УЛК 546.776

КРАСНЫЕ ЛЮМИНОФОРЫ (Ca,Mg) $_9$ Gd $_{1-x}$ Eu $_x$ (PO $_4$) $_7$, АКТИВИРОВАННЫЕ Gd $^{3+}$ и Eu $^{3+}$

© 2019 г. И. В. Никифоров^{1, *}, Д. В. Дейнеко¹, Д. А. Спасский², Б. И. Лазоряк¹

¹Московский государственный университет им. М.В. Ломоносова, Россия, 119991 Москва, Ленинские горы, 1 ²Научно-исследовательский институт ядерной физики им. Д.В. Скобельцына, Россия, 119991 Москва, Ленинские горы, 1, корп. 2

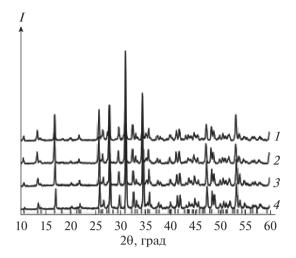
> *e-mail: niva.nli@yandex.ru Поступила в редакцию 21.12.2018 г. После доработки 05.02.2019 г. Принята к публикации 11.02.2019 г.

Получены твердые растворы фосфатов на основе семейства витлокита $Ca_9Gd_{1-x}Eu_x(PO_4)_7$ и $Ca_8MgGd_{1-x}Eu_x(PO_4)_7$. Образцы исследованы комплексом методов, таких как ренттенофазовый анализ, генерация второй оптической гармоники, люминесцентная спектроскопия. Изучены оптические характеристики веществ, времена жизни в активном состоянии, квантовый выход. Синтезированные образцы демонстрируют интенсивную люминесценцию при возбуждении 395 нм, соответствующую оранжево-красной области спектра. Определены оптимальные концентрации катионов Eu^{3+} для получения наиболее интенсивной люминесценции в красной области спектра: x=0.75 для $Ca_8MgGd_{1-x}Eu_x(PO_4)_7$ и x=1 для $Ca_9Gd_{1-x}Eu_x(PO_4)_7$. Установлен эффективный перенос энергии $Gd^{3+} \to Eu^{3+}$, повышающий интенсивность фотолюминесценции в 2.5 раза. Значения квантового выхода исследованных твердых растворов достигают 49.5%, что в 2 раза превосходит коммерческий люминофор на основе Y_2O_3 : Eu^{3+} .

Ключевые слова: фосфаты, люминесцентная спектроскопия, витлокит, красные люминофоры, перенос энергии

DOI: 10.1134/S0002337X19070121

ВВЕДЕНИЕ


Белые светодиоды активно используются в освещении за счет низкого потребления энергии, высокой эффективности электрооптического преобразования, экологичности, надежности и долговечности [1]. Наиболее используемым методом получения белых светодиодов является возбуждение желтого люминофора (например, Y₃Al₅O₁₂:Ce³⁺) синим чипом InGaN [2]. Однако недостатками такого метода являются низкий индекс цветопередачи и цветовой температуры. Чтобы улучшить данные характеристики за счет введения люминофора с соответствующим электронным переходом, добавляют красную спектральную составляющую [3], что увеличивает область применения белых светодиодов. В связи с этим поиск интенсивных люминофоров, излучающих в области 500-650 нм, является актуальной задачей.

Среди катионов РЗЭ соответствующие доминирующие электронные переходы имеют Eu^{3+} и Sm^{3+} . В то же время, было показано, что в идентичных кристаллических решетках Eu^{3+} излучает намного интенсивнее, чем Sm^{3+} . Хорошо извест-

ны неорганические матрицы для реализации люминесцентных свойств, такие как нитраты, бораты, молибдаты и силикаты, однако данные вещества характеризуются низкой химической стабильностью и сложностью синтеза [2—4]. Кристаллическая структура витлокита универсальна для проявления люминесцентных свойств катионов РЗЭ за счет своего кристаллохимического строения, а также высокой химической и термической стабильности [5].

