УДК 546.21;536.21;538.935

ДИАГРАММА СОСТОЯНИЯ СИСТЕМЫ TIInSe₂-TITmSe₂, ЭЛЕКТРИЧЕСКИЕ И ТЕПЛОВЫЕ СВОЙСТВА КРИСТАЛЛОВ Tl₂InTmSe₄

© 2019 г. Ф. М. Сеидов¹, Э. М. Керимова¹, Р. Г. Велиев¹, Н. З. Гасанов^{1, *}, К. М. Гусейнова¹

¹Институт физики Национальной академии наук Азербайджана, Азербайджан, АZ-1143 Баку, пр. Г. Джавида, 131

*e-mail: ngasanov@yandex.ru Поступила в редакцию 20.11.2018 г. После доработки 21.01.2019 г. Принята к публикации 10.02.2019 г.

Исследование диаграммы состояния системы $TlInSe_2$ - $TlTmSe_2$ показало, что при соотношении компонентов 1 : 1 образуется соединение $Tl_2InTmSe_4$ с конгруэнтным плавлением; на основе $TlInSe_2$ при комнатной температуре растворяется до 5 мол. % $TITmSe_2$. Рентгенографическим анализом установлено, что $Tl_2InTmSe_4$ кристаллизуется в тетрагональной сингонии. Исследованы температурные зависимости электропроводности, коэффициента Холла и коэффициента теплопроводности соединения $Tl_2InTmSe_4$. Определены тип проводимости и ширина запрещенной зоны кристаллов $Tl_2InTmSe_4$. Показано, что рассеяние носителей заряда в соединении $Tl_2InTmSe_4$ происходит на продольных акустических фононах.

Ключевые слова: фазовая диаграмма, электрические свойства, термические свойства, кристаллы, акустические фононы

DOI: 10.1134/S0002337X19070169

введение

В настоящее время с целью обеспечения требований полупроводниковой электроники, радиотехники и автоматики интенсивно ведется поиск новых сложных полупроводников. К числу

таких материалов относятся соединения $TlA^{\rm III}X_{2}^{\rm VI}$

и TlLnX^{VI}₂ (где A^{III} – In, Ga; Ln – лантаноиды; X – S, Se, Te), полученные на основе решеток типа TlSe, а также твердые растворы на их основе [1–4]. Эти материалы перспективны для применения в лазерной технике, нелинейной оптике. Они обладают высокими термоэлектрической эффективностью [5], коэффициентами тензочувствительности [6], переключающими свойствами с памятью [7], акустовольтаическими эффектами [8]. Исследование фотоэлектрических свойств соединения TlInSe₂ показало перспективность его использования в качестве фотоэлектрического преобразователя [9].

В работах [10–14] изучены системы $TlA^{III}X_2^{VI}$ – $TlLnX_2^{VI}$. Тройные соединения $TlInSe_2$ [15] и $TlTmSe_2$ [16] кристаллизуются в тетрагональной сингонии. Соединение $TlTmSe_2$ конгруэнтно плавится и обладает полупроводниковым характером проводимости [16].

В настоящей работе впервые исследованы фазовые равновесия в системе TIInSe₂-TITmSe₂, а также некоторые электрические и тепловые свойства соединения $Tl_2InTmSe_4$, сведения о которых в литературе отсутствуют.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для исследования диаграммы состояния системы $TlInSe_2$ — $TlTmSe_2$ образцы получали прямым сплавлением элементов высокой чистоты в кварцевых ампулах, вакуумированных до 1.3×10^{-2} Па. Температура печи при синтезе поднималась со скоростью 5 К/мин до 1290 К. При этой температуре ампулы выдерживались в течение 9—10 ч, а затем медленно охлаждались до температуры отжига, определенной по кривым дифференциального термического анализа (ДТА).

Низкотемпературную часть диаграммы состояния системы TlInSe₂—TlTmSe₂ исследовали на приборе HTP-64, а высокотемпературную — на установке BДTA-8, позволяющей работать до 2470 К под давлением спектрально чистого гелия.

