УДК 546.28.65.92:54.01

КРЕМНИЕВЫЙ УГОЛ ТРОЙНОЙ СИСТЕМЫ Уb-Pt-Si ПРИ 850°С

© 2019 г. С. Е. Сафронов^{1, *}, А. В. Грибанов^{1, **}, С. Ф. Дунаев¹

¹Московский государственный университет им. М.В. Ломоносова, Россия, 119991 Москва, Ленинские горы, 1

*e-mail: supernov87@gmail.com **e-mail: avgri@mail.ru Поступила в редакцию 02.11.2018 г. После доработки 14.02.2019 г. Принята к публикации 18.02.2019 г.

Изучено взаимодействие компонентов системы Yb–Pt–Si в области высокого содержания кремния. 22 сплава были приготовлены стандартной электродуговой плавкой в атмосфере аргона и отожжены при температуре 850°С. Для физико-химического анализа образцов использованы методы: электронной микроскопии, локального рентгеноспектрального анализа, рентгеновской дифракции и дифференциального термического анализа. Подтверждено существование 4 известных тройных интерметаллических соединений: YbPtSi, YbPt₂Si₂, Yb₃Pt₄Si₆, Yb₂Pt₃Si₅. Кроме того, обнаружены 3 новые фазы: YbPtSi₂, Yb₃₃Pt₁₇Si₅₀, Yb₁₁Pt₃₃Si₅₆. Определен структурный тип соединения YbPtSi₂. Приведены статистические кристаллографические данные тройных фаз. Построены фазовые равновесия в исследованной области на изотермическом сечении Yb–Pt–Si при 850°С.

Ключевые слова: интерметаллиды, тройные силициды, Yb-соединения, фазовые равновесия, монокристалл, рентгеновская порошковая дифракция DOI: 10.1134/S0002337X19070157

ВВЕДЕНИЕ

Многие интерметаллические соединения (ИМС) редкоземельных элементов (РЗЭ) являются сильно коррелированными электронными системами, так как они демонстрируют такие физические свойства, как поведение Кондо-решеток, тяжелофермионное состояние, необычную сверхпроводимость, неферми-жидкостное поведение, флуктуации валентности [1, 2]. Среди них наиболее интенсивно изучаются соединения церия, так как именно они чаще других обладают уникальными физическими характеристиками вследствие сильных электронных корреляций. Известно, что электронные структуры атомов церия и иттербия являются "зеркальными" по отношению друг к другу: один неспаренный f-электрон у церия и одна дырка на f-подуровне у иттербия. Это обстоятельство стало основой для теоретических прогнозов о возможных необычных свойствах тройных соединений с Yb, подобных свойствам цериевых ИМС. Поэтому из соединений с другими РЗЭ значительный интерес представляют именно ИМС с участием иттербия. Сделанные для них ранее прогнозы во многом подтверждены экспериментально: соединения иттербия демонстрируют флуктуации валентности, поведение Кондо-решеток, нефермижидкостное поведение и квантовые критические

явления. А после открытия в 2008 г. сверхпроводимости в соединении YbAlB₄ [3] интерес к ним значительно вырос. Позднее были обнаружены и другие соединения иттербия со сверхпроводимостью: YbGa_{1.1}Si_{0.9} [4] и YbC₆ [5].

Однако синтез и изучение ИМС, содержащих иттербий, значительно затруднены из-за высокого давления его паров, что зачастую не позволяет получать сплавы заданного химического состава, в том числе и однофазные образцы, пригодные для физических измерений. Поэтому, несмотря на повышенный интерес к соединениям иттербия, для многих тройных систем с его участием доступная информация весьма ограничена и часто нуждается в дополнительной проверке.

Для исследования нами выбрана тройная система Yb—Pt—Si, так как для аналогичной системы с церием (Ce—Pt—Si) установлено образование большого числа тройных ИМС с разнообразными кристаллическими структурами, большинство из которых обладали необычными физическими свойствами [6].

В настоящее время в литературе описаны кристаллические структуры и физические свойства 7 тройных ИМС системы Yb–Pt–Si: YbPt₂Si₂, Yb₂Pt₃Si₅, YbPt₂Si, YbPt₃Si, Yb₃Pt₂₃Si₁₁, Yb₃Pt₄Si₆, YbPtSi [7–16].