Структурный тип витлокит, включающий синтетический фосфат β -Ca₃(PO₄)₂, за счет своего кристаллохимического строения создает предпосылки для формирования разнообразных физических свойств [6]. В структуре β -Ca₃(PO₄)₂ (Z= 21) катионы Ca²⁺ распределяются по пяти неэквивалентным кристаллографическим позициям M1–M5. Замещение Ca²⁺ на двухвалентный катион оказывает влияние на люминесцентные свойства P3 $\frac{1}{2}$ [7, 8] за счет искажения координационного окружения и изменения симметрии; ранее был показан положительный эффект такого рода замещений [3, 7].

Помимо введения в структуру катионов-заместителей, регулировать люминесцентные свой-

Рис. 1. Дифрактограммы $Ca_9Gd_{1-x}Eu_x(PO_4)_7$ (x=0.75 (I), 1.00 (2)) и $Ca_8MgGd_{1-x}Eu_x(PO_4)_7$ (x=0.75 (3), 1.00 (4)); штрих-дифрактограмма приведена для $Ca_{10.5}(PO_4)_7$ (PDF 70-2065).

ства катионов-люминофоров можно с помощью т.н. со-допантов, т.е. дополнительно вводимых катионов в малых количествах, таких как самарий [3], гадолиний [9] и другие. Целью такого введения является накопление энергии (energy pump) [9], повышение квантового выхода [3], смещение спектра результирующего излучения (color tuning) [1], улучшение люминесцентных характеристик [3] за счет близости электронных уровней.

Таким образом, целью данной работы являются синтез и исследование эффективных люминофоров на основе фосфатов со структурой витлокита — $\text{Ca}_{9}\text{Gd}_{1-x}\text{Eu}_{x}(\text{PO}_{4})_{7}$ и $\text{Ca}_{8}\text{MgGd}_{1-x}\text{Eu}_{x}(\text{PO}_{4})_{7}$, сравнение свойств и изучение влияния катионов-заместителей Mg^{2+} и Gd^{3+} на спектрально-кинетические, люминесцентные характеристики, а также цветовые координаты (CIE) и значения квантового выхода.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образцы сложных фосфатов получали методом твердофазного синтеза в алундовых тиглях посредством ступенчатого нагревания до 1100° С с промежуточной гомогенизацией, общая продолжительность реакции составляла 50 ч. В качестве прекурсоров использовали CaHPO₄ · 2H₂O ("ч. д. а."), CaCO₃ ("ч. д. а."), MgO ("ч. д. а."), R₂O₃ (R – Gd³⁺, Eu³⁺) ("ч. д. а."), проверенные методом рентгенофазового анализа на содержание примесных фаз.

Рентгенофазовый анализ проведен на порошковом дифрактометре Thermo ARL с помощью программ Crystallographica Search-Match и Jana2006 [10].

Исследования методом генерации второй оптической гармоники (**ГВГ**) проводили на лазерной установке по схеме "на отражение" (источник излучения — импульсный YAG: Nd-лазер Minilite-I с $\lambda_{\rm m} = 1064$ нм).

Спектры возбуждения фотолюминесценции сняты с помощь спектрографа Lot-Oriel MS-257, оснащенного детектором Marconi CCD. Кривые затухания люминесценции сняты на приборе Cary Eclipse Fluorescence Spectrophotometer. Значения квантовых выходов измерялись на спектрофлуориметре Edinburgh Instruments FS5, оснащенном интегрирующим сферическим модулем SC-30 и Hamamatsu PMT R928P.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Полученные дифрактограммы приведены на рис. 1. Количество и положение пиков соответствуют фосфату $Ca_{10.5}(PO_4)_7$ (PDF 70-2065). Таким образом, синтезированные образцы однофазные и кристаллизуются в структурном типе витлокита, установлена граница однофазной области при x=1. Твердые растворы $Ca_9Gd_{1-x}Eu_x(PO_4)_7$ кристаллизуются в полярной пр. гр. R3c, в то время как $Ca_8MgGd_{1-x}Eu_x(PO_4)_7$ характеризуется неполярной пр. гр. $R\overline{3}c$ [5, 6]. Подтверждением этого является существование низкого сигнала ГВГ ($\approx 1-1.5$ единиц кварцевого эталона) для $Ca_9Gd_{1-x}Eu_x(PO_4)_7$ и полное отсутствие сигнала ГВГ для $Ca_8MgGd_{1-x}Eu_x(PO_4)_7$.

