УДК 539.213;546.03

ОСОБЕННОСТИ КРИСТАЛЛИЗАЦИИ И ЭЛЕКТРОСОПРОТИВЛЕНИЕ АМОРФНЫХ СПЛАВОВ Al–Ni–Co–Nd(Sm)¹

© 2020 г. Б. А. Русанов^{1, *}, В. Е. Сидоров^{1, 2}, П. Швец³, П. Швец ст.³, Д. Яничкович³, С. А. Петрова^{2, 4}

¹Уральский государственный педагогический университет, пр. Космонавтов, 26, Екатеринбург, 620017 Россия ²Уральский федеральный университет, ул. Мира, 19, Екатеринбург, 620002 Россия

³Институт физики Академии наук Словацкой республики, ул. Дубравная, 9, Братислава, 84511 Словакия

⁴Институт металлургии УрО Российской академии наук, ул. Амундсена, 101, Екатеринбург, 620016 Россия

*e-mail: rusfive@mail.ru

Поступила в редакцию 16.12.2018 г. После доработки 04.06.2019 г. Принята к публикации 06.06.2019 г.

Металлические ленты на основе алюминия $Al_{86}Ni_4Co_4Nd(Sm)_6$ и $Al_{86}Ni_6Co_2Nd(Sm)_6$ получены методом спиннингования. Дифракция рентгеновских лучей показала их аморфную структуру. Кинетика кристаллизации изучена при проведении ДСК-анализа, а электрическое сопротивление измерено стандартным четырехзондовым методом. Установлено, что ленты Al–Ni–Co–P3M имеют более широкий диапазон существования аморфного состояния по сравнению с тройными сплавами Al–Ni(Co)–P3M. Определены составы, характеризующиеся повышенной стеклообразующей способностью.

Ключевые слова: алюминиевые сплавы, аморфные ленты, кристаллизация, структура, дифференциальная сканирующая калориметрия, электрическое сопротивление

DOI: 10.31857/S0002337X1912011X

введение

Аморфные ленты на основе алюминия с переходными металлами ($\Pi M = Ni$ или Co) и редкоземельными металлами (P3M) обладают уникальной комбинацией механических и коррозионных свойств [1–5]. Если в качестве ПМ используется никель, то аморфные образцы демонстрируют улучшенные механические свойства (предел прочности достигает 1000 МПа) [1]. В то же время, при использовании кобальта наблюдается высокая коррозионная стойкость лент [6]. Можно предположить, что комбинирование указанных элементов и получение аморфных образцов Al–Ni–Co–P3M приведет к образованию металлических стекол с повышенными механическими и коррозионными свойствами.

Цель настоящей работы — исследование влияния Nd и Sm и изменения содержания 3*d*-металлов на стеклообразование и электрические свойства сплавов Al–Ni–Co–P3M. Сплавы содержали (ат. %): 4–6 Ni, 2–4 Co и 6 P3M (Nd, Sm).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Заготовки для аморфных лент получены путем переплава исходных компонентов в индукционной печи в течение 0.5 ч при 1923 К в атмосфере аргона. Химический состав сплавов анализировали с использованием атомно-адсорбционного спектрометра. Аморфные ленты (ширина – 2 мм, толщина – 36–45 мкм) композиций $Al_{86}Ni_4Co_4Nd_6$, $Al_{86}Ni_6Co_2Nd_6$, $Al_{86}Ni_4Co_4Sm_6$ и $Al_{86}Ni_6Co_2Sm_6$ получены методом спиннингования в контролируемой атмосфере инертного газа. Воздух из камеры предварительно откачивали, а затем заполняли камеру аргоном до 10^3 Па. Расплав перегревали до 1500–1523 К в индукционной печи и инжектировали на водоохлаждаемый медный барабан.

Структура образцов изучалась методом дифракции рентгеновских лучей (Си K_{α} -излучение) на дифрактометре Bruker D8 Advance. ДСК-анализ проведен на установке Perkin Elmer DSC-7 со скоростями нагрева 10, 20, 40 К/мин. Электросопротивление лент измерено четырехзондовым методом при скорости нагрева 10 К/мин. Детали эксперимента подробно описаны в [7].

¹ Работа была представлена на 16-й Международной конференции IUPAC по химии высокотемпературных материалов (HTMC-XVI), 2–6 июля 2018 г., Екатеринбург, Россия.