Взаимодействие компонентов тройной системы Yb-Pt-Si в полном концентрационном интервале при 600°С изучалось О.Л. Борисенко в 1993 г. [17]. Однако из-за сложности приготовления сплавов иттербия и относительного несовершенства примененных методик анализа полученные тогда результаты можно считать предварительными и требующими уточнения. Современные усовершенствованные методы синтеза и анализа дают возможность получить более точную информацию о химических составах, кристаллических структурах и свойствах тройных ИМС. Подобные случаи, когда дополнительные исследования значительно улучшили первичные данные, можно проиллюстрировать на примерах систем Ce-Pt-Si и Ce-Rh-Si, которые также исследовались дважды [6, 18].

Целью данной работы стало изучение взаимодействия компонентов в системе Yb–Pt–Si при 850°C в области высокого содержания кремния, определение химических составов, кристаллических структур тройных ИМС и построение части изотермического сечения диаграммы состояния. Выбор температуры отжига 850°C основан на результатах наших пробных исследований сплавов этой системы.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Методом электродуговой плавки чистых элементов (Yb > 99.9 мас. %, Pt > 99.99 мас. %, Si > > 99.999 мас. %) на водоохлаждаемом медном поддоне были приготовлены 22 сплава с массой около 1 г. Из-за высокого давления паров иттербия плавку образцов выполняли приблизительно в 30 этапов с добавлением чистого иттербия для компенсации потерь.

Для приведения сплавов в состояние равновесия они отжигались в вакуумированных кварцевых ампулах при 850°С в течении 60–90 дней, после чего закаливали в холодную воду.

Так как электродуговая плавка образцов с иттербием сопряжена со значительными трудностями, нами была предпринята попытка получения сплавов из чистых элементов методом механохимического синтеза, а именно, сплавов с составами, соответствующими известным соединениям YbPt₂Si₂ и Yb₃Pt₄Si₆. Для этого необходимые навески компонентов в виде небольших кусочков подвергались шаровому помолу. Затем полученные порошки прессовались в таблетки, которые отжигались наряду с другими сплавами.

Подготовленные сплавы в литом и отожженном состояниях изучались методами сканирующей электронной микроскопии (СЭМ), локального рентгеноспектрального (**ЛРСА**) и рентгенофазового (**РФА**) анализов.

Шлифы сплавов для СЭМ и ЛРСА готовились по стандартным методикам с использованием абразивных бумаг разной зернистости с окончательной полировкой на алмазных пастах. Анализ проводился в электронном микроскопе Carl Zeiss LEO EVO 50XVP, оснащенном энергодисперсионным анализатором Oxford INCA Energy 450. Замеры концентраций компонентов были получены при ускоряющем напряжении от 20 кВ и токе зонда 100 мкА. Точность определения концентраций компонентов составляла 1 ат. %.

РФА выполняли в автодифрактометре STOE STADI P на медном монохроматизированном излучении Cu $K_{\alpha l}$ ($\lambda = 1.540598$ Å) в интервале 20 5°– 90°. Для определения параметров элементарных ячеек применяли комплекс программ STOE WinXpow [19]. Уточнение кристаллографических параметров атомов методом Ритвельда по порошковым рентгенограммам проводилось с помощью комплекса программ FullProf Suite [20, 21].

В дополнение к РФА для изучения кристаллической структуры применяли метод рентгеноструктурного анализа (РСА). Монокристаллы для исследования отбирали с поверхности литого образца. РСА был осуществлен на автодифрактометре Bruker APEX-II. Регистрация отражений монохроматизированного Мо K_{α} -излучения ($\lambda =$ = 0.71073 Å) осуществлялась с применением ССDдетектора. Матрица ориентации и параметры элементарной ячейки определялись с помощью программы Bruker SAINT [22].

Дифференциальный термический анализ (ДТА) проводился на сканирующем калориметре NEITZCH Leading Thermal Analysis STA 449 F1 Jupiter Platinum RT в атмосфере гелия высокой чистоты. Масса навески образца составляла 80 мг. ДТА-кривые получены в интервале температур от 25 до 1450°С при скорости нагрева 20° С/мин. Точность определения температуры превращения составила $\pm 1^{\circ}$ С.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Изотермическое сечение и фазовые равновесия. Предварительные исследования участков 2 и 3 тройной системы Yb—Pt—Si, отмеченных на рис. 1, показали, что участок 2 отличается большей сложностью фазовых равновесий, а приготовление сплавов из области концентраций участка 3 (концентрация иттербия более 34 ат. %) методом электродуговой плавки сопровождается значительными потерями иттербия.

