УДК 54.056

СИНТЕЗ И ГЛУБОКАЯ ОЧИСТКА ДИИОДИДА ОЛОВА

© 2019 г. М. Н. Бреховских^{1,} *, М. В. Мастрюков¹, П. В. Корнев², А. А. Гасанов², А. Э. Коваленко³, В. А. Федоров¹

¹Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук, Ленинский пр., 31, Москва, 119991 Россия

²АО "Государственный научно-исследовательский и проектный институт редкометаллической промышленности "Гиредмет", ул. Электродная, 2, Москва, 111524 Россия

³Научный центр "Малотоннажная химия", ул. Краснобогатырская, 42, Москва, 107564 Россия

*e-mail: mbrekh@igic.ras.ru

Поступила в редакцию 11.02.2019 г. После доработки 20.03.2019 г. Принята к публикации 12.04.2019 г.

Изложены результаты исследований по разработке физико-химических основ синтеза и глубокой очистки дииодида олова SnI_2 высокотемпературной ректификацией. Образцы SnI_2 , синтезированные по различным методикам: в растворах, из элементов при атмосферном давлении и в вакууме, затем подвергались очистке ректификацией на тарельчатой колонне. Экспериментально определены коэффициенты разделения в системе жидкость—пар на основе SnI_2 для трудноотделимых примесей. Получены и охарактеризованы образцы особо чистого SnI_2 с содержанием микропримесей 10^{-3} мас. %.

Ключевые слова: ректификация, синтез, иодид олова, примесь, глубокая очистка **DOI:** 10.1134/S0002337X1909001X

ВВЕДЕНИЕ

Дииодид олова является перспективным материалом для различных областей электроники [1-6] и оптики [7-9]. В последнее время требуется SnI₂ особой чистоты, однако технологические методы синтеза и глубокой очистки практически отсутствуют. Так, в [9] описан синтез дииодида олова взаимодействием KI с SnCl₂. Процесс занимает длительное время, малоэффективен и имеет малый выход по конечному продукту. В [10] предпринята попытка получения SnI₂ из элементов, однако нет достоверной информации как по составу полученной смеси иодидов $SnI_2 + SnI_4$, так и по их разделению и очистке. Наибольший интерес представляет синтез SnI₂ в трехсекционной ампуле при температуре 600°С в течение 12 ч в статическом вакууме [11]. Важно подчеркнуть, что цитируемые работы относятся к раннему периоду исследований различных способов синтеза SnI₂ и иллюстрируют принципиальный подход к получению высокочистого SnI₂. Изложенные результаты трудно оценить и сопоставить из-за отсутствия конкретной информации по качеству получаемого SnI₂, так как данные по получению SnI₂ ограничены.

Целью работы является разработка физикохимических основ синтеза и глубокой очистки Snl₂ от примесей методом высокотемпературной ректификации с получением образцов чистотой 99.999 мас. % (марки 5N).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходных компонентов были использованы Sn ("ос. ч.", Lanhit Ltd.), HI ("х. ч.", Lanhit Ltd.) и I₂ ("ос. ч.", Lanhit Ltd.). Изучены три метода синтеза SnI₂: взаимодействие олова с иодоводородной кислотой с осаждением водой и последующей сушкой; синтез при атмосферном давлении из элементов

$$\operatorname{Sn} + 2\operatorname{I}_2 = \operatorname{Sn}\operatorname{I}_4,$$

 $\operatorname{Sn}\operatorname{I}_4 + \operatorname{Sn} = \operatorname{Sn}\operatorname{I}_2;$

синтез в статическом вакууме в трехсекционной ампуле (рис. 1). Полученные образцы SnI_2 были очищены методом высокотемпературной ректификации на тарельчатой колонне из "ос. ч." кварца (рис. 2). Ректификационная колонна цельнопаянная; скорость отбора регулируется с помощью игольчатого вентиля. Отбор проб проводился в сухом боксе в атмосфере N_2 , пробы подвергались дальнейшему анализу.

Рентгенограммы образцов были получены при комнатной температуре с использованием дифрактометра Bruker D8 Advance (CuK_{α} -излучение, Ni-фильтр и детектор LYNXEYE). Данные

Рис. 1. Трехсекционная ампула для синтеза SnI_2 и ее температурный профиль: 1 – печь сопротивления, 2 – иод, 3 – олово, 4 – зона сублимации, 5 – теплоизоляция.

