УДК 563.63

ТЕПЛОЕМКОСТЬ И ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА Gd₂Ge₂O₇ В ОБЛАСТИ 350–1000 К

© 2020 г. Л. Т. Денисова^{1, *}, Л. А. Иртюго¹, Ю. Ф. Каргин², В. В. Белецкий¹, Н. В. Белоусова¹, В. М. Денисов¹

¹Институт цветных металлов и материаловедения Сибирского федерального университета, просп. Свободный, 79, Красноярск, 660041 Россия

²Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук, Ленинский просп., 49, Москва, 119991 Россия

*e-mail: antluba@mail.ru

Поступила в редакцию 25.12.2018 г. После доработки 29.04.2019 г. Принята к публикации 06.06.2019 г.

Твердофазным синтезом из исходных оксидов многоступенчатым обжигом в интервале температур 1273–1473 К получен германат гадолиния $Gd_2Ge_2O_7$. Методом дифференциальной сканирующей калориметрии измерена его высокотемпературная теплоемкость. На основании полученной зависимости $C_p = f(T)$ рассчитаны термодинамические функции оксидного соединения (изменения энтальпии, энтропии и приведенной энергии Гиббса).

Ключевые слова: германат гадолиния, твердофазный синтез, высокотемпературная теплоемкость, термодинамические свойства

DOI: 10.31857/S0002337X20010030

ВВЕДЕНИЕ

В течение длительного времени наблюдается устойчивый интерес исследователей к германатам редкоземельных элементов $R_2Ge_2O_7$ (R = La-Lu, Y) [1-8]. По типу структур эти соединения в зависимости от природы РЗЭ разделяются на четыре подгруппы: La–Pr, Nd–Gd, Tb–Lu, Sc [1, 9]. Авторы работы [4] отмечают наличие пяти различных структур. Согласно [1], для Yb₂Ge₂O₇ в гидротермальных условиях получена кубическая форма с параметром элементарной ячейки a = 9.8 Å (пятый структурный тип среди соединений $R_2Ge_2O_7$). Германат $Gd_2Ge_2O_7$ при высоком давлении и температуре получен со структурой типа пирохлора [8]. Имеются данные о том, что германат La₂Ge₂O₇ диморфен и при температурах выше 1373 К переходит в высокотемпературную модификацию [1, 9]. По данным [4], эти результаты ошибочны, поскольку установлено, что в процессе изотермических обжигов при температурах 1423, 1473, 1573 и 1673 К в открытой системе наблюдается сильная потеря GeO₂. При этом дигерманат лантана разлагается на фазы с более низким содержанием GeO₂, такие как апатитоподобная фаза $La_{9,33}[GeO_4]_6O_2$, оксиортогерманат $La_2[GeO_4]O$ или моноклинный полуторный оксид La₂O₃. В то же время германаты гадолиния и европия диморфны [4]:

 $2Gd_{2}[Ge_{2}O_{7}] \xrightarrow{1525\pm50 \text{ K}} Gd_{4}[GeO_{4}][Ge_{3}O_{10}], (1)$ $2Eu_{2}[Ge_{2}O_{7}] \xrightarrow{1375\pm75 \text{ K}} Eu_{4}[GeO_{4}][Ge_{3}O_{10}]. (2)$

Если структура германатов $R_2Ge_2O_7$ изучена [1-5, 9], то многие их физико-химические свойства исследованы недостаточно. В первую очередь это относится к теплофизическим свойствам. К таким соединениям относится и $Gd_2Ge_2O_7$. В то же время для уточнения фазовых равновесий методами термодинамического моделирования и оптимизации условий твердофазного синтеза необходимы сведения об их термодинамических свойствах. Сведения о теплоемкости $Gd_2Ge_2O_7$ со структурой пирохлора имеются только для низких температур [8].

