УДК 544.015.4

ПОЛИЭДР ГРАНАТА В ИЗОБАРНО-ИЗОТЕРМИЧЕСКОМ ТЕТРАЭДРЕ Y₂O₃-Bi₂O₃-Fe₂O₃-Ga₂O₃

© 2019 г. Г. Д. Нипан^{1, *}, М. Н. Смирнова¹, Г. Е. Никифирова¹

¹Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук, Ленинский пр., 31, Москва, 119991 Россия *e-mail: nipan@igic.ras.ru Поступила в редакцию 28.01.2019 г.

После доработки 04.03.2019 г. Принята к публикации 22.04.2019 г.

На основании данных рентгенофазового анализа построен полиэдр граната (Y,Bi)₃(Fe,Ga)₅O₁₂ (18-вершинный 11-гранник) в изобарно-изотермическом концентрационном тетраэдре Y₂O₃— Bi₂O₃—Fe₂O₃—Ga₂O₃. Установлены 9 кристаллических фаз, с которыми гранат участвует в многофазных равновесиях. Особое внимание уделено равновесиям граната и перовскита.

Ключевые слова: гранат, концентрационный тетраэдр, область гомогенности, замещения катионов **DOI:** 10.1134/S0002337X19090100

ВВЕДЕНИЕ

Идея двойного замещения в иттриевом феррит-гранате Y₃Fe₅O₁₂ связана с созданием монокристаллических пленок, содержащих магнитооптически активный катион Bi³⁺, который обладает большим радиусом. Для компенсации разрушающего действия большого катиона на гранатовую структуру и сохранения однофазности пленки одновременно с Ві³⁺ вводится Ga³⁺ – катион с малым радиусом [1]. Несмотря на то что существующие физические и химические методы позволяют получать метастабильные гранатовые пленки с различными соотношениями Y: Bi : Fe : Ga [2], возникает проблема их температурной, барической и временной стабильности и, в конечном итоге, возможности их использования в магнитооптических устройствах.

Систематические исследования стабильных поликристаллов (Y,Bi)₃(Fe,Ga)₅O₁₂ со структурой граната в рамках сечения $Y_3Fe_5O_{12}-Y_3Ga_5O_{12}-Bi_3Ga_5O_{12}-Bi_3Fe_5O_{12}$ (диаграмма Йенеке) показывают, что предельное содержание Ві по отношению ко всем катионам ~18.75% достигается, если соотношение Fe : Ga находится в интервале 0.43–1.0 [3, 4]. При анализе образцов из гексагона Ga₂O₃-(Y,Bi)₃(Fe,Ga)₅O₁₂-Fe₂O₃ определена область гомогенности граната в системе Y_2O_3- Ga₂O₃-Fe₂O₃ и на секущей плоскости 6.25 мол. % Bi₂O₃ [5]. В равновесии с гранатом, в отсутствие расплава, находятся девять кристаллических фаз на основе Y_2O_3 , Ga₂O₃, Fe₂O₃, $Y_xBi_{1-x}O_3$ [6], Ga_{2-x}Fe_xO₃ [7], Bi₂₅(Fe,Ga)O₄₀, Bi₂(Fe,Ga)₄O₉ [8], орторомбического YFeO₃ [9] и ромбоэдрического BiFeO₃ [10–13], которые определяют пограничные составы граната, и, соответственно, оказывают влияние на его свойства.

В настоящей работе исследованы равновесия гранат-перовскит в системе $YFeO_3$ -BiFeO₃ и построен фазовый объем граната в концентрационном тетраэдре Y_2O_3 -Bi₂O₃-Fe₂O₃-Ga₂O₃ при давлении кислорода 21 кПа и температуре 760°С. Выбор такого режима термической обработки обусловлен значительным увеличением летучести Bi₂O₃ при плавлении [14].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для синтеза образцов использовался метод сжигания геля — эффективный способ получения сложных металл-оксидов [15]. Исходные водные растворы нитратов иттрия, висмута, железа и галлия для синтеза порошкообразных замещенных гранатов готовили растворением стехиометрических количеств 3-водного карбоната иттрия ("х. ч."), оксида висмута ("ч."), карбонильного железа ("ос. ч."), металлического галлия ("х. ч.") в разбавленной (1 : 3) азотной кислоте. К полученному раствору добавляли РVA в расчете 0.12/*n* моля (CH₂CHOH)_{*n*} на 0.01 моля феррита, а также нитрат аммония (NH₄NO₃ квалификации "ч. д. а.") в количестве 0.12 моля на 0.01 моля феррита.