дифракции были собраны в диапазоне 2θ от 12° до 72° с шагом 0.01° , время накопления 0.3 с/шаг.

Примесный состав определяли атомно-эмиссионным методом на спектрометре с индуктивно связанной плазмой iCAP 6300 Duo (Thermo).

Загрузку в куб и отбор проб осуществляли в условиях, исключающих контакт продукта с окружающей атмосферой. Температура в кубе поддерживалась 800°С, в колонне — 720—740°С. Скорость отбора проб составляла 1 мл/мин. Отбор каждой фракции ~100 г.

Коэффициенты разделения для системы жидкость—пар на основе SnI₂ определяли методом равновесной перегонки в ампуле по методике [12].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Сравнение экспериментальных результатов по способам синтеза SnI_2 показывает, что наиболее пригодным для получения конечного продукта является синтез в трехсекционной ампуле в статическом вакууме. Получаемый SnI_2 имеет наименьшее количество примесей. Установлено, что из конструкционного материала ("ос. ч." кварца) примеси не поступают в синтезируемый продукт. На рис. 1 приведен температурный профиль ампулы, продолжительность процесса 12 ч. Синтез проводился в "стерильных" условиях.

Рис. 2. Схема установки для ректификации SnI₂: *1* – куб, *2* – нагреватель, *3* – колонна, *4* – карман для термопар, *5* – приемник, *6* – дефлегматор, *7* – игольчатый вентиль.

Можно ожидать, что все примеси металлов присутствуют в виде иодидов, селективность в иодировании примесей маловероятна.

С целью оценки эффективности ректификационной очистки были рассчитаны идеальные коэффициенты разделения α для некоторых

Таблица 1. Коэффициенты равновесного разделения жидкость—пар растворов на основе SnI_2

Примесь	All ₃	PbI ₂	CuI	FeI ₂
<i>t</i> _{пл} , °С	188.3	412	605	592
Концентрация, мас. %	0.15	0.20	0.15	0.10
$\alpha_{_{ m 3KC\Pi}}$	0.34 ± 0.01	0.68 ± 0.01	0.76 ± 0.01	0.2 ± 0.01

Примесь	$C \times 10^4$, mac. %				
	исходный	головная фракция	основная фракция	кубовый остаток	
Al	19.0	12.0	<1.0	6.0	
В	<3.0	<2.0	<1.0	<2.0	
Ba	<1.0	<0.4	<0.4	<0.4	
Ca	4.0	8.0	<1.0	3.4	
Cd	0.5	0.8	<0.2	<0.2	
Co	<0.4	2.1	<0.4	<0.4	
Cr	<0.5	2,1	<0.5	<0.5	
Cu	18.0	3.0	<0.5	13.0	
Fe	5.1	4.6	<1.0	<1.0	
K	<0.8	<0.8	<0.8	<0.8	
Li	0.2	<0.1	<0.1	<0.1	
Mg	3.8	1.5	<0.3	2.4	
Mn	< 0.1	0.6	<0.1	<0.1	
Na	4.6	1.1	<0.7	1.7	
Ni	5.0	3.0	<0.5	2.0	
Pb	13.0	<4.0	<2.0	9.0	
Si	<1.3	<1.3	<1.3	<1.3	
Sr	<0.1	<0.1	<0.1	<0.1	
Ti	0.9	0.5	<0.3	<0.3	
V	<0.4	<0.4	<0.4	<0.4	
Zn	1.5	<1.0	< 0.3	0.6	

Таблица 2. Содержание примесей в синтезированном SnI₂ и после ректификационной очистки

трудноудаляемых примесей: Al, Pb, Cu, Fe. Для них был экспериментально определен коэффициент разделения α (табл. 1).

Содержание примесей в исходном SnI_2 и после ректификационной очистки представлено в табл. 2.

Как и следовало ожидать, в процессе ректификации происходит достаточно эффективная очистка от большинства примесей. Трудноотделимыми являются Al, Pb, Cu, Fe. Труднолетучие примеси элементов концентрируются в кубовом остатке.

Рис. 3. Рентгенограмма полученного образца SnI_2 после ректификации: а – эксперимент, б – расчет.

Таким образом, образцы отвечают квалификации 99.999 мас. %. Переход примесей из конструкционного материала отсутствует. Ректификационная колонна работает в адиабатическом режиме. Практическая реализация процесса ректификации близка в теоретическому. Содержание примесей в очищенном продукте, по существу, находится ниже предела обнаружения масс-спектрометрического метода. Дальнейшее повышение чистоты может быть достигнуто повторной ректификацией.