Целью настоящей работы является экспериментальное определение высокотемпературной теплоемкости $Gd_2Ge_2O_7$ и расчет по этим данным его термодинамических свойств.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Учитывая особенности получения германатов $R_2Ge_2O_7$ [1, 4], $Gd_2Ge_2O_7$ получали твердофазным синтезом из Gd_2O_3 ("ос. ч.") и GeO_2 (99.999%). Для этого стехиометрическую смесь предварительно прокаленных при 1173 К исходных оксидов тщательно перетирали в агатовой ступке и

Рис. 1. Экспериментальный (*1*), расчетный (*2*) и разностный (*3*) профили рентгенограммы Gd₂Ge₂O₇ (штрихи указывают расчетные положение рефлексов).

прессовали в таблетки. Их последовательно обжигали на воздухе при температурах 1273 К (40 ч), 1373 К (100 ч) и 1473 К (60 ч). Для достижения полноты взаимодействия компонентов через каждые 20 ч проводили перетирание таблеток с последующим прессованием. Для уменьшения испарения GeO₂ синтез проводили в тиглях с крышкой. Время синтеза и количество добавляемого сверх стехиометрии GeO₂ подбирали экспериментально, контролируя состав полученных образцов с использованием рентгенофазового анализа (дифрактометр X'Pert Pro MPD PANalytical, Нидерланды, Co K_{α} излучение). Регистрацию дифрактограмм проводили высокоскоростным детектором PIXcel в угловом интервале $2\theta = 1^{\circ} - 110^{\circ}$ с шагом 0.013°. Дифрактограмма синтезированного однофазного образца Gd₂Ge₂O₇ приведена на рис. 1. Параметры решетки определены путем полнопрофильного уточнения методом минимизации производной разности [10].

Теплоемкость C_p измеряли на приборе STA 449 С Jupiter (NETZSCH, Германия) методом дифференциальной сканирующей калориметрии в платиновых тиглях с крышкой. Методика экспериментов подобна описанной ранее [11, 12]. Полученные результаты обрабатывали с помощью пакета анлиза NETZSCH Proteus Thermal Analysis и лицензионного программного инструмента Systat Sigma Plot 12 (Systat Software Inc., США). Ошибка измерений не превышала 2%.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Германат гадолиния Gd₄[Ge₃O₁₀][GeO₄] обладает пр. гр. *P*1 (*a* = 18.499(3) Å, *b* = 6.795(1) Å, *c* = 6.865(1) Å, $\alpha = 87.95(2)^\circ$, $\beta = 91.51(2)^\circ$, $\gamma = 94.35(2)^\circ$), a Gd₂[Ge₂O₇] – пр. гр. *P*4₁2₁2 (*a* = 6.884(1) Å, *c* = 12.522(2) Å) [4]. Синтезирован-

Рис. 2. Влияние температуры на молярную теплоемкость Gd₂Ge₂O₇: точки – экспериментальные данные, линия – аппроксимирующая кривая.

ный германат при температуре 1373 К и давлении 6.5 ГПа имеет структуру типа пирохлора (a = 9.995 Å) [9].

Полученный германат гадолиния имел следующие параметры элементарной ячейки: a = 18.4793(2) Å, b = 6.7859(7) Å, c = 6.8573(7) Å, $\alpha = 87.959(6)^{\circ}$, $\beta = 91.519(5)^{\circ}$, $\gamma = 94.381(6)^{\circ}$, V = 856.597(15) Å³, пр. гр. *P*1.

На рис. 2 показано влияние температуры на теплоемкость $Gd_2Ge_2O_7$. Из этих данных следует, что в интервале температур 350–1000 К значения молярной теплоемкости C_p закономерно увеличиваются, а на зависимости $C_p = f(T)$ нет какихлибо экстремумов. Это позволяет допустить, что у германата гадолиния в этой области температур нет полиморфных превращений.

Полученные результаты по влиянию температуры на теплоемкость Gd₂Ge₂O₇ могут быть описаны уравнением Майера–Келли

$$C_p = a + bT + cT^{-2} = (236.46 \pm 0.52) + + (40.0 \pm 0.60) \times 10^{-3}T - (25.98 \pm 0.55) \times 10^{5}T^{-2}.$$
 (3)

Коэффициент корреляции для уравнения (3) равен 0.9958, а максимальное отклонение от сглаживающей кривой — 0.54%.

