УДК 541.183

СИНТЕЗ ГИДРОКСИАПАТИТА В ПРИСУТСТВИИ ОКСИЭТИЛИДЕНДИФОСФОНОВОЙ КИСЛОТЫ И ИОНОВ Mg²⁺ В КАЧЕСТВЕ ИНГИБИТОРОВ КРИСТАЛЛИЗАЦИИ

© 2020 г. Н. В. Китикова¹, А. И. Иванец^{1, *}, И. Л. Шашкова¹

¹Институт общей и неорганической химии Национальной академии наук Беларуси, ул. Сурганова, 9, корп. 1, Минск, 220072 Беларусь *e-mail: Andreiivanets@yandex.ru

Поступила в редакцию 17.12.2018 г. После доработки 25.05.2019 г. Принята к публикации 19.06.2019 г.

Осуществлен синтез гидроксиапатита (ГА) в присутствии оксиэтилидендифосфоновой кислоты и ионов Mg^{2+} . Установлено влияние природы и концентрации ингибиторов кристаллизации, а также концентрации исходных реагентов на его физико-химические характеристики. Показана возможность регулирования кристаллической структуры и текстуры ГА путем направленного варьирования условий синтеза в присутствии малых концентраций ингибиторов кристаллизации (0.01–1.00 мол. %), что может быть использовано при получении материалов различного функционального назначения с улучшенными характеристиками.

Ключевые слова: гидроксиапатит, химическое осаждение, ингибиторы кристаллизации **DOI:** 10.31857/S0002337X20010054

введение

Фосфаты кальция (ФК) широко применяются как материалы медицинского назначения, в качестве пищевых добавок, при решении экологических задач и др. Благодаря особенностям кристаллохимического строения и важной роли в различных биологических процессах наиболее изученным среди ФК является гидроксиапатит (ГА) [1]. Функциональные свойства ГА существенно зависят от способа и условий получения, определяющих его химический состав, кристаллическую структуру и характеристики пор, форму и размер частиц, морфологию поверхности. Наиболее активны в различных биологических и химических процессах ГА, обладающие низкой степенью кристалличности [2] и имеющие в составе замещенные ионы, что приводит к дестабилизации кристаллической структуры [3].

Наиболее распространенным способом получения ГА является метод осаждения из водных растворов, при котором физико-химические свойства ГА можно контролировать как варьированием условий его осаждения (температурой синтеза, pH реакционной среды, концентрацией реагентов, скоростью смешивания реагентов), так и введением в исходные растворы ингибиторов кристаллизации (**ИКр**). Кристаллизация ГА является чрезвычайно сложным процессом, состоящим из пяти стадий: 1) образование ионных кластеров и аморфного фосфата кальция (**АФК**); 2) стабилизация **АФК**; 3) переход от **АФК** к ГА через растворение и кристаллизацию; 4) рост кристаллов; 5) старение ГА в условиях, близких к равновесному состоянию [4, 5]. Применение ИКр оказывает различное влияние на протекание каждой из пяти стадий синтеза ГА [4, 6].

В качестве ингибиторов кристаллизации фосфатов кальция среди органических соединений ранее были изучены различные органические лиганды [7], полимеры [8]. Хорошо зарекомендовали себя также фосфонаты, характеризующиеся мостиком Р-С-Р и отличающиеся составом алкильного радикала, а среди неорганических - катионы некоторых металлов. При этом в большинстве работ приводятся результаты исследования кинетики подавления роста кристаллов в присутствии малых количеств фосфонатов [9, 10] либо функционализации поверхности ГА для придания новых свойств [11, 12]. Особый научный и практический интерес представляют комплексоны фосфонового ряда, содержащие фрагмент СН₂РО₃Н₂. Такие соединения отличаются большей, чем у карбоксильных групп, электроотрицательностью и, соответственно, большей дентатностью, благодаря чему они образуют достаточно устойчивые комплексы с катионами кальция [13]. В литературе отсутствуют данные о применении фосфонатов для снижения степени кристалличности ГА с целью повышения его реакционной способности.

Действие катионов металлов можно рассматривать как модифицирование фосфатов кальция путем снижения степени кристаллизации ГА. Как показывают предыдущие исследования, этому способствуют ионы Zn^{2+} [14], Sr^{2+} [15], в то время как присутствие ионов Mn^{2+} приводит к формированию аморфной фазы [15]. Особенно детально изучено влияние ионов Mg^{2+} , являющихся одними из основных заместителей ионов Ca^{2+} в составе костных тканей и играющих важную роль в биологических процессах [3, 4, 14–18].