Реакционные смеси упаривали в открытой фарфоровой чаше (80–100°С) при постоянном перемешивании до состояния гелей. При дальнейшем

Рис. 1. Дифрактограммы образцов номинального состава MFeO₃ системы Y₂O₃-Bi₂O₃-Fe₂O₃-Ga₂O₃.

увеличении температуры происходило плавное беспламенное горение геля в самоподдерживающемся режиме ("тление") с образованием порошкообразных ксерогелей. Такой характер горения обусловлен оптимальным соотношением PVA и NH₄NO₃ и безопасен при его использовании в лабораторных условиях.

После охлаждения ксерогели перетирались с помощью шаровой мельницы и отжигались при температуре 760°С (6 ч) в муфельной лабораторной печи.

Рентгенофазовый анализ полученных порошков выполняли на дифрактометре Bruker Advance D8 (излучение Cu K_{α}) в интервале углов $2\theta = 10^{\circ} 70^{\circ}$ с шагом сканирования 0.0133°. Обработка результатов проводилась с помощью программного пакета для анализа рентгеновских данных DIFFRAC.EVA. Средний диаметр кристаллитов рассчитывался с использованием формулы Селякова–Шеррера и составил ~25–30 нм.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Изменение фазовых составов системы У2О3-Bi₂O₃-Fe₂O₃-Ga₂O₃ при сохранении номинального перовскитного состава MFeO₃ представлено с помощью дифрактограмм на рис. 1. Беспримесный стехиометрический BiFeO₃ с ромбоэдрической структурой сложно получить [10, 12], и в нашем случае образовались примеси муллита Bi₂(Fe,Ga)₄O₉ и силленита Bi₂₅(Fe,Ga)O₄₀. При замещении висмута на иттрий до $Bi_{0.7}Y_{0.3}FeO_3$, наряду с $BiFeO_3$, образуется гранат, увеличивается содержание силленита, а муллит исчезает. Дальнейшее введение иттрия — $Bi_{0.3}Y_{0.7}FeO_3$, $Bi_{0.2}Y_{0.8}FeO_3$ и $Bi_{0.1}Y_{0.9}FeO_3$ – приводит к образованию YFeO3 с орторомбической структурой, содержание граната, сосуществующего с силленитом, значительно снижается, муллит не образуется. При незначительном замещении в YFeO₃ иттрия на галлий – $Y_{0.9}Ga_{0.1}FeO_3$, кроме орторомбического перовскита, образуется гранат, а для состава Y_{0.5}Ga_{0.5}FeO₃ гранат становится основной

Рис. 2. Полиэдр граната в концентрационном изобарно-изотермическом тетраэдре Y_2O_3 -Bi₂O₃-Fe₂O₃-Ga₂O₃. Условные обозначения: Bi₂₅(Fe,Ga)O₄₀ - S, Bi₂(Fe,Ga)₄O₉ - M, $Y_xBi_{1-x}O_3$ - YB, $Ga_xFe_{1-x}O_3$ - GF, Ga_2O_3 - G, Fe_2O_3 - F, YFeO₃ - P и BiFeO₃ - B.

фазой с небольшим включением GaFeO₃. Кристаллизация GaFeO₃ при температуре 760°С происходит медленно, и дифрактограмма на рис. 1 приведена для образца, отожженного при 900°С. Образец с перовскитным номинальным составом $Bi_{0.5}Y_{0.5}Ga_{0.5}Fe_{0.5}O_3$ содержит преимущественно гранат.

Приведенный результат в сочетании с результатами, полученными ранее [3–5], позволили построить концентрационный полиэдр граната в тетраэдре составов Y_2O_3 – Bi_2O_3 – Fe_2O_3 – Ga_2O_3 (рис. 2). Полиэдр представляет собой 18-вершинный 11гранник (рис. 2), его основание принадлежит треугольнику составов системы Y_2O_3 – Fe_2O_3 – Ga_2O_3 [16].