2019

Рис. 1. Три концентрационные области системы Yb-Pt-Si.

В данной статье мы представляем результаты, полученные при исследовании участка 1 системы Yb-Pt-Si.

Фазовые равновесия в кремниевом углу тройной системы Yb–Pt–Si при 850°C показаны на рис. 2.

На основании полученных данных подтверждено образование известных из литературы соединений PtSi, YbSi_{2-x}, Yb₂Pt₃Si₅, Yb₃Pt₄Si₆, YbPt₂Si₂, YbPtSi [8, 14, 15, 23–25]. Кроме них, обнаружены новые тройные силициды YbPtSi₂, Yb₁₁Pt₃₃Si₅₆, Yb₃₃Pt₁₇Si₅₀. Установлено, что соединения Yb₂Pt₃. Si₅, Yb₃Pt₄Si₆, YbPt₂Si₂, YbPtSi₂ при 850°C являются фазами фиксированного состава, а для трех других ИМС возможно существование областей гомогенности.

Определение структур. Составы и основные кристаллохимические параметры фаз, образующих трехфазные равновесия в исследуемой области диаграммы при 850°С, показаны в табл. 1.

Ввиду сложности синтеза сплавов в табл. 2 представлены уточненные в STOE параметры ячейки тройных фаз для всех образцов.

Рис. 2. Изотермическое сечение диаграммы Yb-Pt-Si в области с высоким содержанием кремния при 850°С.

Фаза	Пр. гр.	Стр. тип	Па	н		
			а	b	С	Источник
Si	Fd3m	С (алмаз)	0.54306			[25]
PtSi	Pnma	MnP	0.5577	0.3587	0.5916	[25]
YbSi _{2-x}	hP3–P6/mmm	AlB ₂	0.3781		0.4101	[23]
τ_1 , YbPtSi	Pnma	TiNiSi	0.683535(11)	0.421898(8)	0.736841(13)	HP
			0.6844	0.4314	0.7410	[8]
τ_2 , YbPtSi ₂	Immm	YIrGe ₂	0.419384(8)	1.57949(3)	0.842082(16)	HP
τ_3 , Yb ₁₁ Pt ₃₃ Si ₅₆	Ромб.		0.89744(7)	0.79085(11)	0.68392(7)	HP
τ_4 , YbPt ₂ Si ₂	P4/nmm	CaBe ₂ Ge ₂	0.410211(4)		0.995333(17)	HP*
			0.41235(5)		0.98851(13)	HP**
			0.41221		0.99091	[9]
			0.40959		0.99834	[15]
τ_5 , Yb ₃₃ Pt ₁₇ Si ₅₀	Гекс.		0.85201(6)		1.60458(1)	НР
τ_6 , Yb ₂ Pt ₃ Si ₅	Ibam	U ₂ Co ₃ Si ₅	0.99902(3)	1.13203(3)	0.593017(13)	HP
			1.0005	1.1334	0.5952	[15]
τ_7 , Yb ₃ Pt ₄ Si ₆	$P2_1/m$	$Y_3Pt_4Ge_6$	0.84417(7)	0.42043(8) $\beta = 99.496(8)^{\circ}$	1.27638(2)	НР
			0.84560	0.42109 $\beta = 99.537^{\circ}$	1.27864	[14]

Таблица 1. Кристаллографические данные фаз в системе Yb-Pt-Si

Примечание. НР – настоящая работа.

* Данные получены методом Ритвельда.

** Данные получены для монокристалла.

Для ИМС YbPt₂Si₂, Yb₂Pt₃Si₅, YbPtSi, YbPtSi₂ структура была подтверждена методом Ритвельда (табл. 3).

 $YbPt_2Si_2$. Кристаллическая структура соединения YbPt₂Si₂ изучена методом PCA монокристалла (табл. 4) и подтверждена методом РФА порошка. Полученные данные подтверждают структурный тип CaBe₂Ge₂ [9, 15].