Механизм действия данных ИКр, как правило, связывают со специфической адсорбцией вводимых реагентов на поверхности образующихся зародышей АФК, что препятствует их дальнейшей кристаллизации и тем самым повышает их реакционную способность [4, 10]. При этом изучены процессы образования ГА в широком интервале концентраций вводимых модификаторов, приводящих к изоморфным замещениям [3] или соосаждению различных фаз, как это обобщено Gozalian с соавторами [18] или получено Fadeev [16].

Учитывая многофакторность процесса кристаллизации и комплексное влияние условий синтеза на физико-химические свойства ГА, одной из актуальных задач при получении материалов различного функционального назначения на основе ГА является поиск оптимальной концентрации исходных реагентов в сочетании с минимальной концентрацией ИКр, обеспечивающих их высокую реакционную способность в различных процессах благодаря частичной аморфизации.

Целью настоящей работы является сравнительное исследование влияния малых концентраций (до 1.0 мол. %) органического — оксиэтилидендифосфоновой кислоты (**ОЭДФ**) — и неорганического (Mg^{2+}) ИКр в зависимости от концентрации исходных реагентов на фазовый и химический состав ГА и его морфологию. Выбор веществ в качестве ИКр обусловлен их нетоксичностью и высокой ингибирующей способностью.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез ГА осуществляли химическим осаждением из растворов Ca(NO₃)₂ и H₃PO₄, доведенных раствором NH₄OH до pH 10. Концентрации ионов Ca²⁺ ($C_{Ca} = 0.083$, 0.20 и 0.42 моль/л) и PO_4^{3-} -ионов ($C_P = 0.05$. 0.12 и 0.25 моль/л) в реакционных растворах после смешения соответствовали молярному соотношению ГА стехиометрического состава Са/Р = 1.67. Для изучения влияния ИКр на процесс осаждения ГА добавки Mg(NO₃)₂ вводили в Са-содержащий раствор из расчета 0.01, 0.1, 0.5 и 1.0 мол. % по отношению к ионам Ca²⁺. Добавки ОЭДФ вводили в Р-содержащий раствор в таком же количестве, но по отношению к РО₄³⁻-ионам. Для получения образцов ГА Р-содержащий раствор по каплям вводили в Са-содержащий раствор при постоянном перемешивании. Далее полученную суспензию оставляли на созревание в течение 24 ч без перемешивания с последующими отделением осадка на воронке Бюхнера и промывкой горячей водой и этанолом. Осадок ГА сушили на воздухе при комнатной температуре, затем при 100°С в течение 24 ч.

Рентгенофазовый анализ (РФА) и расчет параметров элементарной ячейки а и с, а также среднего размера кристаллитов τ были выполнены на рентгеновском дифрактометре D8 Advanced (Bruker, Германия) с использованием CuK_{α} -излучения. Расчет τ по формуле Шеррера проводили по главному дифракционному пику $2\theta = 31.7^{\circ} - 32.0^{\circ}$. Идентификацию фаз проводили по базе рентгенографических порошковых стандартов JCPDS PDF2. ИКспектры снимали на ИК-Фурье-спектрометре Tenzor-27 в диапазоне 400-4000 см⁻¹ (таблетки с KBr 800 мг, навеска 2 мг). Определение химического состава твердой фазы подробно описано в статье [19]. Элементный анализ выполнен с помощью JSM-5610 LV с системой энергодисперсионной рентгеновской спектроскопии (ЭДРС) JED-2201 JEOL (Japan).

Адсорбционные свойства и текстуру образцов оценивали из изотерм низкотемпературной (-196°С) адсорбции-десорбции азота, измеренных объемным методом на анализаторе ASAP 2020 MP (Micromeritics, США). Удельную поверхность (A_{va}) рассчитывали методом БЭТ $(A_{БЭТ})$ и одноточечным методом БЭТ (A_{sp}), объем пор ($V_{пор}$) рассчитывали одноточечным методом по адсорбционной ($V_{sp. ads}$) и десорбционной ($V_{sp. des}$) ветвям изотермы. Средний диаметр пор для адсорбционной $(D_{sp. ads})$ и десорбционной $(D_{sp. des})$ ветвей изотермы рассчитывали по уравнению 4V/A. Перед анализом образцы вакуумировали в течение 1 ч при температуре 150°С и остаточном давлении 133.3×10^{-3} Па. Относительная ошибка определения $V_{\text{пор}}$ составляла $\pm 1\%$, A_{vn} и размера пор $-\pm 15\%$.