Рис. 1. Спектры дифракции рентгеновских лучей на аморфных лентах $Al_{86}Ni_6Co_2Nd_6$ (*1*) (сдвинут вверх по вертикальной оси на 100 единиц) и $Al_{86}Ni_4Co_4Nd_6$ (*2*).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Согласно рентгеновскому анализу, ленты имеют аморфную структуру (рис. 1), брэгговские пики на рентгенограмме не обнаружены. Положение основного пика для лент $Al_{86}Ni_4Co_4Nd_6$ и $Al_{86}Ni_6Co_2Nd_6$ зафиксировано при $2\theta = 38^\circ - 39^\circ$, что на 10° меньше, чем для ленты, содержащей 8 ат. % Ni [8]. Препик, расположенный левее основного пика, характерный для лент с никелем [8], сдвинут на малые углы и не зафиксирован в наших экспериментах. Замена Nd на Sm не влияет на положение основного пика, однако его интенсивность для лент с неодимом больше на 50 единиц.

Рис. 2. ДСК-кривые для сплава $Al_{86}Ni_6Co_2Nd_6$ (кривая для скорости нагрева 20 К/мин сдвинута вниз на 2 единицы, кривая для 40 К/мин — на 5 единиц).

Типичные кривые ДСК, полученные с разными скоростями нагрева, показаны на рис. 2 и 3.

Для всех сплавов зафиксированы 3 экзотермических пика. Кроме того, для композиции $Al_{86}Ni_6Co_2Sm_6$ обнаружен четвертый экзотермический пик с небольшим тепловым эффектом. Замена Nd на Sm при различных соотношениях 3*d*-металлов уменьшает не только температуру первой стадии кристаллизации на 15–20 K, но и величину теплового эффекта.

Температуры пиков для исследованных сплавов представлены в табл. 1.

Установлено, что увеличение содержания никеля до 6 ат. % в лентах с неодимом приводит к

Композиция	Скорость нагрева, К/мин	T_g , K	T_{p1}, K	$T_{p2}, { m K}$	<i>T_{p3}</i> , K	<i>T_{p4}</i> , K
Al ₈₆ Ni ₄ Co ₄ Nd ₆	10	540.7	563.6	628.9	644.3	—
	20	542.5	566.9	637.4	654.1	-
	40	544.2	571.8	647.7	666.8	-
Al ₈₆ Ni ₄ Co ₄ Sm ₆	10	-	546.9	605.6	637.8	—
	20	524.1	550.6	610.5	645.3	—
	40	529.7	555.4	617.5	654.7	_
Al ₈₆ Ni ₆ Co ₂ Nd ₆	10	-	539.3	600.5	621.7	_
	20	514.5	542.7	605.7	630.9	_
	40	515.4	548.7	612.6	641.6	_
Al ₈₆ Ni ₆ Co ₂ Sm ₆	10		482.9	611.8	642.5	737.4
	20		490.4	614.8	653.7	748.5
	40	_	495.8	620.9	661.9	761.2

Таблица 1. Температуры пиков кристаллизации для аморфных сплавов Al-Ni-Co-Nd(Sm)

уменьшению температуры всех трех стадий кристаллизации. Температуры первого и второго пиков ниже на 30 K, а третьего на 23 K. При этом величина теплового эффекта на первой стадии становится меньше, а на второй и третьей стадиях тепловые эффекты увеличиваются по сравнению со сплавом, содержащим 4% Ni. Третий пик в этих лентах не имеет сложной формы. Кроме того, в лентах $Al_{86}Ni_6Co_2Nd_6$ по сравнению с $Al_{86}Ni_4Co_4Nd_6$ точка стеклования зафиксирована лишь при высоких скоростях нагрева (20–40 К/мин).

