УДК 544.032.3,544.032.4

# ФАЗОВЫЕ ПРЕВРАЩЕНИЯ В ДВОЙНОМ СПЛАВЕ 1.4 ат. % Cu—Al при высоких давлениях и температурах

© 2019 г. А. Г. Падалко<sup>1, \*</sup>, Т. К. Акопян<sup>1</sup>, М. С. Пыров<sup>1</sup>, А. Д. Изотов<sup>2</sup>, А. В. Хорошилов<sup>2</sup>, Г. В. Таланова<sup>1</sup>

<sup>1</sup>Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук, Ленинский пр., 49, Москва, 119991 Россия

<sup>2</sup>Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук, Ленинский пр., 31, Москва, 119991 Россия

\*e-mail: padalko@inbox.ru
Поступила в редакцию 15.02.2019 г.
После доработки 19.04.2019 г.
Принята к публикации 22.04.2019 г.

Исследованы фазовые превращения в двойном сплаве 1.4 ат. % Cu-98.6 ат. % Al при атмосферном давлении методом дифференциальной сканирующей калориметрии и при умеренно высоком всестороннем давлении  $\sim$ 100 МПа методом дифференциального баротермического анализа. Установлено, что для исследуемого сплава при высоком давлении температура твердофазного превращения сольвус  $\theta$ -Al $_2$ Cu +  $\alpha$ -Al  $\rightarrow$   $\alpha$ -(Al) повышается по сравнению с равновесным значением, полученным при атмосферном давлении. Проведенная оценка теплоты твердофазного растворения  $\theta$ -фазы в  $\alpha$ -матрице показала  $\sim$ 4-кратное ее увеличение при 100 МПа по сравнению с данными при атмосферном давлении. Установлено, что микроструктура сплава после кристаллизации при высоком давлении существенно меняется и характеризуется многократным возрастанием размерных параметров интерметаллидной фазы  $\theta$ -Al $_2$ Cu.

**Ключевые слова:** двойной сплав, давление, температура, фазовое превращение, ликвидус, солидус, сольвус

**DOI:** 10.1134/S0002337X19090112

## **ВВЕДЕНИЕ**

Медьсодержащие алюминиевые сплавы относятся к наиболее распространенной группе алюминиевых сплавов. Так, отечественные медистые силумины насчитывают 14 сплавов с содержанием кремния от 5 до 21 мас. % и меди от 1 до 7 мас. % (АК5М, АК5Мч и др.) [1]. Создание алюминиевых сплавов, как и практически всех металлических материалов, опирается на использование канонических равновесных двойных фазовых диаграмм состояния, в данном случае Al—Si и Al—Cu [2, 3], которые строили на основании многочисленных экспериментов, в том числе термоаналитических, проводимых при атмосферном давлении.

В области  $0 \le C_{\rm Cu} \le 53$  мас. % двойная диаграмма Al—Cu представляет собой эвтектическую систему  $\alpha$ -Al— $\theta$ -CuAl<sub>2</sub>. Максимальная растворимость (при эвтектической температуре  $548^{\circ}$ C) меди в  $\alpha$ -твердом растворе на основе алюминия достигает 5.7 мас. %, а при понижении температуры снижается до 0.5 мас. % при  $300^{\circ}$ C. Отметим, что при формировании свойств медьсодержащих силуминов термической обработкой используют-

ся достоверные данные о твердофазном растворении  $Al_2$ Cu в  $\alpha$ -матрице при содержании меди до 5.7 мас. %. В этом случае растворение  $\theta$ -фазы при нагреве и последующее выделение метастабильных медьсодержащих соединений в процессе распада пересыщенного твердого раствора на основе Al позволяют в значительной степени управлять механическими свойствами медистых силуминов. Использование давления в процессе термической обработки медьсодержащих алюминиевых сплавов требует надежных данных об их характерных температурах при повышенном давлении.

Цель настоящей работы — изучение фазовых, в том числе твердофазных, превращений в двойной системе Al—Cu, что является актуальным с учетом широкого распространения горячего изостатического прессования (баротермической обработки) в современном материаловедении [4].

#### ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве объекта исследований выбрали сплав с содержанием меди 1.4 ат. % с фазовым пе-

| Изображение                                                       | Количество частиц $Al_2Cu$ на изображении, шт. | Средний диаметр<br>частиц, см | Объем средней частицы, см <sup>3</sup> | Объемная концентрация частиц, $cm^{-3}$ |  |
|-------------------------------------------------------------------|------------------------------------------------|-------------------------------|----------------------------------------|-----------------------------------------|--|
| Исходный сплав (рис. 16), $1.0 < d_{\mathrm{Al_2Cu}} < 10$ мкм    | 137                                            | $3.9 \times 10^{-4}$          | $3.1 \times 10^{-11}$                  | 4.2 × 10 <sup>9</sup>                   |  |
| Сплав после цикла ДБА (рис. 5а), $5.0 < d_{\rm Al_2Cu} < 150$ мкм | 127                                            | $5.9 \times 10^{-3}$          | $1.1 \times 10^{-7}$                   | 5.4 × 10 <sup>5</sup>                   |  |

**Таблица 1.** Количественные характеристики частиц интерметаллида  $Al_2Cu$  по данным обработки в ПО ImageJ изображений

реходом (Al) +  $Al_2Cu \rightarrow (Al)$  при 478°C, температурами солидуса 599°C и ликвидуса 653°C по равновесной диаграмме [2, 3]. Исходный сплав 1.4 ат. % Cu-98.6 ат. % Al (1.4Cu-Al) синтезировали в лабораторной электрической печи сопротивления сплавлением Al марки A99 (99.99%) и Cu марки M1 (99.9%) в графитошамотных тиглях при температуре 750°C в течение 2 ч. Заливку производили в графитовую изложницу при температуре расплава 730-750°C, и таким образом получали отливки прямоугольного сечения  $20 \times 10 \times 150$  мм.

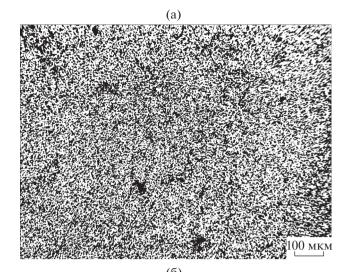
Термический анализ при атмосферном давлении проводили с помощью дифференциальной сканирующей калориметрии (ДСК) на установке синхронного термического анализа STA 449F1 Jupiter® фирмы Netzsch (Германия) в атмосфере аргона марки "5,5" (99.9995%). Предварительно, с использованием металлических стандартов, проводили калибровку прибора по температуре и чувствительности, после которой погрешность измерений по температуре не превышала  $\pm 0.3$ °C, а по чувствительности  $\pm 3\%$ . ДСК проводили в алундовых тиглях с крышкой, тип измерения образец с коррекций. Измерения проводили при скоростях нагрева/охлаждения 7°С/мин. Расчет значений теплот фазовых превращений проводили в ПО NETZSCH-Proteus-Thermal Analysis version 5.2.1. Температуры солвус, солидус и ликвидус, установленные по равновесным диаграммам [2, 3], а также ДСК-кривые, полученные при 0.1 МПа, принимали в качестве эталонных при интерпретации кривых дифференциального баротермического анализа.

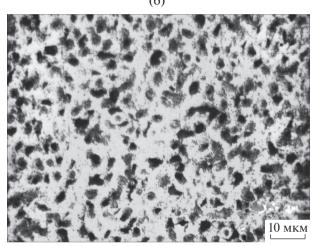
Регистрацию термических эффектов при давлении сжатого до 100 МПа аргона проводили с помощью ячейки дифференциального термического анализа, размещенной в сосуде высокого давления установки горячего изостатического прессования фирмы ABRA (Швейцария) [5—9] со скоростями нагрева/охлаждения 7°С/мин, идентичных анализу ДСК. Металлографические исследования проводили на оптическом микроскопе MeF3 (Австрия), оборудованном приставкой для получения цифровых изображений. Съемку рентгендифракционного спектра проводили с ис-

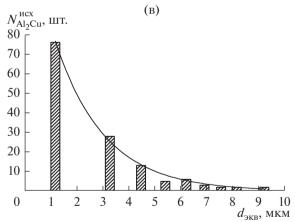
пользованием  $CuK_{\alpha}$ -излучения с никелевым фильтром на дифрактометре XRD-6000 (Shimadzu, Япония). Для повышения качества изображений микроструктур и получения количественной информации о структурных составляющих сплава применяли программное обеспечение ( $\Pi O$ ) Adobe Photoshop CS6 и ImageJ, а массивы экспериментальных данных обрабатывали в программе Origin 5.0.

## РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В синтезированных негомогенизированных литых образцах в исходном состоянии интерметаллидная θ-фаза равномерно распределена в алюминиевой матрице без явных границ зерен первичных кристаллов алюминия. Частицы Al<sub>2</sub>Cu обладали округлой морфологией с частичным срастанием 2—7 частиц в небольшие конгломераты (рис. 1). Полученные световой микроскопией изображения обрабатывали в программах Adobe Photoshop CS6 и ImageJ, в результате получили распределение частиц интерметаллида по размерам (рис. 1в). Это распределение хорошо аппроксимировалось экспоненциальной зависимостью вида


$$N_{\text{Al}_2\text{Cu}}^{\text{MCX}} = 1.4 \times 10^2 \text{e}^{-0.53d_{\text{9KB}}},$$
 (1)

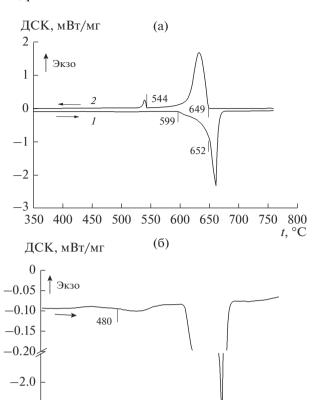

где  $N_{\rm Al_2Cu}^{\rm ucx}$  — количество частиц  ${\rm Al_2Cu}$  на изображении исходного сплава [шт.],  $d_{\rm экв}$  — эквивалентный диаметр частицы [мкм]. Количественные характеристики  $\theta$ -фазы приведены в табл. 1.


Полученное значение объемной концентрации частиц интерметаллида удовлетворительно соответствует содержанию меди в сплаве. Такие результаты характерны для формирования микроструктуры сплава с концентрацией меди 1.4 ат. %, которая находится в области твердых растворов. В этом случае при охлаждении быстро закристаллизованного при литье в форму сплава происходит неравновесная кристаллизации двойной эвтектики  $L \to (Al) + Al_2Cu$ , приводящая к появлению в структуре сплава неравновесной  $\theta$ -фазы, частицы которой равномерно распределяются

-2.2

350 400 450








**Рис. 1.** Микроструктура сплава 1.4Cu—Al после синтеза (а), световая микроскопия (б) и гистограмма распределения по размерам частиц  $Al_2Cu$  в алюминиевой матрице исходного сплава (в).

вдоль дендритных ячеек слаболегированного алюминиевого твердого раствора (Al).

Из полученной исходной отливки вырезали образцы для исследования методом ДСК при ат-



**Рис. 2.** ДСК-кривые при атмосферном давлении сплава 1.4Cu-Al: 1- нагрев, 2- охлаждение (а) и ДСК-кривая нагрева, построенная с разрывом ординаты (б).

550 600 650

700 750 800

t, °C

500

мосферном давлении высокочистого аргона, а также для проведения дифференциального баротермического анализа (ДБА). Эталонные кривые ДСК при давлении аргона 0.1 МПа приведены на рис. 2.

По ДСК-кривой нагрева 1 (рис. 2а) установили температуру солидуса 599°С и температуру ликвидуса 651°C, а по кривой 2 охлаждения — температуру ликвидуса 649°C (совпадает с ее равновесным значением) и температуру кристаллизации неравновесной эвтектики 544°С. Полученное значение температуры солидуса по кривой нагрева незначительно превосходит температуру солидуса, соответствующую равновесной диаграмме состояния Al-Cu [2, 3]. Это обстоятельство, вероятнее всего, связано с неравновесными условиями ДСК-эксперимента, при которых начало плавления сплава смещается в область высоких температур. Из проведенного эксперимента следует, что на ДСК-кривых нагрева и охлаждения, построенных в обычных координатах теплота превращения температура (время), идентифицировать темпера-