51

КИТИКОВА и др.

Образец	С _Р в исходных растворах, моль/л	Количество ингибитора, мол. %	Содержание элементов, ммоль/г		Молярное соотношение Са/Р	Параметры кристаллической структуры		τ, нм					
			Ca (Ca + Mg)*	Р		а, нм	С, НМ						
	Образцы без ингибитора												
	ГА**		9.96	5.98	1.67	0.942	0.688						
1	0.05	0	9.14	5.62	1.63	0.944	0.687	8.86					
6	0.12	0	9.32	5.59	1.67	0.947	0.689	9.09					
11	0.25	0	9.12	5.48	1.66	0.948	0.689	8.44					
	Ингибитор — Mg ²⁺												
2	0.05	0.10	9.39	5.71	1.64	0.947	0.689	8.14					
3	0.05	1.00	9.29	5.71	1.63	0.948	0.688	8.14					
7	0.12	0.10	9.26	5.43	1.64	0.949	0.689	8.40					
8	0.12	1.00	9.24	5.34	1.64	0.947	0.688	8.14					
12	0.25	0.10	9.12	5.57	1.64	0.947	0.688	8.61					
13	0.25	1.00	9.07	5.56	1.64	0.948	0.688	8.13					
	Ингибитор – ОЭДФ												
4	0.05	0.10	9.09	5.77	1.57	0.945	0.688	8.69					
5	0.05	1.00	8.92	5.76	1.56	_	_	_					
9	0.12	0.10	9.34	5.61	1.66	0.948	0.690	9.26					
10	0.12	1.00	9.06	5.73	1.58	0.951	0.688	8.14					
14	0.25	0.10	9.19	5.49	1.67	0.947	0.689	8.68					
15	0.25	1.00	8.93	5.31	1.68	0.947	0.688	8.34					

Таблица 1. Химический состав по данным химического анализа и кристаллографические характеристики синтезированных образцов ГА

* (Ca + Mg) для образцов, полученных с добавлением ингибитора Mg²⁺

** Справочные данные для ГА стехиометрического состава [файл 9-432 JCPDS PDF2].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Согласно данным химического анализа, образцы ГА, синтезированные без ИКр, характеризуются молярным соотношением Са/Р в интервале 1.63-1.67, что свидетельствует об образовании стехиометрического и Са-дефицитного ГА (Са-дГА) (табл. 1). В случае введения ионов Mg²⁺ молярное соотношение Са/Р практически не зависит от концентрации исходных растворов. Содержание ионов Mg²⁺ не определяли, поскольку, согласно данным [16], можно считать, что при их концентрации в растворе до 10 ат. % сохраняется соотношение Ca/Mg в твердой фазе. ОЭДФ оказывает существенное влияние на химический состав. По мере снижения концентрации исходных растворов и увеличения количества вводимой ОЭДФ молярное соотношение Са/Р уменьшается до 1.56.

Результаты химического анализа хорошо согласуются с данными РФА. Так, образцы, синтезированные без ИКр, представляют собой ГА различной степени кристалличности, снижающейся с уменьшение концентрации исходных растворов (рис. 1), о чем свидетельствуют уменьшение интенсивности рефлексов и их разрешения, а также слияние рефлексов 211, 112 и 300. Введение в исходную реакционную смесь ионов Mg²⁺ в изученном диапазоне концентраций не отражается на фазовом составе продуктов при сохранении общей тенденции снижения степени кристалличности с уменьшением концентрации исходных растворов. В отличие от неорганического ИКр в случае ОЭДФ при синтезе из разбавленных растворов наблюдается аморфизация ГА. При максимальном содержании ОЭДФ полученный продукт представляет собой рентгеноаморфное соединение (рис. 1а, дифракто-

Рис. 1. Рентгенограммы образцов, синтезированных без введения ингибиторов кристаллизации и в их присутствии из исходных растворов с концентрацией по фосфору 0.05 (а), 0.12 (б) и 0.25 моль/л (в) (нумерация образцов по табл. 1).

грамма 5), характеризующееся молярным соотношением Ca/P = 1.56, что наиболее близко по составу к трикальцийфосфату (**ТКФ**).

Изменение химического состава ГА отражается и на параметрах элементарной ячейки, особенно на величине a, существенно отличающихся от справочных данных для стехиометрического ГА (табл. 1). Это свидетельствует о различной степени разупорядоченности структуры. Причем при синтезе без ИКр отклонение значений параметров a и c увеличивается с ростом концентрации исходных растворов. В случае применения ИКр их влияние немного усиливается при уменьшении концентрации, а в исходных растворах наибольшей концентрации практически не проявляется.