Сравнить полученные нами данные по теплоемкости $Gd_2Ge_2O_7$ можно только с результатами [8]. В работе [8] определили C_p для этого соединения в области 0.1–295 К. По данным [8] при 295 К $C_p \approx 200 \, \text{Дж/(моль K)}$ (взято из графика), что удовлетворительно согласуется с рассчитанным по уравнению (3) значением $C_p = 218.4 \, \text{Дж/(моль K)}$.

Кроме того, оценить полученные результаты можно, используя различные модельные представления и полуэмпирические соотношения [13,

Рис. 3. Зависимость стандартной теплоемкости оксидных соединений с общей формулой Gd₂M₂O₇ от стандартной теплоемкости их структурных частей Х (C_p, MO_2) : 1 - Hf, 2 - Zr, 3 - Sn, 4 - Ti, 5 - Ge, 6 - Si, $7 - Gd_2O_3$.

14]. По данным [13], для оценки теплоемкости при 298 К можно использовать зависимость

$$C_{p,298} = Ks/T_{\Pi\Pi}^{1/4},$$
 (4)

где *s* – суммарное количество атомов в молекуле соединения, К – коэффициент пропорциональности, равный 148. Расчет по соотношению (4) дает величину $C_{p,298} = 225.7 \, \text{Дж}/(\text{моль K})$, что на 3% выше, чем полученная по уравнению (1) (219.2 Дж/(моль K)). Значение $T_{\text{пл}} \, \text{для} \, \text{Gd}_2\text{Ge}_2\text{O}_7$, равное 2043 К, взято из монографии [15].

Исходными данными для расчета теплоемкости методом Дебая являются характеристические

Таблица 1. Термодинамические свойства Gd₂Ge₂O₇ $H^{0}(T)$ $H^{0}(350 \text{ K})$ $C^{\circ}(T)$ (250 V) $\Phi^{0}(T)$

температуры элементов, образующих соединения, а также температуры плавления элементов и соединения [13]. Этот метод дает отклонение 5.7%. В то же время инкрементный метод Кумока [16] дает отклонение всего -0.3%.

Расчет C_p с использованием таблиц Келлога [17] для катионных (Ξ_{κ}) и анионных (Ξ_a) составляющих теплоемкости ($C_{p, 298} = \Xi_{\kappa} + \Xi_a$) показывает, что в этом случае отклонение составляет -1.6%.

В работе [18] предложен метод сравнительного расчета термодинамических величин, заключаюшийся в установлении линейных зависимостей для одноформульных соединений, переменные члены которых принадлежат к одной группе (или подгруппе) Периодической системы элементов. Такие закономерности позволяют уточнить данные, полученные разными авторами. Так, например, этим методом в [19] проведен расчет термодинамических свойств апатитов. Для этого формулу апатитов записали как $3Ca_3(PO_4)_2 \cdot X$, где $X = CaF_2$, CaCl₂, Ca(OH)₂. Установлено, что зависимости стандартных энтальпий образования, энергий Гиббса и энтропий апатитов 3Ca₃(PO₄)₂ · X от аналогичных термодинамических функций для структурных частей Х носят линейный характер. При этом строение твердой фазы не учитывалось. Следуя авторам [19], оксидные соединения в случае $Gd_2M_2O_7$ можно представить в виде $Gd_2O_3 \cdot 2MO_2$ (М – элементы IV группы Периодической системы). Установлено, что теплоемкость соединений Gd₂M₂O₇ в зависимости от теплоемкости структурных частей 2МО₂ также носит линейный характер (рис. 3) и описывается эмпирическим уравнением

$$C_{p}(\mathrm{Gd}_{2}\mathrm{M}_{2}\mathrm{O}_{7}) = (106.69 \pm 0.66) + + (0.99 \pm 0.01)C_{p}(\mathrm{MO}_{2}).$$
(5)