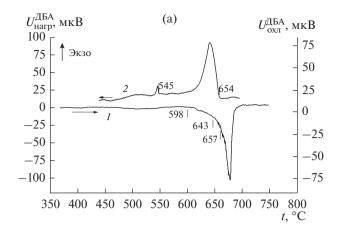
| Метод определения               | t <sub>solv</sub> |    | $t_S$ |    | $t_L$ |     | t' <sub>eut</sub>             |     |  |  |  |
|---------------------------------|-------------------|----|-------|----|-------|-----|-------------------------------|-----|--|--|--|
|                                 | I                 | II | I     | II | I     | II  | I                             | II  |  |  |  |
| По равновесной диаграмме [1, 2] | 478               |    | 599   |    | 653   |     | $t_{eut}^{\text{pabh}} = 548$ |     |  |  |  |
| ДСК                             | 480               | _  | 599   | _  | 652   | 649 | _                             | 544 |  |  |  |
| ДБА                             | 484               | _  | 609   | _  | 657   | 654 | _                             | 545 |  |  |  |

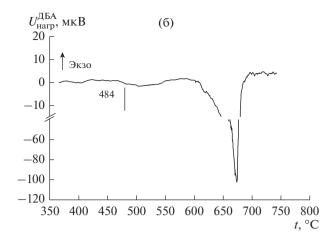
**Таблица 2.** Температуры фазовых превращений (°C) сплава 1.4Cu—Al, установленные методами ДСК (при 0.1 МПа) и ДБА (при 100 МПа) в сравнении с равновесными значениями

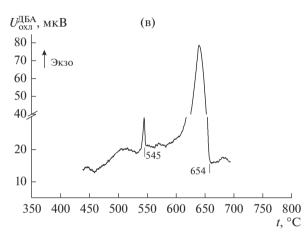
Примечание. I – нагрев, II – охлаждение.

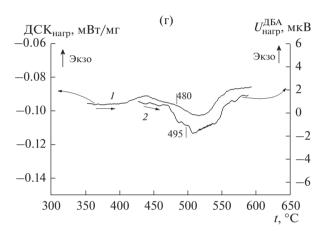
туру сольвус твердофазного растворения частиц интерметаллида практически невозможно (рис. 2a). Однако построением кривых с разрывом Y-координаты теплоты превращения удается получить кривую нагрева (рис. 26), в соответствии с которой устанавливали температуру растворения интерметаллидной фазы при атмосферном давлении 0.1 МПа. В соответствии с ДСК-кривой нагрева, с учетом значения температуры сольвус по [2, 3], растворение частиц АІ<sub>2</sub>Си начинается при 480°С. Отметим, что эндотермический пик превращения  $T \to T$  растворения  $\theta$ -фазы на ДСКкривой нагрева свидетельствует о весьма малом тепловом эффекте твердофазного превращения. В ДСК-эксперименте определяли теплоту плавления (превращение  $T \to X$ ) сплава 1.4Cu-Al с использованием стандартного программного обеспечения, прилагаемого к установке Netzsch STA 449F1 Jupiter, которая составила 329.5 Дж/г. Для определения незначительной теплоты превращения  $T \rightarrow T$  растворения  $\theta$ -фазы использовали возможности ПО NETZSCH-Proteus-Thermal Analysis, для чего отдельно анализировали участок ДСК-кривой нагрева в интервале температур 430—545°C. По проведенным расчетам, теплота превращения  $\alpha$ -(Al) +  $\theta$ -Al<sub>2</sub>Cu  $\rightarrow$  (Al) при 0.1 МПа составила 7.67 Дж/г (2.3% от величины превращения  $T \to X$ ).

Для определения возможностей ПО Origin аналогичный подход использовали для установления величины теплового эффекта того же превращения на основе массива экспериментальных данных, полученных в эксперименте с эталонной ДСК. Интегрирование слабого эндотермического пика привело к получению значения ~7.7 Дж/г, с высокой степенью соответствовавшего величине теплоты превращения, полученной в ПО NETZSCH-Proteus-Thermal Analysis.


Баротермическое сканирование проводили на образцах синтезированного сплава 1.4Cu—Al диаметром 4 и длиной 7 мм. Эталоном служил набор из молибденовых минидисков диаметром 4 мм, толщиной 0.5 мм и массой 20 мг, при этом общая масса эталона в пределах  $\pm 3$  мг соответствовала массе образца. Измерения проводили в среде


сжатого до ~100 МПа аргона (вблизи фазовых превращений Т  $\rightarrow$  Ж (Ж  $\rightarrow$  Т)) со скоростями нагрева/охлаждения 7°С/мин, равными скоростям нагрева и охлаждения при измерениях ДСК в обычных условиях. Полученные ДБА-кривые приведены на рис. 3. На кривой нагрева сплава (рис. 36, 3г) видно, что процесс растворения  $\theta$ -фазы начинается при 484°С, что на 4°С выше результатов ДСК.