В связи с наличием в литературе информации о структурном типе ThCr₂Si₂ для этого соединения [7] (*I4/mmm*, a = 0.4097 нм, c = 0.9962 нм) был проведен дифференциальный термический анализ. Результаты показали обратимый фазовый переход при 1064(1)°С. Точки плавления нагревом сплава до 1450°С достичь не удалось. После остывания до комнатной температуры кристаллическая структура соединения YbPt₂Si₂ по-прежнему была примитивной тетрагональной.

гональной. Более того, изображе

 $Yb_{33}Pt_{17}Si_{50}$. Новое соединение с относительно высоким содержанием иттербия имеет состав $Yb_{33}Pt_{17}Si_{50}$ и находится на границе исследуемой области диаграммы Yb—Pt—Si. Рентгеновские отражения индицируются в гексагональной сингонии с параметрами a = 0.80522(6) нм, c = 1.6041(2) нм, FoM (Figure of Merit) F(30) = 25.5 (0.011, 106). Структурный тип, вероятно, является производным от Lu₂CoGa₃ и принадлежит семейству структур AlB₂ [26].

 $Yb_{11}Pt_{33}Si_{56.}$ Соединение с неизвестным структурным типом и предположительным составом $Yb_{11}Pt_{33}Si_{56}$ появляется после отжига при 850°C. Это проиллюстрировано на рис. 3 и 4 микроструктурой соответственно литого и отожженного образцов сплава $Yb_{6.7}Pt_{40}Si_{53.3}$, на микрофотографиях видно, как Si сменяется новой фазой. Более того, изображенные на рис. 5 и 6 образцы

822

Таблица 2. Кристаллографические данные тройных фаз в образцах системы Yb-Pt-Si (STOE)

Фаза	Параметры ячейки, нм				
Фаза	а	b	С		
YbPtSi	0.68340(6)	0.42195(5)	0.73677(6)		
YbPtSi ₂	0.41886(12)	1.5784(2)	0.84117(13)		
YbPtSi ₂	0.41906(2)	1.57849(8)	0.84134(3)		
YbPtSi ₂	0.4191(3)	1.5799(5)	0.84174(12)		
YbPtSi ₂	0.41934(3)	1.57947(14)	0.84197(7)		
YbPtSi ₂	0.41942(8)	1.5802(3)	0.84205(16)		
YbPtSi ₂	0.4197(3)	1.5798(7)	0.8421(3)		
Yb ₁₁ Pt ₃₃ Si ₅₆	0.89693(8)	0.79042(10)	0.68362(5)		
Yb ₁₁ Pt ₃₃ Si ₅₆	0.89723(16)	0.7910(2)	0.68342(12)		
Yb ₁₁ Pt ₃₃ Si ₅₆	0.89738(11)	0.79093(14)	0.68337(10)		
Yb ₁₁ Pt ₃₃ Si ₅₆	0.89744(7)	0.79085(11)	0.68392(7)		
YbPt ₂ Si ₂	0.41013(3)		0.99565(11)		
YbPt ₂ Si ₂ *	0.41014(4)		0.9932(2)		
YbPt ₂ Si ₂	0.41037(4)		0.9958(2)		
YbPt ₂ Si ₂	0.41050(6)		0.9929(5)		
YbPt ₂ Si ₂ *	0.41254(3)		0.98612(10)		
$Yb_{33}Pt_{17}Si_{50}$	0.80528(19)		1.6050(10)		
$Yb_{33}Pt_{17}Si_{50}$	0.80522(6)		1.6041(2)		
$Yb_2Pt_3Si_5^*$	0.9977(2)	1.13049(14)	0.59038(9)		
Yb ₂ Pt ₃ Si ₅	0.99782(13)	1.13085(8)	0.59204(4)		
$Yb_2Pt_3Si_5$	0.9982(3)	1.1311(3)	0.59266(13)		
$Yb_2Pt_3Si_5$	0.99821(14)	1.13110(14)	0.59278(6)		
$Yb_2Pt_3Si_5$	0.9983(3)	1.1313(2)	0.59243(9)		
Yb ₂ Pt ₃ Si ₅	0.99847(19)	1.13166(15)	0.59283(8)		
$Yb_2Pt_3Si_5$	0.9985(3)	1.1314(4)	0.5924(3)		
$Yb_2Pt_3Si_5$	0.99892(14)	1.13203(14)	0.59262(6)		
$Yb_2Pt_3Si_5$	0.99893(16)	1.13127(12)	0.59260(5)		
$Yb_2Pt_3Si_5$	0.99896(4)	1.13216(4)	0.59265(2)		
$Yb_2Pt_3Si_5$	0.99896(4)	1.13216(4)	0.59265(2)		
$Yb_2Pt_3Si_5$	0.99897(11)	1.13155(13)	0.59271(6)		
$Yb_2Pt_3Si_5$	0.9990(3)	1.13198(19)	0.59279(9)		
$Yb_2Pt_3Si_5$	0.9991(3)	1.13183(17)	0.59295(8)		
$Yb_3Pt_4Si_6*$	0.84323(5)	0.42071(2)	1.27685(14)		
		$\beta = 99.495(13)^{\circ}$			
Yb ₃ Pt ₄ Si ₆	0.84404(11)	0.42044(10)	1.27658(12)		
		$\beta = 99.508(13)^{\circ}$			
$Yb_3Pt_4Si_6$	0.84412(6)	0.42062(8)	1.27655(8)		
		$\beta = 99.529(7)^{\circ}$			
$Yb_3Pt_4Si_6$	0.84417(7)	0.42043(8)	1.2764(2)		
M. D. C.	0.04450(2)	$\beta = 99.496(8)^{\circ}$	1.0771(0)		
$YD_3Pt_4St_6$	0.84459(6)	0.42081(5)	1.2771(2)		
Vh Dt Si	0.94450(12)	$p = 99.520(10)^{\circ}$	1 07660(10)		
10314316	0.84430(12)	0.42002(7)	1.2/002(10)		
		$p = 99.4/3(12)^{\circ}$			