Наиболее заметно различие влияния ионов Mg^{2+} и ОЭДФ на размеры кристаллитов. При использовании ионов Mg^{2+} независимо от концентрации исходных растворов происходит значительное снижение τ по сравнению с образцами, полученными как в присутствии ОЭДФ, так и без ИКр.

ИК-спектры позволяют уточнить состав синтезированных ФК (рис. 2). В спектрах всех образцов присутствуют полосы, характеризующие ко-

лебания PO_4^{3-} -групп — деформационные в области 600—500 см⁻¹ и валентные (в области 1100— 1000 см⁻¹) [19]. Характерные для ГА либрационные (около 630 см⁻¹) и валентные колебания (около 3547 см⁻¹) структурных ОН-групп отсутствуют либо проявляются в виде плеча, что может быть обусловлено низкой степенью кристалличности [5]. Слабые полосы при 875 см⁻¹ в сочетании с колебаниями в области 1620 см⁻¹ отражают присутствие гидрофосфатных групп HPO_4^{2-} , ха-

присутствие тидрофосфатных трупп тггО₄, характерных для Са-дГА [7, 20]. Причем увеличение интенсивности полосы при 875 см⁻¹ с ростом количества вводимых ИКр говорит об усилении отклонения состава ГА от стехиометрического. Полосы в области 1400–1430 см⁻¹ обычно относят

к CO₃²⁻-группам, которых трудно избежать при проведении синтеза на воздухе при высоком значении pH. Характерное для ГА расщепление полосы

Рис. 2. ИК-спектры образцов, синтезированных без введения ингибиторов кристаллизации и в их присутствии из исходных растворов с *C*_P = 0.05 (a), 0.12 (б) и 0.25 моль/л (в) (нумерация образцов по табл. 1).

в области 600—500 см⁻¹ сокращается при введении ОЭДФ и практически отсутствует для образца, полученного из разбавленного раствора с добавлением 1.0 мол. % ОЭДФ (рис. 2а, спектр 5), что соответствует рентгеноаморфному состоянию ТКФ. При увеличении исходных концентраций и введении 1% ОЭДФ на ИК-спектре (рис. 2в, спектр 15) заметна слабая полоса около 800 см⁻¹, характеризующая колебания связи Р–С в структуре ОЭДФ [19]. Данные ИК-спектроскопии подтверждаются результатами РФА этих образцов после их термообработки (**TO**) при 1000°С (рис. 3). В большинстве случаев рентгенограммы свидетельствуют об образовании смеси ГА и ТКФ, что типично для Са-дГА при его ТО [20]. При этом рентгенограммы образцов ГА, синтезированных с добавлением ионов Mg^{2+} , показывают, что с увеличением концентрации исходных растворов в присутствии

Рис. 3. Рентгенограммы термообработанных при 1000°С образцов ГА, синтезированных в присутствии добавок ионов Mg^{2+} и ОЭДФ из исходных растворов с $C_P = 0.05$ (а), 0.12 (б) и 0.25 моль/л (в): $A - \Gamma A$ [76-694], $B - Ca_3(PO_4)_2$ (ромбо-эдрическая сингония) [70-2065], $C - Ca_3(PO_4)_2$ (моноклинная сингония) [29-359] (нумерация образцов по табл. 1).

данного ИКр происходит уменьшение доли ТКФ с 12 до 8%, что согласуется с результатами РФА исходных образцов (рис. 1) и литературными данными, согласно которым при увеличении содержания ионов Mg^{2+} до 1% доля ТКФ возрастает до 16% [17]. Добавление ОЭДФ в реакционный раствор приводит к кардинальным изменениям образующихся продуктов, зависящим от концентрации исходных растворов: в наиболее концентрированных растворах происходит формирование ГА с наименьшим содержанием примесной фазы (рис. 3, дифрактограмма 15), а в наиболее разбавленных растворах наблюдается формирование однофазного ТКФ (рис. 3, дифрактограмма 5).

