек $Ca_8MgGd_{1-x}Eu_x(PO_4)_7$ и $Ca_9Gd_{1-x}Eu_x(PO_4)_7$

внутрицентровыми переходами катиона европия ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$, (J = 0 - 4 соответственно). Доминирующий пик наблюдается при 615 нм для электродипольного перехода ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$.

На графиках интегральной интенсивности (I_{int}) наблюдается рост с увеличением содержания катиона Eu³⁺ (вставка на рис. 3). Ca₉Gd_{1-x}Eu_x(PO₄)₇ демонстрирует монотонное увеличение I_{int} , в то время как для Ca₈MgGd_{1-x}Eu_x(PO₄)₇ наблюдается максимум при x = 0.75. При большей концентрации Eu³⁺ происходит процесс концентрационного тушения люминесценции за счет сокращения расстояний между центрами свечения вследствие уменьшения размеров элементарной ячейки (табл. 1).

Локальное окружение люминесцентного центра оказывает влияние на структуру и распределение интенсивностей наблюдаемых линий. Коэффициент асимметрии $R/O = I({}^{5}D_{0} \rightarrow {}^{7}F_{2})/I({}^{5}D_{0} \rightarrow {}^{7}F_{1})$ [3, 7] дает информацию о кристаллографическом окружении центра свечения и искажении полиэдров (рис. 4). Для Ca₈MgGd_{1-x}Eu_x(PO₄)₇ значения

R/O меньше по сравнению с Ca₉Gd_{1-x}Eu_x(PO₄)₇, что говорит о меньшем искажении полиэдров в подрешетке за счет формирования более высокой пространственной симметрии.

Переход ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ показывает количество неэквивалентных позиций для катиона европия в кристаллической структуре (рис. 5) [13]. Для $Ca_8MgGd_{1-x}Eu_x(PO_4)_7$ наблюдается один пик, который может быть разложен на 2 гауссовские компоненты, которые отвечают заселению Eu³⁺ координационных полиэдров М1 и М2. В связи с тем, что позиция МЗ находится в локальном центре симметрии (ЦС), она не вносит вклад в переход ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$. За счет формирования ЦС в МЗ в структуре присутствуют 2 типа тримеров: М1-М3-М1 и М2-М3-М2, которые различаются расположением тетраэдров PO_4^{3-} , формирующих 3D-каркас структуры. Для Ca₉Gd_{1-x}Eu_x(PO₄)₇ наблюдаются 2 пика: смещенный в более длинноволновую область (579 нм) - несимметричный ("суперпозиция" двух переходов Eu³⁺, рас-

Рис. 2. Спектр возбуждения люминесценции $Ca_9Gd_{1-x}Eu_x(PO_4)_7$ (1) и $Ca_8MgGd_{1-x}Eu_x(PO_4)_7$ (2) ($\lambda_{em} = 615$ нм).

Рис. 3. Спектры фотолюминесценции Ca₉Gd_{1-x}Eu_x(PO₄)₇ (*I*) и Ca₈MgGd_{1-x}Eu_x(PO₄)₇ (*2*) ($\lambda_{ex} = 395$ нм).

2019

Рис. 4. Коэффициент асимметрии (R/O) для $Ca_9Gd_{1-x}Eu_x(PO_4)_7$ (1) и $Ca_8MgGd_{1-x}Eu_x(PO_4)_7$ (2).

полагающегося статистически в М1 и М2) и левый (577 нм) — отвечает переходу в М3 [8].

Времена жизни в активном состоянии рассчитаны с помощью кривых затухания по формуле

$$\tau = \frac{\int_{0}^{t_{\max}} tI(t) dt}{\int_{0}^{t_{\max}} I(t)},$$

где I(t) — интенсивность люминесценции в момент времени *t*, интегралы берутся в интервале $0 < t < t_{max}$, причем $t_{max} \gg \tau$ [14].

На рис. 6 представлены данные для твердых растворов при x = 0.75. Для Ca₈MgGd_{1-x}Eu_x(PO₄)₇ времена жизни при $\lambda_{ex} = 260$ и 395 нм составляют $\tau =$ = 1.804 и 1.608 мс соответственно, в то время как для Ca₉Gd_{1-x}Eu_x(PO₄)₇ $\tau = 1.682$ и 1.580 мс. При $\lambda_{ex} = 260$ нм бо́лышие значения τ связаны с процессами переноса энергии Gd³⁺:Eu³⁺ [12] и говорят о более эффективном процессе передачи энергии по сравнению с парой Sm³⁺:Eu³⁺ в ранее изученных фосфатах Ca₈MgSm_{1-x}Eu_x(PO₄)₇ [3].