* Механохимический синтез.

Фаза	YbPt ₂ Si ₂					
Пр. гр.	P4/nmm					
Структурный тип	CaBe ₂ Ge ₂					
Параметры ячейки, нм	a = 0.410211(4),	c = 0.995333(17)				
Число отражений	64					
20, град	$10 \le 2\theta \le 90$	шаг 0.01				
Число уточняемых	20					
параметров						
<i>R</i> -фактор Брэгга	0.047					
<i>R_f</i> -фактор	0.026					
χ^2	1.94					
Атомные параметры	x	У	z	В изо	μ	N
Yb1	0.25	0.25	0.7466(3)	2.59(10)	0.13(8)	2
Pt1	0.25	0.25	0.3744(2)	2.77(11)	0.13(8)	2
Pt2	0.75	0.25	0	2.46(11)	0.11(7)	2
Sil	0.25	0.25	0.1464(14)	1.6(7)	0.11(7)	2
Si2	0.75	0.25	0.5	5.1(5)	0.18(12)	2
Фаза	$Yb_2Pt_3Si_5$					
Пр. гр.	Ibam					
Структурный тип	U ₂ Co ₃ Si ₅					
Параметры ячейки, нм	a = 0.99902(3),	b = 1.13203(3),	c = 0.593017(13)			
Число отражений	175					
20 град	$8 \le 2\theta \le 90$	шаг 0.005				
Число уточняемых параметров	23					
<i>R</i> -фактор Брэгга	0.053					
<i>R</i> _f -фактор	0.035					
χ^2	6.09					
Атомные параметры	x	У	Z.	$B_{\mu_{30}}$	μ	N
Yb1	0.2702(2)	0.3708(4)	0	1.55(8)	0.5	8
Pt1	0.11543(18)	0.1383(3)	0	1.34(8)	0.5	8
Pt2	0.5	0	0.25	1.40(11)	0.25	4
Si1	0.3592(13)	0.1085(15)	0	1.5(4)	0.5	8
Si2	0	0.2739(13)	0.25	2.5(5)	0.5	8
Si3	0	0	0.25	2.9(7)	0.25	4
Фаза	YbPtSi					
Пр. гр.	Pnma					
Структурный тип	TiNiSi					
Параметры ячейки, нм	a = 0.683535(11),	b = 0.421897(8),	c = 0.736840(13)			
Число отражений	113					
20, град	$10 \le 2\theta \le 90$	шаг 0.01				
Число уточняемых параметров	17					
<i>R</i> -фактор Брэгга	0.067					
<i>R_г</i> -фактор	0.036					