Рентгенограммы порошковых образцов $Tl_2InTmSe_4$ снимали на установке УРС-55 в CuK_{α} -излучении в камере РКД-57.3.

Для исследования электрических и тепловых свойств поликристаллы соединения Tl₂InTmSe₄ были получены методом Бриджмена—Стокбаргера в специально изготовленных ампулах из плав-

Рис. 1. Диаграмма состояния системы TlInSe₂-TlTmSe₂.

леного кварца. Внутренние стенки ампулы были покрыты слоем графита. Ампулы помещали в вертикальную двухзонную печь. Равновесную температуру в верхней высокотемпературной зоне устанавливали на 25-30 К выше температуры плавления (T_{пл}) вещества, а температура низкотемпературной зоны была на 30-40 К ниже Т_{пл}. Между этими двумя зонами имелась переходная зона с градиентом температуры ~20 К/см. Ампулы с веществом с помощью специального механизма вводились вдоль оси трубчатой печи в верхнюю высокотемпературную зону и после 15-20-часовой стабилизации режима перемещались вниз со скоростью 0.8 мм/ч. За 7-8 дней ампулы с веществом, переместившись через переходную зону кристаллизации, оказывались в низкотемпературной зоне. Затем температуры обеих зон медленно (2-3 сут) понижались до комнатной. Полученные таким образом поликристаллические слитки Tl₂InTmSe₄ представляли собой ориентированные вдоль ампулы длинные (~11 см) тончайшие волокна.

Электропроводность и коэффициент Холла кристаллов $Tl_2InTmSe_4$ исследовались компенсационным методом. Образцы для измерений имели форму прямоугольного параллелепипеда с размерами 3 × 4 × 10 мм. Для создания надежных омических контактов вольфрамовые зонды приваривались к боковым граням образца при помощи конденсаторного разряда. Теплопроводность изучаемых образцов измерялась в стационарном режиме сравнительным методом, в качестве эталона применялся плавленый кварц.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Построенная по результатам ДТА диаграмма состояния системы $TlInSe_2$ — $TlTmSe_2$ показана на рис. 1. Как следует из диаграммы, в системе $TlInSe_2$ — $TlTmSe_2$ при соотношении компонентов 1 : 1 образуется соединение $Tl_2InTmSe_4$ с конгруэнтным плавлением при температуре 1230 К. Область гомогенности для данного соединения отсутствует. При комнатной температуре в $TlInSe_2$

<i>I</i> , %	$d_{ m эксп}$, Å	$d_{\text{pacy}}, \text{\AA}$	hkl
22	4.080	4.078	200
100	3.650	3.648	210
13	3.368	3.366	002
26	3.227	3.226	211
11	3.116	3.117	012
5	2.861	2.863	112
36	2.718	2.720	300
13	2.412	2.413	311
27	2.041	2.040	400
6	1.924	1.925	330
28	1.880	1.879	322
3	1.779	1.778	223
4	1.603	1.602	510
3	1.485	1.485	413
2	1.384	1.384	522

Таблица 1. Расчет рентгенограммы кристалла Tl₂InTmSe₄

растворяется 5 мол. % TITmSe₂. Для определения области растворимости на основе TIInSe₂ образцы отжигали последовательно при температурах 400, 500, 600 и 700 К в течение 250 ч, после каждого процесса отжига закаливая их в ледяную воду. В результате было установлено, что при температуре

Рис. 2. Температурная зависимость электропроводности кристалла $Tl_2InTmSe_4$.

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 55 № 8 2019

эвтектики растворимость на основе TIInSe₂ доходит до 20 мол. % TITmSe₂, а с понижением температуры до 300 К она уменьшается до 5 мол. % TITmSe₂. Нонвариантная эвтектическая точка отвечает составу (TIInSe₂)_{0.78}(TITmSe₂)_{0.22} и температуре 820 К. Между Tl₂InTmSe₄ и TITmSe₂ образуется простая эвтектика состава (TIInSe₂)_{0.30}(TITmSe₂)_{0.70}, плавящаяся при температуре 1050 К.