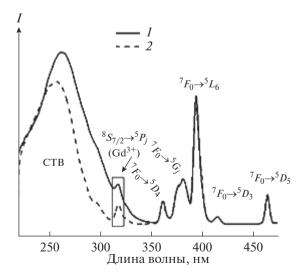
Параметры элементарных ячеек представлены в табл. 1. Рассчитанные параметры элементарной ячейки для твердых растворов $Ca_8MgGd_{1-x}Eu_x(PO_4)_7$ существенно меньше по сравнению с $Ca_9Gd_{1-x}Eu_x(PO_4)_7$, что связано с замещением катиона Ca^{2+} ($r_{\text{VIII}}=1.00\text{ Å}$) на Mg^{2+} с меньшим радиусом ($r_{\text{VIII}}=0.89\text{ Å}$) [11].

Спектры возбуждения фотолюминесценции при $\lambda_{em}=615$ нм для $Ca_8MgGd_{1-x}Eu_x(PO_4)_7$ и $Ca_9Gd_{1-x}Eu_x(PO_4)_7$ представлены на рис. 2. Широкий пик в области 220—300 нм соответствует полосе с переносом заряда (Charge Transfer Band—CTB), которая связана с электронным переходом от кислорода на уровни 4f катионов P3Э, в данном случае по связям O^2-Eu^3+ и O^2-Gd^3+ [12]. Серия линий при 362, 378, 394, и 415 нм отвечает электронным переходам $^7F_0 \rightarrow ^5D_4$, $^7F_0 \rightarrow ^5G_{2.4}$, $^7F_0 \rightarrow ^5L_6$ и $^7F_0 \rightarrow ^5D_3$ катиона Eu^3+ .

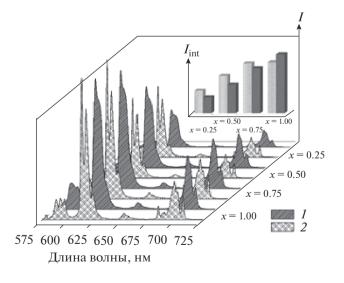
На рис. 3 представлены спектры фотолюминесценции синтезированных твердых растворов, зарегистрированные при $\lambda_{ex}=395$ нм. Для $\mathrm{Ca_9Gd_{1-x}Eu_x(PO_4)_7}$ и $\mathrm{Ca_8MgGd_{1-x}Eu_x(PO_4)_7}$ при x>0 на спектрах присутствуют характерные линии в красной области видимого спектра при 580, 590, 615, 650 и 695 нм, которые соотносятся с

х	a, Å	c, Å	<i>V</i> , Å ³	a, Å	c, Å	<i>V</i> , Å ³
	$Ca_8MgGd_{1-x}Eu_x(PO_4)_7$			$Ca_9Gd_{1-x}Eu_x(PO_4)_7$		
0.00	10.358(1)	37.078(4)	3445.1(4)	10.453(1)	37.377(3)	3536.6(2)
0.25	10.358(5)	37.081(0)	3445.6(2)	10.453(6)	37.384(4)	3537.6(2)
0.50	10.358(8)	37.083(6)	3446.0(9)	10.454(2)	37.391(5)	3538.6(4)
0.75	10.359(2)	37.086(1)	3446.5(7)	10.454(7)	37.398(6)	3539.6(5)
1.00	10.359(5)	37.088(7)	3447.0(4)	10.455(2)	37.405(7)	3540.6(7)

Таблица 1. Кристаллографические параметры элементарных ячеек $Ca_8MgGd_{1-x}Eu_x(PO_4)_7$ и $Ca_9Gd_{1-x}Eu_x(PO_4)_7$


внутрицентровыми переходами катиона европия ${}^5D_0 \to {}^7F_J$, (J=0-4 соответственно). Доминирующий пик наблюдается при 615 нм для электродипольного перехода ${}^5D_0 \to {}^7F_2$.