Таблица 3. Кристаллографические данные тройных фаз системы Yb-Pt-Si (метод Ритвельда)

χ^2	2.38					
Атомные параметры	x	У	z	В изо	μ	N
Yb1	0.2015(3)	0.25	0.5840(4)	0.71(6)	0.5	4
Pt1	-0.0006(4)	0.25	0.1988(4)	4.50(9)	0.5	4
Sil	0.819(2)	0.25	0.593(3)	4.9(4)	0.5	4
Фаза	YbPtSi ₂					
Пр. гр.	Immm					
Структурный тип	YIrGe ₂					
Параметры ячейки, нм	a = 0.419384(8),	b = 1.57949(3),	c = 0.842082(16)			
Число отражений	167					
20, град	$8 \le 2\theta \le 90$	шаг 0.005				
Число уточняемых параметров	24					
<i>R</i> -фактор Брэгга	0.041					
R_{f} -фактор	0.033					
χ^2	6.09					
Атомные параметры	x	У	z	<i>B</i> _{изо}	μ	N
Yb1	0	0	0.2625(3)	1.60(4)	0.25	4
Yb2	0	0.20152(10)	0.5	1.53(5)	0.25	4
Pt1	0.5	0.14815(5)	0.24724(17)	1.44(3)	0.5	8
Sil	0.5	0.0738(7)	0	3.4(3)	0.25	4
Si2	0.5	0.0862(6)	0.5	2.6(3)	0.25	4
Si3	0.5	0.2990(5)	0.3535(8)	5.1(2)	0.5	8
Параметры асимметрии	0.148(5)	0.0391(7)				

Таблица 3. Окончание

Примечание. µ – заселенность, *N* – кратность.

состава $Yb_{18.5}Pt_{38.2}Si_{43.3}$, находящегося в соседнем фазовом треугольнике, демонстрируют такое же изменение. 36 выделенных рефлексов $Yb_{11}Pt_{33}Si_{56}$

индицируются в ромбической решетке с параметрами a = 0.89744(7) нм, b = 0.79085(11) нм, c = 0.68392(7) нм. Согласно данным STOE, при

Рис. 3. Микроструктура литого образца $Yb_{6.7}Pt_{40}Si_{53.3}$: светлая фаза — $YbPt_2Si_2$, серая — PtSi, темная — Si.

Рис. 4. Микроструктура отожженного образца $Yb_{6.7}Pt_{40}Si_{53.3}$: светлая фаза – $YbPt_2Si_2$, серая – PtSi, темная – $Yb_{11}Pt_{33}Si_{56}$.

Состав сплава	Yb ₂₀ Pt ₄₀ Si ₄₀			
Размер кристалла, нм	$40 \times 40 \times 40$			
Пр. гр.	<i>P</i> 4/ <i>nmm</i> (№ 129),			
	Начало в центре инверсии			
Прототип	CaBe ₂ Ge ₂			
Символ Пирсона	<i>tP</i> 10			
Параметры элементарной ячейки, нм	a = 0.41235(5)			
	c = 0.98851(13)			
Объем элементарной ячейки, нм ³	0.16808(5)			
Химическая формула из уточнения	$YbPt_2Si_{2-x} (x = 0.19)$			
Молекулярная масса, г/моль	611.0			
Ζ	2			
Расчетная плотность, г/см ³	12.239			
Коэффициент абсорбции, мм ⁻¹	111.04			
θ (min, max), град	2.06, 38.16			
Отражения в уточнении	254 ≥ 4σ(<i>F</i> _o) из 318			
Диапазон <i>hkl</i>	$-7 \le h \le 7$			
	$-7 \le k \le 7$			
	$-16 \le l \le 16$			
Число уточняемых параметров	16			
$R = \sum F_{\rm o} - F_{\rm c} /\sum F_{\rm o} $	0.038			
R _{инт}	0.030			
wR2	0.101			
GoF. $S = \{\sum [w(F_{2}^{2} - F_{2}^{2})^{2}]/(n-p)\}^{1/2}$	1.114			
Коэффициент экстинкции	0.0069(13)			
Остаточная плотность, $e/Å^3$ (max, min)	5.32, -4.86			
Атомная позиция 1	2 Yb1 B 2c (0.25, 0.25, z):			
	z = 0.75299(9)			
Заселенность	1.00			
$U_{_{3KB}}$	0.0103(3)			
Атомная позиция 2	2 Pt1 B 2c (0.25, 0.25, z);			
	z = 0.12703(8)			
Заселенность	1.00			
$U_{ m _{3KB}}$	0.0105(2)			
Атомная позиция 3	2 Pt2 B 2b (0.75, 0.25, 0.5)			
Заселенность	1.00			
$U_{ m _{3KB}}$	0.0170(3)			
Атомная позиция 4	2 Sil B 2c (0.25, 0.25, z);			
	z = 0.3639(6)			
Заселенность	0.898(5)			
$U_{ m _{3KB}}$	0.0097(18)			
Атомная позиция 5	2 Si2 в 2 <i>a</i> (0.75, 0.25, 0)			
Заселенность	1.00			
$U_{ m _{3KB}}$	0.0126(12)			