Расчет рентгенограммы кристалла Tl₂InTmSe₄ приведен в табл. 1. Параметры элементарных ячеек рассчитывали с погрешностью 0.003 Å. Рентгенограммы нового четверного соединения Tl₂InTmSe₄ отличаются от рентгенограмм исходных соединений TlInSe₂ и TlTmSe₂. Все указанные соединения кристаллизуются в тетрагональной сингонии с параметрами элементарной ячейки: TlInSe₂ – a = 8.002 Å, c = 7.012 Å; Tl₂InTmSe₄ – a = 8.16 Å, c =6.73 Å; TlTmSe₂ – a = 4.095 Å, c = 23.24 Å.

На рис. 2 и 3 приведены температурные зависимости электропроводности и коэффициента Холла монокристаллов Tl₂InTmSe₄. Погрешность измерения электропроводности (σ) – 2%, коэффициента Холла (R) – 5%. Электропроводность увеличивается с ростом температуры, т.е. зависимость $\sigma(T)$ для Tl₂InTmSe₄ имеет полупроводниковый характер. Исследуемое соединение обла-

Рис. 3. Температурная зависимость коэффициента Холла кристалла Tl₂InTmSe₄.

Рис. 4. Температурная зависимость холловской подвижности носителей тока кристалла Tl₂InTmSe₄.

Рис. 5. Температурная зависимость коэффициента теплопроводности кристалла $Tl_2InTmSe_4$.

дает *p*-типом проводимости. Экспоненциальный рост электропроводности с температурой в области высоких температур связан с появлением собственной проводимости. Значение ширины запрещенной зоны кристаллов Tl₂InTmSe₄ определяли по высокотемпературным участкам кривых $\lg RT^{3/2} = f(10^3/T)$ и $\lg \sigma = f(10^3/T)$, из наклона которых получена величина 1.35 эВ.

Изучены также температурные зависимости холловской подвижности носителей тока кристаллов Tl₂InTmSe₄. Установлено, что изменение подвижности носителей тока с температурой (рис. 4) следует закону $\mu = f(T^{-3/2})$, что соответствует их рассеянию на акустических колебаниях решетки.

Исследована теплопроводность кристаллов $Tl_2InTmSe_4$ в интервале температур 90–600 К (рис. 5). Ее величина обусловлена решеточным вкладом, так как вклад носителей заряда в теплопроводность, рассчитанный по соотношению Видемана—Франца, в исследуемой области температур не превышает 1% от общей теплопроводности. Температурная зависимость коэффициента теплопроводности α подчиняется закону Эйкена ($\alpha \sim T^{-1}$), что указывает на преобладающую роль трехфононных процессов.

ЗАКЛЮЧЕНИЕ

Методом ДТА выявлено, что в системе $TlInSe_2$ — $TlTmSe_2$ при соотношении компонентов 1 : 1 образуется соединение $Tl_2InTmSe_4$ с конгруэнтным плавлением, в $TlInSe_2$ при комнатной температуре растворяется 5 мол. % $TlTmSe_2$. По результатам рентгенографического анализа установлено, что $Tl_2InTmSe_4$ кристаллизуется в тетрагональной сингонии.

Выявлено, что кристалл $Tl_2InTmSe_4$ является полупроводником с *p*-типом проводимости. Определены ширина запрещенной зоны и механизм рассеяния носителей тока и фононов в $Tl_2InTmSe_4$.