Изменения условий синтеза в присутствии ИКр приводят к варьированию адсорбционноструктурных характеристик ГА (табл. 2). Изотермы адсорбции-десорбции азота образцов ФК (рис. 4) относятся к IV типу по классификации ИЮПАК, характеризующему мезопористые тела [21]. Образцы ГА, полученные без ИКр и в присутствии ионов Mg²⁺ из разбавленных растворов, имеют схожий вид изотерм с петлей гистерезиса

типа Н2, характеризующий сорбенты, поры которых образуют неоднородные по размеру и форме частицы (рис. 4, кривые 1, 3, 11). Для изотерм образцов ГА, полученных из наиболее концентрированных исходных растворов в присутствии и Mg²⁺, и ОЭДФ (рис. 4, кривые 13, 15), а также образца, синтезированного из разбавленного раствора в присутствии ОЭДФ (рис. 4, кривая 5), при высоких относительных давлениях характерна узкая петля гистерезиса, относящаяся к типу Н1 и указывающая на однородность частиц и пор. Увеличение крутизны средней части изотермы при больших относительных давлениях ($p/p_0 = 0.4$ -0.9), связанное с капиллярной конденсацией в мезопорах, говорит об увеличении поверхности мезопор. Расчеты адсорбционных характеристик, произведенные по полученным изотермам двумя способами (табл. 2), близки между собой и показывают, что в отсутствие ИКр с увеличением концентрации исходных растворов наблюдается рост *А*_{vд} и *V*_{пор} при среднем размере пор 13–21 нм. Использование ионов Mg^{2+} в качестве ИКр приво-дит к увеличению как A_{yg} , так и V_{nop} по сравнению

Иштибитор	Удельная пове	ерхность, м ² /г	Объем пор, см ³ /г		Размер пор, нм								
ингиоитор	A_{sp}	A _{БЭТ}	V _{sp. ads}	V _{sp. des}	D _{sp. ads}	D _{sp. des}							
$C_{\rm P} = 0.05 {\rm M}$													
_	72	75	0.233	0.242	13	13							
Mg	123	127	0.375	0.367	12	12							
ОЭДФ	75	79	0.516	0.735	28	39							
$C_{\rm P} = 0.12 \; {\rm M}$													
_	119	125	0.373	0.366	13	12							
Mg	176	184	0.743	0.766	17	18							
ОЭДФ	81	90	0.361	0.346	18	17							
$C_{\rm P} = 0.25 {\rm M}$													
_	155	162	0.791	0.834	20	21							
Mg	172	179	0.925	0.983	22	23							
ОЭДФ	207	251	0.779	0.854	15	17							

Таблица 2. Адсорбционные и текстурные свойства образцов, полученных без добавок ингибиторов и с введением 1 мол. % Mg²⁺ и ОЭДФ

с исходными образцами, полученными без ИКр. При этом эффект применения ионов Mg^{2+} снижается по мере увеличения концентрации исходных растворов. Введение ОЭДФ в разбавленных исходных растворах способствует значительному увеличению V_{nop} и их размера, а в наиболее концентрированных растворах — росту A_{yq} при одновременном уменьшении размера пор, что может быть обусловлено увеличением размера структурообразующих частиц.

Наблюдаемое различие влияния ИКр различной природы можно объяснить их воздействием на процесс кристаллизации и взаимодействием с исходными компонентами. Так, ионы Mg²⁺ адсорбируются на образующихся первичных частицах ФК и препятствуют их дальнейшему росту, что приводит к снижению степени их кристалличности и размера кристаллитов (табл. 1), а также росту $A_{y_{\pi}}$ (табл. 2). В отличие от Mg²⁺ молекулы ОЭДФ способны образовывать сложные комплексы, захватывая несколько ионов Ca²⁺, в результате чего происходят рост первичных частиц [13] и увеличение размера пор. Полученные данные подтверждают, что такие комплексы наиболее активно образуются при синтезе из разбавленных исходных растворов. Согласно данным РФА, в этом случае образуется аморфный продукт. С ростом концентрации исходных растворов происходит адсорбция молекул ОЭДФ, препятствующих дальнейшему росту первичных частиц, в результате чего увеличивается A_{yg} , снижается размер пор и возрастает их общий объем.

Результаты элементного анализа по данным ЭДРС подтверждают присутствие ИКр в составе образующихся продуктов. Наличие ионов Mg^{2+} детектируется в образцах, полученных в более концентрированных растворах, в количестве 0.06 ммоль/г при добавлении ИКр 0.1 мол. % и 0.15–0.29 ммоль/г при добавлении 1.0 мол. %. На присутствие ОЭДФ указывает наличие углерода в составе образцов, содержание которого увеличивается с ростом концентрации исходных растворов от 1.11 до 5.86 ммоль/г при введении 0.1 мол. % ИКр и от 5.15 до 8.74 ммоль/г при введении 1 мол. %. Часть углерода может относиться к CO_3^{2-} -группам, о чем свидетельствуют ИК-спектры (рис. 2), однако даже при направленном синтезе ГА с со-

держанием 7.8 мас. % CO_3^{2-} количество углерода составляет 1.3 ммоль/г по [22].