Рис. 5. Микроструктура литого образца $Yb_{18.5}Pt_{38.2}Si_{43.3}$: светлая фаза — $YbPt_2Si_2$, серая — $Yb_2Pt_3Si_5$, темная — Si.

Рис. 6. Микроструктура отожженного образца $Yb_{18.5}Pt_{38.2}Si_{43.3}$: светлая фаза — $YbPt_2Si_2$, серая — $Yb_{11}Pt_{33}Si_{56}$, темная — $Yb_2Pt_3Si_5$.

уточнении полученных параметров элементарной ячейки в каждой из пр. гр. с 16 по 74 номер подходят только пять: *Pmmm* FoM F(30) = 79.1 (0.007, 57), *P*222 FoM F(30) = 79.1 (0.007, 57), *P*222₁ FoM F(30) = 82 (0.007, 55), *Pmm*2 FoM F(30) = 79.1 (0.007, 57), *Pmn*2₁ FoM F(30) = 92 (0.007, 49).

БЛАГОДАРНОСТЬ

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 18-03-00656а).

СПИСОК ЛИТЕРАТУРЫ

 Ott H.R., Walti Ch. Trends in Superconductivity of Heavy-Electron Metals // J. Supercond. Novel Magn. 2000. V. 13. № 5. P. 837.