Результаты, полученные для сплавов, содержащих 6 ат. % Ni и 2 ат. % Со, имеют существенные различия для лент с неодимом и самарием. Помимо того, что в композиции с самарием не наблюдалась точка стеклования даже при высоких скоростях нагрева, первая стадия кристаллизации смещена вниз по температуре почти на 46 К (при скорости нагрева 10 К/мин). Одновременно с этим величина теплового эффекта на 1-й стадии уменьшается почти в 3 раза. Однако для этих лент наблюдается сходство в характере второй стадии кристаллизации (температура для самарийсодержащей композиции на 11 К выше). Температура пика третьей стадии кристаллизации в лентах с самарием выше (при всех скоростях нагрева), чем в лентах с неодимом. Особо отметим, что величина теплового эффекта для самарийсодержащей композиции здесь значительно больше. Наряду с этим для сплава Al86Ni6Co2Sm6 при всех скоростях нагрева зафиксирован 4-й пик при температурах около 730 К, который не зафиксирован в других образцах. Вероятно, сочетание 6 ат. % Ni, 2 ат. % Со и 6 ат. % Sm не только значительно уменьшает термическую стабильность аморфного состояния сплава, но и способствует появлению дополнительной стадии кристаллизации.

При всех скоростях нагрева точка стеклования (T_g) хорошо определена для композиций с Nd, что не характерно для аморфных сплавов на основе алюминия. Точка стеклования для Sm-содержащего сплава с 4% Ni + 4% Со была обнаружена только при высоких скоростях нагрева (20–40 К/мин). Этот результат согласуется с предыдущими исследованиями ДСК тройных сплавов с самарием, для которых T_g никогда не фиксировалась при скорости нагрева 10 К/мин [9–14].

Для определения энергии активации (E_p) на каждой стадии кристаллизации был использован метод Киссинджера [15], согласно которому

$$\ln\left(T_p^2/v\right) = E_p/RT_p + \text{const},$$

где T_p – температура пика, v – скорость нагрева, R – универсальная газовая постоянная.

Результаты расчетов представлены на рис. 4 и в табл. 2.

Рис. 3. ДСК-кривые для сплавов, содержащих Nd (a) и Sm (б), полученные при скорости нагрева 40 К/мин (кривые для $Al_{86}Ni_6Co_2Nd_6$ и $Al_{86}Ni_6Co_2Sm_6$ сдвинуты вниз на 4 единицы).

Установлено, что в сплаве $Al_{86}Ni_4Co_4Nd_6$ энергия активации для первой стадии кристаллизации составляет $E_1 = 439$ кДж/моль, для второй $E_2 =$ = 240 кДж/моль, для третьей $E_3 = 208$ кДж/моль. Замена Nd на Sm уменьшает величину E_1 до 408 кДж/моль. Энергия активации для второго

Таблица 2. Энергии активации (кДж/моль) для различных стадий кристаллизации в аморфных сплавах Al–Ni–Co–Nd(Sm)

Композиция	E_1	E_2	E_3	E_4
Al ₈₆ Ni ₄ Co ₄ Nd ₆	439	240	208	_
Al ₈₆ Ni ₄ Co ₄ Sm ₆	408	351	273	—
$Al_{86}Ni_6Co_2Nd_6\\$	353	339	216	—
Al ₈₆ Ni ₆ Co ₂ Sm ₆	262	454	239	259

Рис. 4. Зависимости $\ln(T^2/v)$ от 1/T для сплава $Al_{86}Ni_4Co_4Sm_6$.

этапа кристаллизации увеличивается более чем на 100 кДж/моль, а для третьего — более чем на 60 кДж/моль. Добавка кобальта в качестве дополнительного ПМ значительно увеличивает энергию для первой и второй стадий по сравнению со значениями, найденными для тройного сплава Al₈₉Ni₆Sm₅ в работе [10].

Замена 4 ат. % Со на 2 ат. % уменьшает энергию активации первой стадии кристаллизации до 353 кДж/моль, в то же время энергии активации для второй и третьей стадий, наоборот, увеличиваются до 339 и 216 кДж/моль соответственно.

Увеличение концентрации никеля в самарийсодержащей композиции уменьшает энергию активации первой стадии кристаллизации почти в 1.5 раза, одновременно с этим энергия активации второй стадии увеличивается до 454 кДж/моль. Энергия активации третьей стадии уменьшается почти на 40 кДж/моль. Энергия активации для самарийсодержащего сплава с 6 ат. % Ni и 2 ат. % Со существенно меньше (более чем на 90 кДж/моль для первой стадии кристаллизации), чем для неодимсодержащего сплава.