По ДБА-кривой охлаждения (рис. 3в) температура ликвидуса составила 654°С (выше на 5°С данных ДСК и равновесного значения [2, 3]), температура кристаллизации неравновесной эвтектики (545°С) практически не изменилась относительно данных ДСК и равновесного значения. Обобщение результатов ДСК и ДБА приведено в табл. 2.


Для оценки теплоты твердофазного превращения  $T \to T$  при 100 МПа использовали подход, приведенный выше при обработке ДСК-кривой нагрева. При этом полагали, что тепловой эффект процесса плавления сплава при давлении 100 МПа весьма близок по величине к установленному методом ДСК, т.е. составляет ~329.5 Дж/г. Исходя из ДБА-кривой нагрева отношение площадей эндотермических пиков растворения  $\theta$ -фазы в  $\alpha$ -матрице  $\alpha$ -(Al) +  $\theta$ -CuAl<sub>2</sub>  $\to \alpha$ -(Al) в интервале  $470-580^{\circ}$ С и плавления сплава (Al)<sub>тв</sub>  $\to$  Al<sub>ж</sub> в интервале  $583-700^{\circ}$ С составило 8.5%, что с учетом приведенных допущений дает тепловой эффект превращения при умеренно высоком давлении ~28 Дж/г.

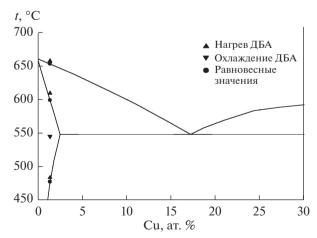
Небольшие величины тепловых эффектов растворения/выделения преципитатов θ-фазы коррелируют с незначительными теплотами выделения частиц кремния из твердого раствора на основе алюминия в двойных сплавах Al—0.72Si и Al—0.26Si, которые были исследованы при малых (до 0.001 K/c) скоростях охлаждения, при этом амплитуда тепловых эффектов твердофазного выделения кремния не превышала 0.17 и 0.05 Дж/(г K) соответственно [10]. Значительное увеличение теплоты растворения при 100 МПа по сравнению с тепловым эффектом этого превращения при атмосферном давлении определяется барическим



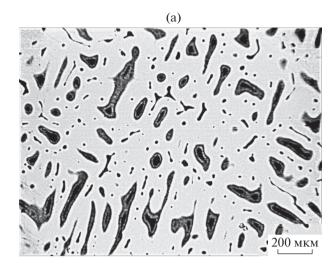


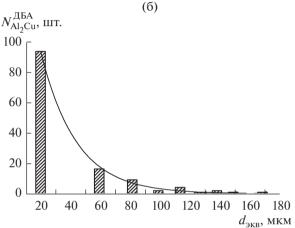





**Рис. 3.** ДБА-кривые нагрева I и охлаждения 2 бинарного сплава 1.4Cu—Al, полученные при давлении 100 МПа (а); ДБА-кривая I, построенная с разрывом оси Y(б); ДБА-кривая 2, построенная с разрывом оси Y(в); фрагменты кривых нагрева ДСК (I) и ДБА (2), использованные для определения  $I_{Soly}$  ( $\Gamma$ ).

фактором, приводящим, вероятно, к увеличению энергии активации диффузии меди в исследованном сплаве. Таким образом, по данным ДСК при  $0.1 \text{ М}\Pi$ а величины тепловых эффектов превращений сплава 1.4Cu-Al составляли: для перехода  $T \to X$  при плавлении 329.5 Дж/г, для превращения  $T \to T 7.7 \text{ Дж/г}$ . Однако, в соответствии с оценочными результатами ДБА при  $\sim 100 \text{ M}\Pi$ а, тепловой эффект превращения  $T \to T$  составил 28 Дж/г.