На графиках интегральной интенсивности (I_{int}) наблюдается рост с увеличением содержания катиона Eu^{3+} (вставка на рис. 3). $\mathrm{Ca_9Gd_{1-x}Eu_x(PO_4)_7}$ демонстрирует монотонное увеличение I_{int} , в то время как для $\mathrm{Ca_8MgGd_{1-x}Eu_x(PO_4)_7}$ наблюдается максимум при x=0.75. При большей концентрации Eu^{3+} происходит процесс концентрационного тушения люминесценции за счет сокращения расстояний между центрами свечения вследствие уменьшения размеров элементарной ячейки (табл. 1).


Локальное окружение люминесцентного центра оказывает влияние на структуру и распределение интенсивностей наблюдаемых линий. Коэффициент асимметрии $R/O = I(^5D_0 \rightarrow {}^7F_2)/I(^5D_0 \rightarrow {}^7F_1)$ [3, 7] дает информацию о кристаллографическом окружении центра свечения и искажении полиэдров (рис. 4). Для $Ca_8MgGd_{1-x}Eu_x(PO_4)_7$ значения

R/O меньше по сравнению с ${\rm Ca_9Gd_{1-x}Eu_x(PO_4)_7}$, что говорит о меньшем искажении полиэдров в подрешетке за счет формирования более высокой пространственной симметрии.

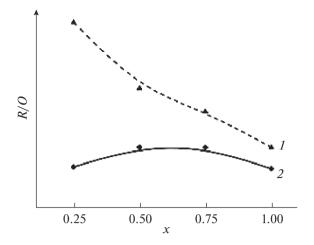

Переход ${}^5D_0 \rightarrow {}^7F_0$ показывает количество неэквивалентных позиций для катиона европия в кристаллической структуре (рис. 5) [13]. Для $Ca_8MgGd_{1-x}Eu_x(PO_4)_7$ наблюдается один пик, который может быть разложен на 2 гауссовские компоненты, которые отвечают заселению Eu³⁺ координационных полиэдров М1 и М2. В связи с тем, что позиция М3 находится в локальном центре симметрии (ЦС), она не вносит вклад в переход ${}^5D_0 \rightarrow {}^7F_0$. За счет формирования ЦС в М3 в структуре присутствуют 2 типа тримеров: М1-М3-М1 и М2-М3-М2, которые различаются расположением тетраэдров PO_4^{3-} , формирующих 3D-каркас структуры. Для $Ca_9Gd_{1-x}Eu_x(PO_4)_7$ наблюдаются 2 пика: смещенный в более длинноволновую область (579 нм) - несимметричный ("суперпозиция" двух переходов Eu³⁺, рас-

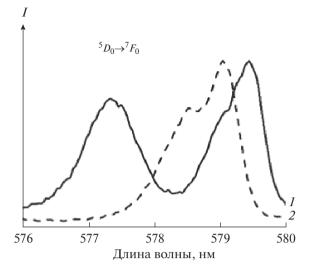
Рис. 2. Спектр возбуждения люминесценции ${\rm Ca_9Gd_{1-x}Eu_x(PO_4)_7}$ (*I*) и ${\rm Ca_8MgGd_{1-x}Eu_x(PO_4)_7}$ (*2*) ($\lambda_{em}=615~{\rm Hm}$).