Для идентификации фаз, выделяющихся на разных этапах кристаллизации, был проведен кратковременный отжиг лент с целью дальнейшего исследования их структуры методом дифракции рентгеновских лучей. Отжиг лент проводили в процессе непрерывного нагрева со скоростью 10 К/мин и быстрого последующего охлаждения. Температуры максимального нагрева были определены по результатам ДСК и соответствовали первому, второму и третьему пикам на ДСК-кривой. Результаты рентгенографического анализа для образца Al₈₆Ni₆Co₂Sm₆ приведены на рис. 5.

Рис. 5. Дифрактограммы образца Al₈₆Ni₆Co₂Sm₆.

Установлено, что на первой стадии кристаллизации в композиции $Al_{86}Ni_6Co_2Sm_6$ выделяется чистый алюминий (верхняя кривая на рис. 5). Размытость пиков как на дифракционной картине, так и на ДСК-кривой свидетельствует о том, что алюминий выделяется в виде наночастиц. На второй стадии формируется интерметаллид Al_9Co_2 , на третьей стадии появляется метастабильное соединение Al_4Sm (возможно, это $Al_{11}Sm_3$ с искаженной решеткой). При температуре около 738 К метастабильный интерметаллид Al_4Sm превращается в стабильный Al_3Sm с ромбоэдрической решеткой (нижняя кривая на рис. 5).

Для сплава $Al_{86}Ni_4Co_4Sm_6$ кристаллизация в целом идет по тому же пути, правда имеются и некоторые особенности. Во-первых, выделение наночастиц алюминия на первой стадии начинается на 60 К позже, чем для сплава $Al_{86}Ni_6Co_2Sm_6$. Вовторых, на третьей стадии сразу формируется стабильный интерметаллид Al_3Sm с кубической решеткой. Дальнейший нагрев образца не сопровождается никакими тепловыми эффектами. При комнатной температуре образец, предварительно нагретый до 700 K, состоит из Al, Al_9Co_2 и Al_3Sm в кубической модификации.

Результаты рентгенографического анализа для образца $Al_{86}Ni_4Co_4Nd_6$ приведены на рис. 6. В этом сплаве, так же как и в сплаве с самарием, на первом этапе выделяется практически чистый алюминий. Судя по форме пиков на дифракционной кривой и ДСК-кривой области чистого алюминия здесь значительно больше, чем наночастицы алюминия, выделяющиеся в сплавах с самарием. На втором и третьем этапах формируются стабильные интерметаллические соединения Al_9Co_2 , Al_5Co_2 и Al_3Nd , которые сохраняются

Рис. 6. Дифрактограммы образца Al₈₆Ni₄Co₄Nd₆.

и при комнатной температуре. Стоит отметить, что у сплава, нагретого до 700 K, наблюдались рефлексы, соответствующие соединению $AlNd_3$, хотя само существование этого соединения при 6% неодима представляется маловероятным. Вполне возможно, что в небольшом количестве присутствует тройное соединение, информация о рефлексах которого отсутствует в существующих базах данных. Этот вопрос требует дополнительного изучения.

Таким образом, полученные значения температуры начала кристаллизации и энергии ее активации однозначно свидетельствуют о том, что сплав $Al_{86}Ni_4Co_4Nd_6$ имеет более широкий интервал существования аморфной фазы и является термически более стабильным по сравнению со сплавом, содержащим самарий. Комбинация 4% Ni + 4% Со более предпочтительна по сравнению с комбинацией 6% Ni + 2% Со для стабилизации аморфной фазы.

Типичные кривые удельного сопротивления для $Al_{86}Ni_4Co_4Sm_6$ и $Al_{86}Ni_6Co_2Sm_6$ вместе с образцом $Al_{86}Ni_8Sm_6$, данные для которого взяты из [8], показаны на рис. 7.

Установлено, что в аморфном состоянии удельное сопротивление сплавов довольно высокое – на уровне 120 мкОм см. Оно слабо зависит от температуры, но для всех составов имеет отрицательный температурный коэффициент. Во время кристаллизации удельное сопротивление уменьшается более чем в 2 раза, проходя три этапа (их температуры совпадают с данными ДСК в пределах ±3 К). Подчеркнем тот факт, что для лент с самарием замена 8 ат. % Ni на 6 ат. % Ni + 2 ат. % Со увеличивает интервал аморфного состояния на 30 К (сдвиг T_{x1} от 439 до 468 К). Дальнейшее увеличение содержания Со до 4 ат. % расширяет интервал

Рис. 7. Относительное удельное электросопротивление для сплавов $Al_{86}Ni_8Sm_6$ [8], $Al_{86}Ni_4Co_4Sm_6$ и $Al_{86}Ni_6Co_2Sm_6$.