Полученные ДБА данные сравнивали с равновесной диаграммой состояния Al—Cu (рис. 4). Установлено, что менее всего приложенное давление оказывает влияние на температуры ликвидуса и кристаллизации неравновесной эвтектики, барический сдвиг температур солидуса и сольвус более очевиден и требует учета при проведении баротермической обработки (горячего изостатического прессования) медьсодержащих алюминиевых сплавов.


Микроструктура сплава после кристаллизации в ячейке ДБА при 100 МПа существенно огрублялась, наблюдался значительный рост размеров кристаллов как первичного алюминия, так и ин-

терметаллида  $Al_2Cu$  (рис. 5). Обработкой изображения рис. 5а получили гистограмму распределения частиц  $\theta$ -фазы по размерам, представленную на рис. 5б. Приведенная гистограмма хорошо ап-

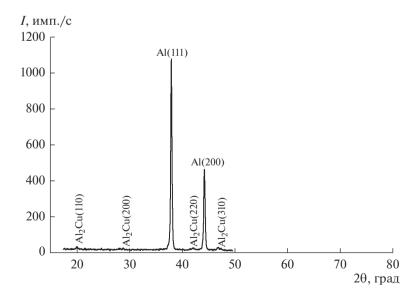


**Рис. 4.** Фрагмент равновесной фазовой диаграммы Al—Cu с экспериментальными точками, полученными ДБА.





**Рис. 5.** Микроструктура сплава 1.4Cu—Al после цикла ДБА при 100 МПа (а) и распределение по размерам частиц  $Al_3$ Cu (б).


проксимировалась экспоненциальной зависимостью

$$N_{\text{Al-Cu}}^{\text{ДБA}} = 2.1 \times 10^2 \text{e}^{-0.04d_{\text{экв}}},$$
 (2)

где  $N_{\rm Al_2Cu}^{\rm ДБA}$  — количество частиц  ${\rm Al_2Cu}$  в сплаве после ДБА [шт.],  $d_{\rm 9кB}$  — эквивалентный диаметр частицы [мкм]. При этом количество частиц интерметаллида  ${\rm Al_2Cu}$ , по данным обработки в ПО ImageJ, на изображении в интервале  $5.0 < d_{\rm Al_2Cu} < 150$  мкм составляло ~127 шт., средний диаметр частиц —  $5.9 \times 10^{-3}$  см, объем средней частицы —  $1.1 \times 10^{-7}$  см³, объемная концентрация частиц —  $5.4 \times 10^5$  см $^{-3}$  (табл. 1).

Из сравнения количественных характеристик θ-фазы (табл. 1), сформированной в исходном материале и после кристаллизации при высоком давлении, следует, что они значительно изменяются. Так, эквивалентный диаметр средней по размерам частицы возрастает в 15 раз, ее объем увеличивается на три порядка, а концентрация частиц снижается на четыре порядка. Исходя из количественных характеристик θ-фазы можно констатировать, что приложенное давление не оказывает существенного влияния на процесс затвердевания сплава, протекающий в условиях незначительных переохлаждений, отсутствия градиентов температуры в расплаве, при невысокой скорости охлаждения, задаваемых термографическим экспериментом, что приводит к увеличению размеров структурных составляющих сплава.

Для установления параметров кристаллической решетки и фазового состава сплава 1.4Cu—Al после цикла ДБА проводили рентгенофазовый анализ измельченного образца (рис. 6). На рентгенограмме присутствуют только рефлексы (Al) и



**Рис. 6.** Дифрактограмма порошкового образца  $CuAl_2$  после ДБА.

θ-фазы. Для определения постоянной решетки твердого раствора на основе алюминия после плавления и кристаллизации при высоком давлении проводили разложение пиков Al 111 и 200 на  $\mathrm{Cu}K_{\alpha 1}$ - и  $\mathrm{Cu}K_{\alpha 2}$ -составляющие. Полученная величина  $a_{\rm Al}^{\rm ДБA} = 4.048 \, {\rm Å}$  меньше табличного значения  $a_{\rm Al}^{{
m Ta}6\pi} = 4.049$  Å. Отмечаемое уменьшение постоянной решетки связано с образованием твердого раствора на основе алюминия с внедрением в его решетку атомов меди, что является термодинамически промотируемым процессом, который сопровождается уменьшением удельного объема α-матрицы при образовании твердого раствора при высоком давлении. Уменьшение постоянной решетки при высокоскоростном неравновесном охлаждении лент двойных сплавов Al–Cu авторы [11] также связывали с растворением меди в решетке алюминия.