Φ⁰ (250 V)

<i>Т</i> , К	C_p , Дж/(моль К)	и (1) — и (350 к), кДж/моль	З (1) – З (350 К), Дж/(моль К)	Ф (1) – Ф (350 К), Дж/(моль К)
350	229.3	—	_	_
400	236.3	11.65	31.09	1.98
450	241.7	23.60	59.25	6.80
500	246.1	35.80	84.95	13.35
550	249.9	48.20	108.6	20.95
600	253.3	60.78	130.5	29.17
650	256.4	73.53	150.9	37.76
700	259.2	86.42	170.0	46.53
750	261.9	99.45	188.0	55.37
800	264.5	112.6	204.9	64.19
850	266.9	125.9	221.1	72.95
900	269.3	139.3	236.4	81.60
950	271.7	152.8	251.0	90.14
1000	274.0	166.5	265.0	98.53

Коэффициент корреляции для уравнения (5) равен 0.9999. Расчет по этому уравнению показывает, что C_p для Gd₂Ge₂O₇ равна 209.7 Дж/(моль K), что на 4.4% меньше экспериментального значения. Данные по теплоемкости соединений Gd₂M₂O₇ (ввиду отсутствия экспериментальных значений для большинства из них) получены методом Неймана—Коппа. Необходимые сведения о теплоемкости исходных оксидов брали из литературы: SiO₂, GeO₂, HfO₂, ZrO₂, Gd₂O₃ [20], TiO₂ [21], SnO₂ [22].

С использованием уравнения (3) по известным термодинамическим соотношениям рассчитаны изменения энтальпии $H^{\circ}(T) - H^{\circ}(350 \text{ K})$, энтропии $S^{\circ}(T) - S^{\circ}(350 \text{ K})$ и приведенной энергии Гиббса $\Phi^{\circ}(T) - \Phi^{\circ}(350 \text{ K})$. Эти данные приведены в табл. 1. Из приведенных результатов следует, что до температуры 1000 К значения C_p не превышают классический предел Дюлонга-Пти 3*Rs*, где *R* – универсальная газовая постоянная, *s* – число атомов в формульной единице соединения.

ЗАКЛЮЧЕНИЕ

Исследована температурная зависимость молярной теплоемкости Gd₂Ge₂O₇. Установлено, что в интервале температур 350–1000 К экспериментальные результаты хорошо описываются уравнением Майера–Келли. Рассчитаны основные термодинамические функции оксидного соединения.

БЛАГОДАРНОСТЬ

Работа выполнена при финансовой поддержке работ, выполняемых в рамках Государственного задания Министерства образования и науки Российской Федерации Сибирскому федеральному университету на 2017–2019 гг. (проект 4.8083.2017/8.9 "Формирование банка данных термодинамических характеристик сложнооксидных полифункциональных материалов, содержащих редкие и рассеянные элементы").

СПИСОК ЛИТЕРАТУРЫ

- 1. Демьянец Л.Н., Лобачев А.Н., Емельченко Г.А. Германаты редкоземельных металлов. М.: Наука, 1980. 152 с.
- Vetter G., Queyroux F., Labbe P. et al. Determination Structurale de Nd₂Ge₂O₇// J. Solid Dtate Chem. 1982. V. 45. P. 293–302.
- Geller S., Gaines J.M. The Crystal Structure of Terbium Pyrogermanate, Tb₂Ge₂O₇ // Z. Kristallogr. 1987. V. 180. P. 243–247.
- Becker U.W., Felsche J. Phases and Structural Relations of the Rare Earth Germinates RE₂Ge₂O₇, RE≡La–Lu // J. Less-Common Metals. 1987. V. 128. P. 267–280.
- Палкина К.К., Кузьмина Н.Е., Джуринский Б.Ф. Дигерманат лютеция Lu₂Ge₂O₇ // Журн. неорган. химии. 1995. Т. 40. № 9. С. 1449–1451.
- 6. Jana Y.M., Ghosh M., Ghosh D. et al. Measurements of the Magnetic Susceptibility and Anisotropy of

Tb₂Ge₂O₇ Single Crystal // J. Magn. Magn. Mater. 2000. V. 210. P. 92–103.