аморфного состояния на 100 К (сдвиг T_{x1} от 439 до 535 К). Отметим, что аномальное поведение R(T)было зафиксировано и при $T \simeq 730$ К.

Кривые сопротивления для сплава с неодимом, содержащего 4 ат. % Ni и 4 ат. % Со, имеют ряд особенностей по сравнению с самарийсодержащей композицией. Второй этап уменьшения электросопротивления при кристаллизации оказался сильно растянутым по температуре (сопротивление плавно убывает с ростом T), тогда как третий этап занимает небольшой отрезок кривой по сравнению со вторым. Выше 650 К сопротивление линейно растет с увеличением температуры. Никаких аномалий вблизи 730 К не обнаружено.

Аномальное поведение R(T) для сплавах с самарием при $T \simeq 730$ К может быть связано с трансформацией интерметаллического соединения Al₃R из кубической в ромбоэдрическую структуру. Такие полиморфные превращения не сопровождаются, как правило, значительными тепловыми эффектами, но проявляют себя на политермах электронно-чувствительных свойств [16].

Уменьшение электросопротивления с ростом температуры в аморфной фазе может быть объяснено следующим образом. Известно, что при нагревании в аморфных сплавах Al–ПМ–РЗМ происходит фазовое разделение задолго до кристаллизации. Этот эффект был обнаружен в [17] и после этого многократно подтвержден для различных сплавов (см., например, [18, 19]). Появление в неупорядоченной аморфной матрице микрообластей практически чистого алюминия, существенно превышающих по размерам межатомные расстояния, с низким удельным сопротивлением приводит к уменьшению общего сопротивления сплава. Чем

больше объемная доля таких микрообластей, тем ниже удельное сопротивление. Когда лента полностью кристаллизуется, удельное сопротивление достигает своего минимума и затем начинает расти с ростом температуры, что характерно для кристаллических сплавов. Этот вопрос подробно обсуждается в [8].

Таким образом, данные по электросопротивлению подтверждают тот факт, что аморфные сплавы с неодимом термически более устойчивы, чем сплавы с самарием, а комбинация 4% Ni + 4% Со более предпочтительна по сравнению с комбинацией 6% Ni + 2% Со для стабилизации аморфной фазы.

ЗАКЛЮЧЕНИЕ

Проведенные исследования ДСК и электросопротивления показали, что аморфные сплавы Al-Ni-Co-Nd(Sm) характеризуются более широким (на 100 К) интервалом аморфного состояния по сравнению с тройными сплавами, содержашими Ni или Co, их кристаллизация идет более сложным путем. Для повышения стеклообразующей способности этих сплавов неодим предпочтительнее самария, а комбинация 4% Ni + 4% Со лучше, чем 6% Ni + 2% Co.

СПИСОК ЛИТЕРАТУРЫ

- 1. Inoue A., Ohtera K., Tsai A.P., Masumoto T. Aluminum-Based Amorphous Allovs with Tensile Strength above 980 MPa (100 kg/mm²) // Jpn. J. Appl. Phys. 1988. V. 27. P. L479–L482.
- 2. Gloriant T., Greer A.L. Al-Based Nanocrystalline Composites by Rapid Solidification of Al-Ni-Sm Alloys // Nanostruct. Mater. 1998. V. 10. P. 389-396. https://doi.org/10.1016/S0965-9773(98)00079-8
- 3. Triveco Rios C., Suricach S., Bary M.D. et al. Glass Forming Ability of the Al-Ce-Ni System // J. Non-Cryst. Solid. 2008. V. 354. P. 4874-4877.
- 4. Ouyang Y., Zhang J., Chen H., Liao S., Zhong X. Crystallization Study of Amorphous Al₈₂Fe₅Ni₅Ce₈ Alloy // J. Allov. Compd. 2008. V. 454. P. 359-363.
- 5. Botta W.J., Triveno Rios C., SaLisboa R.D. et al. Crystallization Behaviors of Al-Based Metallic Glasses: Compositional and Topological Aspects // J. Alloy. Compd. 2009. V. 483. P. 89-93.
- 6. Li C.L., Wang P., Sun S.Q., Voisey K.T., McCartney D.G. Corrosion Behaviour of Al_{86.0}Co_{7.6}Ce_{6.4} Glass Forming Alloy with Different Microstructures // Appl. Surf. Sci. 2016. V. 384. P. 116-124. https://doi.org/10.1016/j.apsusc.2016.04.188
- 7. Vlasak G., Duhaj P., Patrasova H., Svec P. Apparatus for Thermal Dilatation and Magnetostriction Measure-

ments of Amorphous Ribbons // J. Phys. E. Sci. Instrum. 1983. V. 16. P. 1203-1207.