Одиннадцать вершин (1-11) (рис. 2) отвечают составам граната $(Y,Bi)_3$ (Fe,Ga)₅O₁₂ в четырехфазных равновесиях (табл. 1), а еще семь вершин (12-18) являются результатом пересечения полиэдра с гранями Y_2O_3 —Fe₂O₃—Ga₂O₃ и Y_2O_3 —Bi₂O₃—Ga₂O₃. Из 27 ребер трехфазные равновесия представляют 19 (табл. 1), 8 ребер — результат пересечения полиэдра с гранями тетраэдра. Гранат участвует в девяти двухфазных равновесиях (табл. 1), чему соответствуют 9 граней, а еще 2 грани — результат пересечения полиэдра с тетраэдром. В равновесиях с гранатом (**Gr**) участвует оксид иттрия Y_2O_3

(Y) и твердые растворы на основе: силленита $Bi_{25}(Fe,Ga)O_{40}$ (S), муллита $Bi_2(Fe,Ga)_4O_9$ (M), висмутата иттрия $Y_xBi_{1-x}O_3$ (YB), феррита галлия $Ga_xFe_{1-x}O_3$ (GF), оксида галлия Ga_2O_3 (G), оксида железа Fe_2O_3 (F), феррита иттрия YFeO_3 (P) и феррита висмута BiFeO_3 (B). Два последних феррита часто рассматривают в рамках единого твердого раствора $Y_{1-x}Bi_xFeO_3$ с перовскитоподобной структурой, который претерпевает полиморфные превращения (тетрагональный, орторомбический, ромбоэдрический) [17].

Полиэдр гомогенности граната на рис. 2 представляет возможные вариации катионных соотношений Y : Bi : Fe : Ga для температуры 760°C и парциального давления кислорода 21 кПа. Фазовый объем граната, пересекаясь с гранью Y_2O_3 —Bi₂O₃—Fe₂O₃, изменяется в зависимости от температуры отжига при твердофазном синтезе, и содержание висмута в феррит—гранатах $Y_{3-x}Bi_xFe_5O_{12}$ достигает величин: x = 1.0 при 950°C [18], x = 1.2 при 900°C [19] или ~960°C [20, 21] и x = 1.5 при 775°C [22]. В отсутствие галлия гранаты $Y_{3-x}Bi_xFe_5O_{12}$ являются метастабильными фазами [23] с неконтролируемым катионным составом из-за летучести оксида висмута при высоких температурах.

Вершина	Четырехфазное равновесие
1	Gr - S - M - G
2	Gr - S - M - F
3	Gr - M - GF - G
4	Gr - M - GF - F
5	Gr - S - YB - P
6	Gr - S - YB - G
7	Gr - S - P - B
8	Gr - S - B - F
9	Gr - P - B - F
10	Gr - YB - G - Y
11	Gr - YB - P - Y
Ребро	Трехфазное равновесие
1-2	Gr - S - M
1-3	Gr - M - G
1-6	Gr - S - G
2-4	Gr - M - F
2-8	Gr - S - F
3-4	Gr - M - GF
3-13	Gr - GF - G
4-14	Gr - GF - F
5-6	Gr - S - YB
5-7	Gr - S - P
5-11	Gr – YB – P
6-10	Gr – YB – G
7-9	Gr - P - B
7-8	Gr - S - B
8-9	Gr - P - F
9-15	Gr - P - F
10-11	Gr – YB –Y
10-18	Gr-G-Y
11-16	Gr - P - Y
Грань	Двухфазное равновесие
1-2-8-7-5-6	Gr – S
7-8-9	Gr – B
1-2-4-3	Gr – M
5-6-10-11	Gr –YB
1-3-13-12-18-10-6	Gr – G
3-4-14-13	Gr – GF
2-4-14-15-9-8	Gr – F
10-11-16-17-18	Gr – Y
5-7-9-15-16-11	Gr – P

Таблица 1. Фазовые равновесия с участием граната (Gr) (рис. 2)

ЗАКЛЮЧЕНИЕ

Систематическое исследование фазовых равновесий в системе Y_2O_3 — Bi_2O_3 — Fe_2O_3 — Ga_2O_3 позволило установить соотношения катионов Y : Bi : Fe : Ga, при которых висмутсодержащие ферритранаты сохраняют стабильность, как, например, поликристаллиты состава $Y_{1.5}Bi_{1.5}Fe_{2.5}Ga_{2.5}O_{12}$ [24]. Полученный результат может быть использован для получения стабильных магнитооптических пленок с воспроизводимыми функциональными свойствами.