Рис. 3. Спектры фотолюминесценции $Ca_9Gd_{1-x}Eu_x(PO_4)_7$ (*1*) и $Ca_8MgGd_{1-x}Eu_x(PO_4)_7$ (*2*) (λ_{ex} = 395 нм).

Рис. 4. Коэффициент асимметрии (R/O) для $Ca_9Gd_{1-x}Eu_x(PO_4)_7$ (I) и $Ca_8MgGd_{1-x}Eu_x(PO_4)_7$ (I).

полагающегося статистически в М1 и М2) и левый (577 нм) — отвечает переходу в М3 [8].

Времена жизни в активном состоянии рассчитаны с помощью кривых затухания по формуле


$$\tau = \frac{\int_{0}^{t_{\text{max}}} tI(t) dt}{\int_{0}^{t_{\text{max}}} I(t)},$$

где I(t) — интенсивность люминесценции в момент времени t, интегралы берутся в интервале $0 < t < t_{\text{max}}$, причем $t_{\text{max}} \gg \tau$ [14].

На рис. 6 представлены данные для твердых растворов при x=0.75. Для $Ca_8MgGd_{1-x}Eu_x(PO_4)_7$ времена жизни при $\lambda_{ex}=260$ и 395 нм составляют $\tau=1.804$ и 1.608 мс соответственно, в то время как для $Ca_9Gd_{1-x}Eu_x(PO_4)_7$ $\tau=1.682$ и 1.580 мс. При $\lambda_{ex}=260$ нм бо́льшие значения τ связаны с процессами переноса энергии $Gd^{3+}:Eu^{3+}$ [12] и говорят о более эффективном процессе передачи энергии по сравнению с парой $Sm^{3+}:Eu^{3+}$ в ранее изученных фосфатах $Ca_8MgSm_{1-x}Eu_x(PO_4)_7$ [3].

Цветовые координаты показывают цвет свечения люминофора, согласно международным цветовым стандартам, и рассчитываются по следующим формулам [15]:

$$x = \frac{X}{X + Y + Z}, \quad y = \frac{Y}{X + Y + Z}, \quad z = \frac{Z}{X + Y + Z},$$
$$X = \int_{\lambda_{inf}}^{\lambda_{sup}} S(\lambda)\overline{x}(\lambda)d(\lambda), \quad \int_{\lambda_{inf}}^{\lambda_{sup}} S(\lambda)\overline{y}(\lambda)d(\lambda),$$
$$\int_{\lambda_{inf}}^{\lambda_{sup}} S(\lambda)\overline{z}(\lambda)d(\lambda),$$

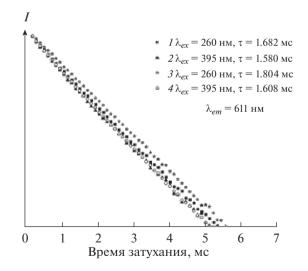


Рис. 5. Переход ${}^5D_0 \rightarrow {}^7F_0$ катиона Eu^{3+} в $\mathrm{Ca_9Gd_{1-x}Eu_x(PO_4)_7}$ (*I*) и $\mathrm{Ca_8MgGd_{1-x}Eu_x(PO_4)_7}$ (*2*).

где $S(\lambda)$ — интенсивность при длине волны λ ; \overline{x} , \overline{y} , \overline{z} — цветовые 1931СІЕ-координаты для данной длины волны (λ). Рассчитанные данные представлены в табл. 2 и на рис. 7.

Все синтезированные твердые растворы имеют цветовые характеристики, близкие к красному стандарту (0.67, 0.33) и коммерческому люминофору Y_2O_3 : Eu³⁺ (0.655, 0.345) [3].

Важной характеристикой является квантовый выход (Quantum yield, QY), который был измерен для образцов $Ca_9Gd_{0.25}Eu_{0.75}(PO_4)_7$ и $Ca_8MgGd_{0.25}Eu_{0.75}(PO_4)_7$. Значения квантовых

Рис. 6. Кривые затухания люминесценции для $Ca_9Gd_{0.25}Eu_{0.75}(PO_4)_7$ (*1*, *2*) и $Ca_8MgGd_{0.25}Eu_{0.75}(PO_4)_7$ (*3*, *4*).