- 8. Sidorov V., Svec P., Svec Sr.P., Janickovic D., Mikhailov V., Sidorova E., Son L. Electric and Magnetic Properties of $Al_{86}Ni_8R_6$ (R = Sm, Gd, Ho) Alloys in Liquid and Amorphous States // J. Magn. Magn. Mater. 2016. V. 408. P. 35-40. https://doi.org/10.1016/j.jmmm.2016.02.021
- 9. Gich M., Gloriant T., Surinach S., Greer A.L., Baro M.D. Glass Forming Ability and Crystallisation Processes within the Al-Ni-Sm System // J. Non-Cryst. Solid. 2001. V. 289. P. 214-220. https://doi.org/10.1016/S0022-3093(01)00650-0
- 10. Illekova E., Duhaj P., Mrafko P., Svec P. Influence of Pd on Crystallization of Al-Ni-Sm-based Ribbons // J. Allov. Compd. 2009. V. 483. P. 20-23. https://doi.org/10.1016/j.jallcom.2008.08.106
- 11. Sun F., Gloriant T. Primary Crystallization Process of Amorphous Al88Ni6Sm6 Alloy Investigated by Differential Scanning Calorimetry and by Electrical Resistivity // J. Alloy. Compd. 2009. V. 477. P. 133-138. https://doi.org/10.1016/j.jallcom.2008.10.021
- 12. Zhang Y., Warren P.J., Cerezo A. Effect of Cu Addition on Nanocrystallisation of Al-Ni-Sm Amorphous Alloy // Mater. Sci. Eng. A. 2002. V. 327. P. 109-115. https://doi.org/10.1016/S0921-5093(01)01888-3
- 13. Gangopadhyay A.K., Kelton K.F. Effect of Rare-Earth Atomic Radius on the Devitrification of Al₈₈RE₈Ni₄ Amorphous Alloys // Phil. Mag. A. 2000. V. 80. P. 1193-1206. https://doi.org/10.1080/01418610008212110
- 14. Revesz A., Varga L.K., Nagy P.M., Lendvai J., Bakonyi I. Structure and Thermal Stability of Melt-Quenched $Al_{92-x}Ni_8(Ce,Sm)_x$ Alloys with x = 1, 2 and 4// Mater. Sci. Eng. A. 2003. V. 351. P. 160-165. http://dx.doi.org/00823-7 https://doi.org/10.1016/S0921-5093(02)
- 15. Kissinger H.E. Reaction Kinetics in Differential Thermal Analysis // Anal. Chem. 1957. V. 29. P. 1702-1706.
- 16. Sidorov V., Petrova S., Svec Sr. P. et al. Crystallization of Al-Co-Dy(Ho) Amorphous Alloys // Eur. Phys. J. Spec. Top. 2017. V. 226. P. 1107-1113. https://doi.org/10.1140/epjst/e2016-60226-x
- 17. Gangopadhyay A.K., Croat T.K., Kelton K.F. The Effect of Phase Separation on Subsequent Crystallization in Al₈₈Gd₆La₂Ni₄ // Acta Mater. 2000. V. 48. P. 4035-4043. https://doi.org/10.1016/S1359-6454(00)00196-8
- 18. Radiguet B., Blavette D., Wanderka N., Banhart J., Sahoo K.L. Segregation-Controlled Nanocrystallization in an Al-Ni-La Metallic Glass // Appl. Phys. Lett. 2008. V. 92. P. 103126. https://doi.org/10.1063/1.2897303
- 19. Abrosimova G., Aronin A., Budchenko A. Amorphous Phase Decomposition in Al-Ni-RE System Alloys // Mater. Lett. 2015. V. 139. P. 194-196. https://doi.org/10.1016/j.matlet.2014.10.076

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 56 **№** 1 2020