- https://doi.org/10.1016/0925-8388(92)90452-F
- Redhammer G.I., Roth G., Amthauer G. Yttrium Pyrogermanate Y₂Ge₂O₇ // Acta Crystallogr., Sect. C. 2007. V. 63. P. i93–i95.
 - https://doi.org/10.1107/S0108270107042825
- Li X., Cai Y.Q., Cui Q. et al. Long-range Magnetic Order in the Heisenberg Pyrochlore Antiferromagnets Gd₂Ge₂O₇ and Gd₂Pt₂O₇ Synthesized under Pressure // Phys. Rev. B. 2016. V. 94. P. 214429-1–214429-9. https://doi.org/10.1103/PhysRevB.94.214429
- 9. Портной К.И., Тимефеева Н.И. Кислородные соединения редкоземельных элементов. М.: Металлургия, 1986. 480 с.
- Solovyov L.A. Full-profile Refinement by Derivative Difference Minimization // J. Appl. Crystallogr. 2004. V. 37. P. 743–749. https://doi.org/10.1107/S0021889804015638
- Денисова Л.Т., Чумилина Л.Г., Каргин Ю.Ф. и др. Синтез и исследование высокотемпературной теплоемкости ортованадата эрбия // Журн. неорган. химии. 2016. Т. 61. № 11. С. 1515–1518. https://doi.org/10.7868/S0044457X16110039
- 12. Denisova L.T., Belousova N.V., Denisov V.M. et al. High-Temperature Heat Capacity of Erbium Cuprate // Журн. СФУ. Химия. 2014. Т. 7. № 3. С. 312–315.
- 13. *Морачевский А.Г., Сладков И.В., Фирсова Е.Г.* Термодинамические расчеты в химии и металлургии. СПб.: Лань, 2018. 208 с.
- 14. *Моисеев Г.К., Ватолин Н.А., Маршук Л.А. и др.* Температурные зависимости приведенной энергии Гиббса некоторых неорганических веществ. Екатеринбург: УрО РАН, 1997. 230 с.
- Бондарь И.А., Виноградова Н.В., Демьянец Л.Н. и др. Соединения редкоземельных элементов. Силикаты, германаты, фосфаты, арсенаты, ванадаты. М.: Наука, 1983. 288 с.
- 16. Кумок В.Н. Проблемы согласования методик оценки термодинамических характеристик // Прямые и обратные задачи химической термодинамики. Новосибирск: Наука, 1987. С. 108–123.
- 17. *Кубашевский О., Олкокк С.Б.* Металлургическая термохимия. М.: Металлургия, 1982. 392 с.
- Карапетьянц М.Х. Методы сравнительного расчета физико-химических свойств. М.: Наука, 1965. 403 с.
- Богач В.В., Добрыднев С.В., Бесков В.С. Расчет термодинамических свойств апатитов // Журн. неорган. химии. 2001. Т. 46. № 7. С. 1127–1131.
- Leitner J., Chuchvalec P., Sedmidubský D. et al. Estimation of Heat Capacities of Solid Mixed Oxides // Thermochim. Acta. 2003. V. 395. P. 27–46. https://doi.org/10.1016/S0040-6031(02)00177-6
- De Ligny D., Richet P., Westrum E. F., Jr. et al. Heat Capacity and Entropy of Rutile (TiO₂) and Nepheline (NaAlSiO₄) // Phys. Chem. Miner. 2002. V. 29. P. 267–272. https://doi.org/10.1007/s00269-001-0229-z
- Гуревич В.М., Гавричев К.С., Горбунов В.Е. и др. Термодинамические свойства касситерита SnO₂(к) в области 0–1500 К // Геохимия. 2004. № 10. С. 1096–1105.