Полученные образцы были изучены методом РФА. Рентгенограмма соответствует дифракционной картине SnI₂. Рассчитанные параметры ромбической ячейки равны: a = 14.15 Å, b = 4.531 Å, c = 10.85 Å и $\beta = 92.0^{\circ}$ (рис. 3).

ЗАКЛЮЧЕНИЕ

Разработаны физико-химические основы синтеза SnI_2 в трехсекционной ампуле и проведена его глубокая очистка методом высокотемпературной ректификации с получением образцов марки SN (99.999 мас. %). Экспериментально изучена система жидкость—пар на основе SnI_2 для удаления трудноотделяемых примесей. Определены режимы ректификации на тарельчатой колонне из особо чистого кварца. По данным РФА, фазовый состав соответствует SnI_2 .

БЛАГОДАРНОСТЬ

Работа выполнена в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований.

Исследования проводились с использованием оборудования ЦКП ФМИ ИОНХ РАН.

СПИСОК ЛИТЕРАТУРЫ

 Chen Z., Yu C., Shum K., Wang J.J., Pfenninger W., Vockic N., Midgley J., Kenney J.T. Photoluminescence Study of Polycrystalline CsSnI₃ Thin Films: Determination of Exciton Binding Energy // J. Luminescence. 2012. V. 132. № 2. P. 345–349. doi: 10.1016/j.jlumin.2011.09.006

- Zhou Y., Garces H.F., Senturk B.S., Ortiz A.L., Padture N.P. Room Temperature "One-Pot" Solution Synthesis of Nanoscale CsSnI₃ Orthorhombic Perovskite Thin Films and Particles // Mater. Lett. 2013. V. 110. P. 127– 129. doi:10.1016/j.matlet.2013.08.011
- Wang N., Zhou Y., Ju M.G., Garces H.F., Ding T., Pang S., Zeng X.C., Padture N.P., Sun W.X. Heterojunction-Depleted Lead-Free Perovskite Solar Cells with Coarse-Grained B-γ-CsSnI₃ Thin Films // Adv. Energy Mater. 2016. V. 6. № 24. P. 1601130. doi: 10.1002/aenm.201601130
- Shum K., Chen Z., Qureshi J., Yu C., Wang J.J., Pfenninger W., Vockic N., Midgley J., Kenney J.T. Synthesis and Characterization of CsSnI₃ Thin Films // Appl. Phys. Lett. 2010. V. 96. № 22. P. 221903. doi: 10.1063/1.3442511
- Shi Z., Guo J., Chen Y., Li Q., Pan Y., Zhang H., Xia Y., Huang W. Lead-Free Organic–Inorganic Hybrid Perovskites for Photovoltaic Applications: Recent Advances and Perspectives // Adv. Mater. 2017. V. 29. № 16. P. 1605005. doi: 10.1002/adma.201605005
- 6. *Ishibashi H., Katayama M., Tanaka S., Kaji T.* Hybrid Perovskite Solar Cells Fabricated from Guanidine Hydroiodide and Tin Iodide // Sci. Rep. 2017. V. 7. № 1. P. 4969. doi: 10.1038/s41598-017-05317-w
- Gorban I.S., Gorchev V.F., Sushkevich T.N. SnI₂ Optical Properties // Fizika Tverdogo Tela. 1976. V. 18. № 7. P. 2095–2097.
- Kostyshin M. T., Kostko V.S., Indutnyi I.Z., Kosarev V.M. Optical Constants of Tin Diiodide at the Fundamental Absorption Edge // Opt. Spectroscopy. 1982. V. 52. P. 108–110.
- Desai C.C., Rai J.L., Vyas A.D. Microwave Measurements of Dielectric Constants of Snl₂ and Snl₄ // J. Mater. Sci. 1982. V. 17. № 11. P. 3249–3252. doi: 10.1007/BF01203491
- Moser W., Trevena I.C. The Crystal Structure of Tin (II) Iodide // J. Chem. Soc. D: Chem. Commun. 1969. № 1. P. 25–26. doi: 10.1039/C29690000025
- Hirayama C., Kleinosky R.L. Mass Spectra of SnI₂ // Thermochim. Acta. 1981. V. 47. № 3. P. 355–358. doi: 10.1016/0040-6031(81)80113-X
- Нисельсон Л.А. Межфазовые коэффициенты распределения. М.: Наука, 1992. 396 с.