#### ЗАКЛЮЧЕНИЕ

Для бинарного сплава 1.4Cu—Al при 100 МПа температура твердофазного превращения сольвус увеличивается по сравнению с равновесными значениями и результатами ДСК, полученными при атмосферном давлении. По проведенной оценке, теплота твердофазного растворения θ-фазы в α-матрице в ~3.7 раза возрастает по сравнению с данными, полученными при атмосферном давлении. Температура солидуса сплава при 100 МПа повышается по сравнению с данными ДСК при 0.1 МПа на 10°C, температура ликвидуса увеличивается на 5-6°C. Структурные составляющие сплава после плавления и кристаллизации при 100 МПа многократно увеличиваются в размерах, что в основном определяется теплофизическими параметрами процесса затвердевания в ячейке ДБА.

## БЛАГОДАРНОСТЬ

Исследования выполнены в рамках государственных заданий ИМЕТ РАН (тема № 007-00129-18-00) и ИОНХ РАН (тема № 01201353364) в области фундаментальных научных исследований.

## СПИСОК ЛИТЕРАТУРЫ

- 1. Пригунов А.Г., Белов Н.А., Таран Ю.Н., Золоторевский В.С., Напалков В.И., Петров С.С. Силумины. Атлас микроструктур и фрактограмм промышленных сплавов. М.: МИСиС, 1996. 175 с.
- 2. Диаграммы состояния двойных металлических систем. В трех т. / Под ред. Лякишева Н.П. М.: Машиностроение, 1996, 1997, 2001.
- 3. *Хансен М., Андерко К.* Структуры двойных сплавов. В двух т. М.: Металлургиздат, 1962. 1188 с.
- 4. *Падалко А.Г.* Практика горячего изостатического прессования неорганических материалов. М.: Академкнига, 2007. 267 с.
- 5. *Padalko A.G., Veselov A.N., Avduhin S.P. et al.* Differential Barothermal Analysis (DBA) of Ni-base Alloys // J. Therm. Anal. Calorim. 2003. V. 72. № 3. P. 791–797. https://doi.org/10.1023/A:1025005912710
- 6. Падалко А.Г., Белов Н.А., Веселов А.Н., Таланова Г.В. Термография фазовых превращений в доэвтектическом силумине Al−7%Si−0.5%Mg при высоких давлениях и температурах // Металлы. 2009. № 1. С. 73–78.
- 7. Падалко А.Г., Таланова Г.В., Зубарев Г.И., Федотов В.Т., Сучков А.Н., Царев В.И. Термография фазовых превращений в эвтектических сплавах на основе никеля при высоких давлениях и температурах // Металлы. 2011. № 2. С. 3—9.
- 8. Падалко А.Г., Таланова Г.В., Пономарева Е.Ю., Талят-Келпш В.В., Шворнева Л.И., Зубарев Г.И., Федотов В.Т., Сучков А.Н., Баклан В.А. Фазовые превращения при высоких давлениях и температурах и структура доэвтектического сплава 1Ni−99Al // Металлы. 2012. № 5. С. 46−53.
- 9. Падалко А.Г., Таланова Г.В., Пономарева Е.Ю., Талят-Келпш В.В., Шворнева Л.И., Зубарев Г.И., Федотов В.Т., Сучков А.Н., Баклан В.А. Баротермография и структура эвтектического сплава 2.7Ni—97.3Al // Неорган. материалы. 2012. Т. 48. № 6. С. 647—680.
- Schumacher P., Pogatscher S., Starink M.J., Schick C., Mohles V., Milkereit B. Quench-Induced Precipitates in Al-Si Alloys: Calorimetric Determination of Solute Content and Characterization of Microstructure // Thermochim. Acta. 2015. V. 602. P. 63-73. https://doi.org/10.1016/j.tca.2014.12.023
- 11. *Lichioiu I.*, *Peter I.*, *Varga B.*, *Rosso M.* Preparation and Structural Characterization of Rapidly Solidified Al—Cu Alloys // J. Mater. Sci. Technol. 2014. V. 30. № 4. C. 394–400.
  - https://doi.org/10.1016/j.jmst.2013.12.001