БЛАГОДАРНОСТЬ

Исследование выполнено за счет гранта Российского научного фонда проект № 17-73-10409.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Kumar P., Maydykovskiy A.I., Levy M., Dubrovina N.V., Aktsipetrov O.A.* Second Harmonic Generation Study of Internally-Generated Strain in Bismuth-Substituted Iron Garnet Films // Opt. Express. 2010. V. 18. № 2. P. 1076–1084.
 - https://doi.org/10.1364/OE.18.001076
- 2. *Рандошкин В.В., Червоненкис А.Я.* Прикладная магнитооптика. М.: Энергоатомиздат, 1990. С. 320.
- Смирнова М.Е., Нипан Г.Д., Никифорова Г.Е. Область твердого раствора (Y_{1-x}Bi_x)₃(Fe_{1-y}Ga_y)O₁₂ на диаграмме Йенеке // Неорган. материалы. 2018. Т. 54. № 7. С. 721–726. https://doi.org/10.7868/S0002337X18070114
- Смирнова М.Е., Нипан Г.Д., Никифорова Г.Е. Твердый раствор со структурой граната (Y_{1-x}Bi_x)₃Fe_{2.5}Ga_{2.5}O₁₂// ДАН. 2018. Т. 478. № 2. С. 172–174. https://doi.org/10.7868/S0869565218020111
- 5. *Смирнова М.Е., Нипан Г.Д., Никифорова Г.Е.* Концентрационный объем гомогенности граната в системе Ga₂O₃-(Y,Bi)₃(Fe,Ga)₅O₁₂-Fe₂O₃ // ДАН. 2018. Т. 480. № 3. С. 303-307. https://doi.org/10.7868/S0869565218150094
- 6. *Ekhilikar S., Bichile G.K.* Synthesis and Structural Characterization of $(Bi_2O_3)_{1-x}(Y_2O_3)_x$ and $(Bi_2O_3)_{1-x}(Gd_2O_3)_x$ Solid Solutions// Bull. Mater. Sci. 2004. V. 27. No 1. P. 19–22.
- Roulland F., Lefevre C., Thomasson A., Viart N. Study of Ga_(2-x)Fe_xO₃ Solid Solution: Optimisation of the Ceramic Processing // J. Eur. Ceram. Soc. 2013. V. 33. № 5. P. 1029–1035. https://doi.org/10.1016/j.jeurceramsoc.2012.11.014
- Giaquinta D.M., Papaefthymiou G.C., Davis W.M., Zur Loye H.-C. Synthesis, Structure, and Magnetic Properties of the Layered Bismuth Transition Metal Oxide Solid Solution Bi₂Fe_{4 - x}Ga_xO₉ // J. Solid State Chem. 1992. V. 99. № 1. P. 120–133. https://doi.org/10.1016/0022-4596(92)90296-8
- 9. Zhang Y., Yang J., Xu J., Gao Q., Hong Z. Controllable Synthesis of Hexagonal and Orthorhombic YFeO₃ and Their Visible-Light Photocatalytic Activities // Mater. Lett. 2012. V. 81. P. 1–4. https://doi.org/10.1016/j.matlet.2012.04.080