СПИСОК ЛИТЕРАТУРЫ

- Сеидов Ф.М. Получение и исследование электрофизических и тепловых свойств новых сложных полупроводников типа ABX₂ (где A – Tl; B – Ga, Yb; X – S, Se, Te): Автореф. ... канд. хим. наук. Баку. 1977. 18 с.
- 2. Гусейнов Г.Д. Некоторые итоги и перспективы поиска сложных полупроводников-аналогов // Успехи физ. наук. 1969. Т. 99. № 3. С. 508.
- 3. *Керимова Э.М.* Физические основы материаловедения низкоразмерных полупроводников: Автореф. дис. ... докт. физ.-мат. наук. Черновцы. 1992. 28 с.
- 4. Рустамов П.Г., Алиев О.М., Курбанов Т.Х. Тройные халькогениды редкоземельных элементов. Баку: Элм, 1981. 227 с.
- 5. *Годжаев Э.М., Садыгова Х.О.* Термоэлектрическая эффективность твердых растворов InTl_xGa_{1 x}Te₂ с 0 ≤ x ≤ 0.2 // Неорган. материалы. 1992. Т. 28. № 10/11. С. 2233–2234.
- 6. Годжаев Э.М., Халилов С.Х., Халилова Х.С. и др. Пьезоэлектрические свойства кристаллов TlIn_{1 x}Nd_xSe₂ // Инж.-физ. журн. 2003. Т. 76. № 2. С. 76–79.

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 55 № 8 2019

- 7. Годжаев Э.М., Зарбалиев М.М. Эффект переключения в сплавах системы TlInTe₂-TlLnTe₂ // Неорган. материалы. 1979. Т. 15. № 9. С. 1558-1560.
- Годжаев Э.М., Аллахяров Э.А., Рустамов В.Д. Синтез, выращивание монокристаллов и исследование акустовольтаического эффекта в TIIn_{1-x}Pr_xSe₂ и TIIn_{1-x}Pr_xTe₂ // Неорган. материалы. 2004. Т. 40. № 9. С. 1054–1059.
- 9. Гусейнов Г.Д., Мамедова А.З., Мурадова Г.А., Рустамов В.Д. Фотоэлектрические свойства монокристаллов TlInSe₂ // Изв. АН Азерб. ССР. 1979. № 4. С. 69-71.
- 10. Годжаев Э.М., Оруджев К.Д., Мамедов В.А. Исследование систем TlInSe₂-TlNdSe₂ и TlInTe₂-TlNdTe₂ // Неорган. материалы. 1981. Т. 17. № 8. С. 1388-1391.
- 11. Годжаев Э.М., Зарбалиев М.М., Мамедов В.А. Взаимодействие в системе TlInTe₂-TlEuTe₂ // Неорган. материалы. 1981. Т. 17. № 10. С. 1767-1769.

- Годжаев Э.М., Гюльмамедов К.Д. Система TlInSe₂-TlSmSe₂ // Неорган. материалы. 2002. Т. 38. № 12. С. 1426–1431.
- 13. *Годжаев Э.М., Джафарова Г.С.* Диаграмма состояния и свойства фаз системы TlInSe₂−TlPrSe₂ // Heорган. материалы. 2003. Т. 39. № 1. С. 10–13.
- Сеидов Ф.М., Керимова Э.М., Гасанов Н.З. Взаимодействие TIInS₂ с TIYbS₂ и электрические свойства кристаллов Tl₂InYbS₄ // Неорган. материалы. 2011. Т. 47. № 12. С. 1429–1432.
- 15. Guseinov G.D., Abdullayev G.B., Bidzinova S.M., Seidov F.M., Ismailov M.Z., Pashayev A.M. On New Analogs of TISe Type Semiconductor Compounds // Phys. Lett. 1970. V. 33A. № 7. P. 421–422.
- 16. Керимова Э.М., Сеидов Ф.М., Гасанов Н.З., Велиев Р.Г., Гусейнова К.М., Керимов Р.Н. Изучение фазовых равновесий в системе TISe–TmSe и электрические свойства кристаллов TITmSe₂ // Изв. НАН Азербайджана. 2018. № 2. С. 109–112.