Цветовые координаты показывают цвет свечения люминофора, согласно международным цветовым стандартам, и рассчитываются по следующим формулам [15]:

Рис. 5. Переход ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ катиона Eu^{3+} в Ca₉Gd_{1-x}Eu_x(PO₄)₇ (1) и Ca₈MgGd_{1-x}Eu_x(PO₄)₇(2).

где $S(\lambda)$ – интенсивность при длине волны $\lambda; \bar{x}, \bar{y}, \bar{z}$ – цветовые 1931СІЕ-координаты для данной длины волны (λ). Рассчитанные данные представлены в табл. 2 и на рис. 7.

Все синтезированные твердые растворы имеют цветовые характеристики, близкие к красному стандарту (0.67, 0.33) и коммерческому люмино-фору Y_2O_3 : Eu³⁺ (0.655, 0.345) [3].

Важной характеристикой является квантовый выход (Quantum yield, QY), который был измерен для образцов Ca₉Gd_{0.25}Eu_{0.75}(PO₄)₇ и Ca₈MgGd_{0.25}Eu_{0.75}(PO₄)₇. Значения квантовых

Рис. 6. Кривые затухания люминесценции для Ca₉Gd_{0.25}Eu_{0.75}(PO₄)₇ (*1*, *2*) и Ca₈MgGd_{0.25}Eu_{0.75}(PO₄)₇ (*3*, *4*).

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 55 № 8 2019

<i>х</i> в составах	Х	У	Х	У	
	$Ca_8MgGd_{1-x}Eu_x(PO_4)_7$		$Ca_9Gd_{1-x}Eu_x(PO_4)_7$		
0.25	0.634	0.356	0.639	0.338	
0.50	0.645	0.348	0.646	0.343	
0.75	0.653	0.343	0.648	0.343	
1.00	0.650	0.342	0.646	0.344	

Таблица 2. Цветовые координаты

выходов составили QY = 49.5 и 44.8% соответственно, что в 1.5 раза выше по сравнению с коммерческим люминофором Y₂O₃:Eu³⁺ (QY = 29.5%) [3].

ЗАКЛЮЧЕНИЕ

Твердые растворы на основе фосфатов со структурой витлокита $Ca_8MgGd_{1-x}Eu_x(PO_4)_7$ и $Ca_9Gd_{1-x}Eu_x(PO_4)_7$ получены методом твердофазного синтеза. Оптимальная концентрация люминесцентных центров составила: x = 0.75для $Ca_8MgGd_{1-x}Eu_x(PO_4)_7$ и x = 1 для $Ca_9Gd_{1-x}Eu_x(PO_4)_7$. Граница существования твердых растворов установлена при x = 1. Введение катиона малого радиуса Mg²⁺ отвечает за изменение пр. гр. $R3c \rightarrow R\overline{3}c$. Переход в центросимметричное состояние подтверждено данными ГВГ, а также детальным изучением электродипольного электронного перехода ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$. Показано, что данному электронному переходу соответствуют три полосы, соответствующие расположению катионов европия в 3 неэквивалентных позициях – М1, М2 и М3 – структуры типа витлокита в случае пр. гр. *R3c*. Повышение симметрии до $R\overline{3}c$ сопровождается вырождением кристалло-

Рис. 7. Фрагмент СІЕ-координат для $Ca_9Gd_{0.25}Eu_{0.75}(PO_4)_7$ (*1*) и $Ca_8MgGd_{0.25}Eu_{0.75}(PO_4)_7$ (*2*), *3* – коммерческий люминофор $Y_2O_3:Eu^{3+}$.

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 55 № 8 2019

графических позиций до 2 неэквивалентных – М1 и М3 и слиянием гауссовских компонент со смещением центра массы пика.

Существенный вклад в усиление спектральных свойств вносит введение катионов Gd^{3+} . Образцы демонстрируют интенсивную люминесценцию в красной области видимого спектра. Времена жизни в возбужденном состоянии в 1.5 раза больше, чем в ранее изученном твердом растворе $Ca_8MgSm_{1-x}Eu_x(PO_4)_7$, что свидетельствует о более эффективном накоплении и переносе энергии в паре $Gd^{3+}:Eu^{3+}$ по сравнению с $Sm^{3+}:Eu^{3+}$. Измеренный квантовый выход выше, чем у коммерческого люминоформа $Y_2O_3:Eu^{3+}$, что дает возможность рекомендовать данные вещества в качестве красных люминофоров для источников с УФ-накачкой.