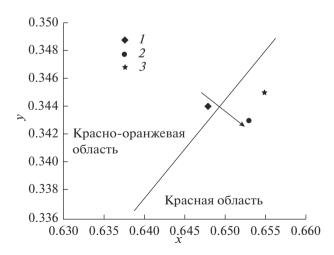

х в составах	X	у	X	У				
	$Ca_8MgGd_{1-x}Eu_x(PO_4)_7$		$Ca_9Gd_{1-x}Eu_x(PO_4)_7$					
0.25	0.634	0.356	0.639	0.338				
0.50	0.645	0.348	0.646	0.343				
0.75	0.653	0.343	0.648	0.343				
1.00	0.650	0.342	0.646	0.344				

Таблица 2. Цветовые координаты

выходов составили QY = 49.5 и 44.8% соответственно, что в 1.5 раза выше по сравнению с коммерческим люминофором Y_2O_3 : Eu³⁺ (QY = 29.5%) [3].

ЗАКЛЮЧЕНИЕ

Твердые растворы на основе фосфатов со структурой витлокита $Ca_8MgGd_{1-x}Eu_x(PO_4)_7$ и $Ca_9Gd_{1-x}Eu_x(PO_4)_7$ получены методом твердофазного синтеза. Оптимальная концентрация люминесцентных центров составила: x = 0.75для $Ca_8MgGd_{1-x}Eu_x(PO_4)_7$ и x = 1 для $Ca_9Gd_{1-x}Eu_x(PO_4)_7$. Граница существования твердых растворов установлена при x = 1. Введение катиона малого радиуса Mg²⁺ отвечает за изменение пр. гр. $R3c \rightarrow R\overline{3}c$. Переход в центросимметричное состояние подтверждено данными ГВГ, а также детальным изучением электродипольного электронного перехода ${}^5D_0 \rightarrow {}^7F_0$. Показано, что данному электронному переходу соответствуют три полосы, соответствующие расположению катионов европия в 3 неэквивалентных позициях — М1, М2 и М3 — структуры типа витлокита в случае пр. гр. R3c. Повышение симметрии до $R\overline{3}c$ сопровождается вырождением кристалло-

Рис. 7. Фрагмент СІЕ-координат для $Ca_9Gd_{0.25}Eu_{0.75}(PO_4)_7$ (*I*) и $Ca_8MgGd_{0.25}Eu_{0.75}(PO_4)_7$ (*2*), *3* – коммерческий люминофор Y_2O_3 : Eu^{3+} .

графических позиций до 2 неэквивалентных — M1 и M3 и слиянием гауссовских компонент со смещением центра массы пика.

Существенный вклад в усиление спектральных свойств вносит введение катионов Gd^{3+} . Образцы демонстрируют интенсивную люминесценцию в красной области видимого спектра. Времена жизни в возбужденном состоянии в 1.5 раза больше, чем в ранее изученном твердом растворе $Ca_8MgSm_{1-x}Eu_x(PO_4)_7$, что свидетельствует о более эффективном накоплении и переносе энергии в паре Gd^{3+} : Eu^{3+} по сравнению с Sm^{3+} : Eu^{3+} . Измеренный квантовый выход выше, чем у коммерческого люминоформа Y_2O_3 : Eu^{3+} , что дает возможность рекомендовать данные вещества в качестве красных люминофоров для источников с $V\Phi$ -накачкой.

БЛАГОДАРНОСТЬ

Исследование выполнено при поддержке гранта Президента Российской федерации МК-3502.2018.5.