- Арсеев П.И., Демишев С.В., Рыжов В.Н., Стишов С.М. Сильно коррелированные электронные системы и квантовые критические явления // УФН. 2005. Т. 175. № 10. С. 1125–1139. doi 10.3367/ UFNr.0175.200510m.1125
- 3. *Nakatsuji S., Kuga K., Machida Y.* Superconductivity and Quantum Criticality in the Heavy-Fermion System β -YbAlB₄ // Nat. Phys. 2008. V. 4. P. 603–607.
- Imai M., Sato A., Aoyagi T., Kimura T., Matsushita Y., Tsujii N. Superconductivity in the AlB₂-Type Ternary Rare-Earth Silicide YbGa_{1.1}Si_{0.9} // J. Am. Chem. Soc. 2008. V. 130. P. 2886–2887.
- Weller T.E., Ellerby M., Saxena S.S., Smith R.P., Skipper N.T. Superconductivity in the Intercalated Graphite Compounds C₆Yb and C₆Ca // Nat. Phys. 2005. V. 1. P. 39–41.
- Gribanov A., Grytsiv A., Royanian E., Rogl P., Bauer E., Giester G., Seropegin Y. On the System Cerium–Platinum–Silicon // J. Solid State Chem. 2008. V. 181. P. 2964–2975.
- Rossi D., Marazza R., Ferro R. Ternary RMe₂X₂ Alloys of the Rare Earths with the Precious Metals and Silicon (or Germanium) // J. Less-Common Met. 1979. V. 66. P. 17–25.
- Rossi D., Mazzone D., Marazza R., Ferro R. A Contribution to the Crystallochemistry of Ternary Rare Earth Intermetallic Phases // Z. Anorg. Allg. Chem. 1983. V. 507. P. 235–240.
- Hiebl K., Rogl P. Magnetism and Structural Chemistry of Ternary Silicides: (RE,Th,U)Pt₂Si₂ (RE = Rare Earth) // J. Magn. Magn. Mater. 1985. V. 50. P. 39–48.
- Dhar S.K., Sampathkumaran E.V., Nambudripad N., Vijayaraghavan P.R. Heat Capacity and Magnetic Susceptibility of Mixed Valent YbPt₂Si₂ // Solid State Commun. 1988. V. 67. P. 949–951.
- Gribanov A., Grytsiv A.V., Rogl P., Seropegin Y.D., Giester G. Crystal structures of RPt_{3-x}Si_{1-y} (R = Y, Tb, Dy, Ho, Er, Tm, Yb) Studied by Single Crystal X-ray Diffraction // J. Solid State Chem. 2009. V. 182. P. 1921–1928.
- Gribanov A., Grytsiv A.V., Rogl P., Seropegin Y.D., Giester G. X-ray Structural Study of Intermetallic Alloys RT₂Si and RTSi₂ (R = Rare Earth, T = Noble Metal) // J. Solid State Chem. 2010. V. 183. P. 1278–1289.
- Kaczorowski D., Gribanov A., Safronov S., Rogl P., Seropegin Y. Formation and Physical Properties of a Novel Compound Yb₃Pt₂₃Si₁₁ // J. Alloys Compd. 2011. V. 509. P. 8987–8990.
- Gribanov A., Rogl P., Grytsiv A.V., Seropegin Y.D., Giester G. Novel Intermetallic Yb₃Pt₄Si_{6-x} (x = 0.3) – A Disordered Variant of the Y₃Pt₄Ge₆-Type // J. Alloys Compd. 2013. V. 571. P. 93–97.
- Fikácek J., Prchal J., Sechovský V. Magnetic, Thermal and Transport Properties of YbPt₂Si₂ and Yb₂Pt₃Si₅ Single Crystals // Acta Phys. Pol. A. 2014. V. 126. P. 310–311.
- Opagiste C., Barbier C., Haettel R., Galéra R.M. Physical Properties of the R₃Pt₂₃Si₁₁ Compounds with Volatile Rare Earth: Sm, Eu, Tm and Yb // J. Magn. Magn. Mater. 2015. V. 378. P. 402–408.
- Борисенко О.Л. Фазовые равновесия и некоторые физико-химические свойства сплавов систем Yb-

{Pt,Pb}-{Si,Ge}: Дис. ... канд. хим. наук, 02.00.01. М. 1993. С. 134.

- Lipatov A., Gribanov A., Grytsiv A., Safronov S., Rogl P., Rousnyak J., Seropegin Y., Giester G. The Ternary System cerium-rhodium-silicon // J. Solid State Chem. 2010. V. 183. P. 829–843.
- 19. STOE WINXPOW (Version 1.06). Stoe & Cie GmbH, Darmstadt, Germany. 1999.
- Rodriguez-Carvajal J. FULLPROF: a program for rietveld refinement and pattern matching analysis // Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr. Toulouse, 1990. P. 127.
- Roisnel T., Rodriguez-Carvajal J. Materials Science Forum, Proceedings of the European Powder Diffraction Conference (EPDIC7). 2000. P. 118.

- 22. *Sheldrik G.M.* XPRER 6.14, Bruker saint, BRUKER APEX2. 2003.
- 23. *Palenzona A., Manfrinetti P., Brutti S., Balducci G.* The Phase Diagram of the Yb–Si System // J. Alloys Compd. 2003. V. 348. P. 100–104.
- Iandelli A., Palenzona A., Olcese G.L. Valence Fluctuations of Ytterbium in Silicon-Rich Compounds // J. Less-Common Met. 1979. V. 64. P. 213–220.
- 25. *Massalski T.B.* Binary Alloy Phase Diagrams, second ed. Materials Park: ASM International, 1990.
- 26. Gladyshevskii R.E., Cenzual K., Parthe E. Er₂RhSi₃ and R₂CoGa₃ (R – Y, Tb, Dy, Ho, Er, Tm, Yb) with Lu₂CoGa₃ Type Structure: New Members of the AlB₂ Structure Family // J. Alloys Compd. 1992. V. 189. P. 221–228.