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 55 № 9 2019

- Denisov V.M., Belousova N.V., Zhereb V.P., Denisova L.T., Skorikov V.M. Oxide Compounds of Bi₂O₃-Fe₂O₃ System I. The Obtaining and Phase Equilibriums // J. Siberian Federal University. Chem. 2012. V. 5. № 2. P. 146–167.
- Mishra R.K., Pradhan D.K., Choudhary R.N.P., Banerjee A. Effect of Yttrium on Improvement of Dielectric Properties and Magnetic Switching Behavior in BiFeO₃// J. Phys.: Condens. Matter. 2008. V. 20. 045218 (6 p). https://doi.org/10.1088/0953-8984/20/04/045218
- Lu J., Qiao L.J., Fu P.Z., Wu Y.C. Phase Equilibrium of Bi₂O₃-Fe₂O₃ Pseudo-Binary System and Growth of BiFeO₃ Single Crystal // J. Cryst. Growth. 2011. V. 318. № 1. P. 936-941. https://doi.org/10.1016/j.jcrysgro.2010.10.181
- Meera A.V., Ganesan R., Gnanakeran T. Partial phase diagram of Bi–Fe–O system and the standard molar Gibbs energy of formation of Bi₂Fe₄O₉ // J. Alloys Compd. 2017. V. 692. P. 841–847. https://doi.org/10.1016/j.jallcom.2016.09.070
- 14. *Казенас Е.К., Цветков Ю.В.* Термодинамика испарения оксидов. М.: Изд-во ЛКИ, 2008. 480 с.
- 15. Mukasyan A.S., Epstein P., Dinka P. Solution Combustion Synthesis of Nanomaterials // Proc. Combust. Inst. 2007. V. 31. № 2. P. 1789–1795.
- 16. Zhuang N., Chen W., Shi L., Nie J., Hu X., Zhao B., Lin S., Chen J. A New Technique to Grow Incongruent Melting Ga:YIG Crystals: the Edge-Defined Film-Fed Growth Method // Appl. Crystallogr. 2013. V. 46. № 2. P. 746–751.

https://doi.org/10.1107/S002188981301025X

 Lee H., Yoon Y., Yoo H., Choi S.A., Kim K., Choi Y., Melikyan H., Ishibashi T., Friedman B., Lee K. Magnetic and FTIR Studies of Bi_xY_{3-x}Fe₅O₁₂ (x = 0, 1, 2) Powders Prepared by the Metal Organic Decomposition Method // J. Alloys Compd. 2011. V. 509. P. 9434– 9440.

https://doi.org/10.1016/j.jallcom.2011.07.005

 Pigošová J., Cigáň A., Maňka J. Thermal Synthesis of Bismuth-Doped Yttrium Iron Garnet for Magneto-Optical Imaging // Measur. Sci. Rev. 2008. V. 8. Sec. 3. № 5. P. 126–128.

https://doi.org/10.2478/v10048-008-0030-y

 Zhao H., Zhou J., Bai Y., Gui Z., Li L. Effect of Bi-Substitution on the Dielectric Properties of Polycrystalline Yttrium Iron Garnet // J. Magn. Magn. Mater. 2004. V. 280. P. 208–213. https://doi.org/10.1016/j.jmmm.2004.03.014

 Jia N., Huaiwu Z., Li J., Liao Y., Jin L., Liu C., Harris V.C. Polycrystalline Bi Substituted YIG Ferrite Processed via Low Temperature Sintering // J. Allovs. Compd.

2017. V. 695. P. 931–936. https://doi.org/10.1016/j.jallcom.2016.10.201

 Li H., Guo Y. Synthesis and Characterization of YIG Nanoparticles by Low Temperature Sintering // J. Mater. Sci.: Mater. Electron. 2018. V. 29. № 11. P. 9369– 9374.

https://doi.org/10.1007/s10854-018-8968-5

 Amighian J., Hasanpour A., Mozaffari M. The Effect of Bi Mole Ratio on Phase Formation in Bi_xY_{3-x}Fe₅O₁₂ Nanoparticles // Phys. Status Solidi C. 2004. V. 1. № 7. P. 1769–1771.

https://doi.org/10.1002/pssc.200304396

- Rehspringer J.-L., Bursik J., Niznansky D., Klarikova A. Characterisation of Bismuth-Doped Yttrium Iron Garnet Layers Prepared by Sol-Gel Process // J. Magn. Magn. Mater. 2000. V. 211. P. 291–295. https://doi.org/10.1016/S0304-8853(99)00749-0
- Smirnova M.N., Nikiforova G.E., Goeva L.V., Simonenko N.P. One-Stage Synthesis of (Y_{0.5}Bi_{0.5})₃(Fe_{0.5}Ga_{0.5})₅O₁₂ Garnet Using the Organometallic Gel Auto-Combustion Approach // Ceram. Int. 2019. V. 45. P. 4509–4513. https://doi.org/10.1016/j.ceramint.2018.11.133