Измерения методом ГВГ проведены при поддержке гранта РФФИ 18-33-00221.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Guo N., Liang Q. et al.* Triple Energy Transfer and Color Tuning in Tb³⁺- and Eu³⁺-Coactivated Apatite-Type Gadolinium-Containing Phosphors // Opt. Mater. 2017. V. 73. Suppl. C. P. 570–576.
- Grigorjevaite J., Katelnikovas A. Luminescence and Luminescence Quenching of K₂Bi(PO₄)(MoO₄):Eu³⁺
 Phosphors with Efficiencies Close to Unity // ACS Appl.
 Mater. Interfaces. 2016. V. 8. № 46. P. 31772–31782.
- Deyneko D.V., Nikiforov I.V. et al. Ca₈MgSm_{1 x}(PO₄)₇: xEu³⁺, Promising Red Phosphors for W L ED Application // J. Alloys Compd. 2019. V. 776. P. 897–903.
- 4. *Morozov V.A., Batuk D. et al.* Luminescence Property Upgrading via the Structure and Cation Changing in $Ag_xEu_{(2-x)/3}WO_4$ and $Ag_xGd_{(2-x)/3-0.3}Eu_{0.3}WO_4$ // Chem. Mater. 2017. V. 29. No 20. P. 8811–8823.
- Belik A.A., Morozov V.A. et al. Antiferroelectric Properties and Site Occupations of R³⁺ Cations in Ca₈MgR(PO₄)₇ Luminescent Host Materials // J. Alloys Compd. 2017. V. 699. P. 928–937.

- 6. *Teterskii A.V., Stefanovich S.Y. et al.* Whitlockite Solid Solutions Ca_{9−x}M_xR(PO₄)₇ (x = 1, 1.5; M = Mg, Zn, Cd; R = Ln, Y) with Antiferroelectric Properties // Russ. J. Inorg. Chem. 2007. V. 52. № 3. P. 308–314.
- Lazoryak B.I., Zhukovskaya E.S. et al. Luminescence, Structure and Antiferroelectric-Type Phase Transition in Ca₈ZnEu(PO₄)₇ // Mater. Res. Bull. 2018. V. 104. P. 20–26.
- 8. Deyneko D.V., Morozov V.A. et al. A Novel Red Ca_{8.5}Pb_{0.5}Eu(PO₄)₇ Phosphor for Light Emitting Diodes Application // J. Alloys Compd. 2015. V. 647. P 965–972
- 9. *Xie M., Liang H. et al.* Host absorption sensitizing and energy transfer to Eu^{3+} by Gd^{3+} in $Ba_6Gd_{2-x}Na_2Eu_x(PO_4)_6F_2$ // J. Solid State Chem. 2013. V. 201. Suppl. C. P. 18–23.
- 10. *Petrícek V., Dusek M. et al.* Crystallographic Computing System JANA2006: General features // Z. Kristallogr. 2014. V. 229. P. 345–352.

- 11. *Shannon R*. Revised Effective Ionic Radii and Systematic Study of Inter Atomic Distances in Halides and Chalcogenides // Acta Crystallogr., Sect. A: Found. Crystallogr. 1976. V. 32. P. 751–767.
- 12. *Blasse G., Grabmaier B.C.* Luminescent Materials. Berlin: Springer, 1994.
- 13. *Lazoriak B.I.*, *Golubev V.N. et al.* Distribution of Eu³⁺ Ions in Whitlockite-Type Ca_{3 x}Eu_{2x/3}(PO₄)₂ Orthophosphates // Eur. J. Solid State Inorg. Chem. 1989. V. 26. № 4. P. 455–463.
- 14. Wiglusz R.J., Pazik R. et al. Synthesis, Structure, and Optical Properties of LiEu(PO₃)₄ Nanoparticles // Inorg. Chem. 2011. V. 50. № 4. P. 1321–1330.
- 15. Ferhi M., Horchani-Naifer K. et al. Spectroscopic Properties of Eu³⁺-Doped KLa(PO₃)₄ and LiLa(PO₃)₄ Powders // Opt. Mater. 2011. V. 34. № 1. P. 12–18.