БЛАГОДАРНОСТЬ

Исследование выполнено при поддержке гранта Президента Российской федерации МК-3502.2018.5.

Измерения методом ГВГ проведены при поддержке гранта РФФИ 18-33-00221.

СПИСОК ЛИТЕРАТУРЫ

- Guo N., Liang Q. et al. Triple Energy Transfer and Color Tuning in Tb³⁺- and Eu³⁺-Coactivated Apatite-Type Gadolinium-Containing Phosphors // Opt. Mater. 2017. V. 73. Suppl. C. P. 570–576.
- Grigorjevaite J., Katelnikovas A. Luminescence and Luminescence Quenching of K₂Bi(PO₄)(MoO₄):Eu³⁺ Phosphors with Efficiencies Close to Unity // ACS Appl. Mater. Interfaces. 2016. V. 8. № 46. P. 31772–31782.
- Deyneko D.V., Nikiforov I.V. et al. Ca₈MgSm_{1 x}(PO₄)₇: xEu³⁺, Promising Red Phosphors for WLED Application // J. Alloys Compd. 2019. V. 776. P. 897–903.
- 4. *Morozov V.A., Batuk D. et al.* Luminescence Property Upgrading via the Structure and Cation Changing in Ag_xEu_{(2-x)/3}WO₄ and Ag_xGd_{(2-x)/3-0.3}Eu_{0.3}WO₄ // Chem. Mater. 2017. V. 29. № 20. P. 8811–8823.
- Belik A.A., Morozov V.A. et al. Antiferroelectric Properties and Site Occupations of R³⁺ Cations in Ca₈MgR(PO₄)₇ Luminescent Host Materials // J. Alloys Compd. 2017. V. 699. P. 928–937.

- Teterskii A.V., Stefanovich S.Y. et al. Whitlockite Solid Solutions Ca_{9-x}M_xR(PO₄)₇ (x = 1, 1.5; M = Mg, Zn, Cd; R = Ln, Y) with Antiferroelectric Properties // Russ. J. Inorg. Chem. 2007. V. 52. № 3. P. 308–314.
- Lazoryak B.I., Zhukovskaya E.S. et al. Luminescence, Structure and Antiferroelectric-Type Phase Transition in Ca₈ZnEu(PO₄)₇ // Mater. Res. Bull. 2018. V. 104. P. 20–26.
- Deyneko D.V., Morozov V.A. et al. A Novel Red Ca_{8.5}Pb_{0.5}Eu(PO₄)₇ Phosphor for Light Emitting Diodes Application // J. Alloys Compd. 2015. V. 647. P. 965–972.
- Xie M., Liang H. et al. Host absorption sensitizing and energy transfer to Eu³⁺ by Gd³⁺ in Ba₆Gd_{2-x}Na₂Eu_x(PO₄)₆F₂ // J. Solid State Chem. 2013. V. 201. Suppl. C. P. 18–23.
- Petrícek V., Dusek M. et al. Crystallographic Computing System JANA2006: General features // Z. Kristallogr. 2014. V. 229. P. 345–352.

- Shannon R. Revised Effective Ionic Radii and Systematic Study of Inter Atomic Distances in Halides and Chalcogenides // Acta Crystallogr., Sect. A: Found. Crystallogr. 1976. V. 32. P. 751–767.
- 12. *Blasse G., Grabmaier B.C.* Luminescent Materials. Berlin: Springer, 1994.
- Lazoriak B.I., Golubev V.N. et al. Distribution of Eu³⁺ Ions in Whitlockite-Type Ca_{3 - x}Eu_{2x/3}(PO₄)₂ Orthophosphates // Eur. J. Solid State Inorg. Chem. 1989. V. 26. № 4. P. 455–463.
- 14. Wiglusz R.J., Pazik R. et al. Synthesis, Structure, and Optical Properties of LiEu(PO₃)₄ Nanoparticles // Inorg. Chem. 2011. V. 50. № 4. P. 1321–1330.
- 15. *Ferhi M., Horchani-Naifer K. et al.* Spectroscopic Properties of Eu³⁺-Doped KLa(PO₃)₄ and LiLa(PO₃)₄ Powders // Opt. Mater. 2011. V. 34. № 1. P. 12–18.