ЗАКЛЮЧЕНИЕ

Изучены особенности фазового и химического состава ГА и его морфологии при проведении синтеза в интервале концентраций исходных растворов 0.05–0.25 моль/л по PO_4^{3-} -ионам при молярном соотношении Ca/P = 1.67 и присутствии ионов Mg²⁺ и ОЭДФ как ИКр в количестве 0.01–1.0 мол. %. Установлено, что ингибирующий эф-

Рис. 4. Изотермы адсорбции –десорбции азота $(A-p/p_0)$ и кривые дифференциального распределения пор по размерам (dV/dD-D) образцов, полученных в отсутствие ингибиторов и при максимальном их содержании в исходных растворах с $C_{\rm P} = 0.05$ (1, 3, 5) и 0.25 моль/л (11, 13, 15) (нумерация образцов по табл. 1).

фект ионов Mg^{2+} заключается в ограничении роста кристаллитов, способствующего формированию развитой поверхности, и усиливается с ростом концентрации исходных растворов и количества вводимой добавки. Введение ОЭДФ — сильного комплексообразователя — в разбавленные исходные растворы вызывает рост агломератов, что приводит к снижению степени кристалличности и в конечном итоге при максимальной дозе — аморфизации продукта и образованию ТКФ с развитой мезопористой структурой. При увеличении концентрации исходных растворов ОЭДФ препятствует росту кристаллов, что обеспечивает рост A_{va} и V_{nop} .

Таким образом, применение ионов Mg^{2+} и ОЭДФ в качестве ИКр способствует формированию высокопористых ФК в широком диапазоне концентраций исходных растворов. Полученные данные могут быть использованы для регулирования кристаллической структуры и текстуры ГА при получении материалов различного функционального назначения с улучшенными характеристиками.

БЛАГОДАРНОСТЬ

Работа выполнена при финансовой поддержке Белорусского республиканского фонда фундаментальных исследований (проект X17MC-006).

СПИСОК ЛИТЕРАТУРЫ

- Haider A., Haider S., Han S.S., Kang I.-K. Recent Advances in the Synthesis, Functionalization and Biomedical Applications of Hydroxyapatite: a Review // RSC Adv. 2017. V. 7. P. 7442–7458.
- Stötzel C., Müller F.A., Reinert F. et al. Ion Adsorption Behaviour of Hydroxyapatite with Different Crystallinities // Colloids Surf., B. 2009. V. 74. P. 91–95.
- Bigi A., Boanini E., Gazzano M. Ion substitution in biological and synthetic apatites. Biomineralization and Biomaterials / Eds Aparicio C., Gineba M.-P. Amsterdam: Elsevier, 2016. Chapter 7. P. 235–266.
- Ding H., Pan H., Xu X., Tang R. Towards a Detailed Understanding of Magnesium ions on Hydroxyapatite Crystallization Inhibition // Cryst. Growth Des. 2014. V. 14. P. 763–769.
- 5. Китикова Н.В., Шашкова Н.В., Зонов Ю.Г. и др. Влияние фазовых превращений в процессе синтеза кальцийдефицитного гидроксиапатита на его химический состав и структуру // Неорган. материалы. 2007. Т. 43. № 10. С. 1246–1255.
- Bertran O., del Valle L.J., Revilla-Lopez G. et al. Synergistic Approach to Elucidate the Incorporation of Magnesium Ions into Hydroxyapatite // Chem. Eur. J. 2015. V. 21. P. 2537–2546.
- Van der Houwen J.A.M., Cressey G., Cressey B.A., Valsami-Jones E. The effect of organic ligands on the crystallinity of calcium phosphate // J. Cryst. Growth. 2003. V. 249. P. 572–583.
- Shimabayashi S., Uno T. Crystal Growth of Calcium Phosphates in the Presence of Polymeric Inhibitors. Calcium Phosphate in Biological and Industrial Systems / Ed. Amjad Z. N.Y.: Kluwer Academic Publishers, 1998. Chapter 9. P. 195–215.
- Zieba A., Sethuraman G., Perez F. et al. Influence of Organic Phosphonates on Hydroxyapatite Crystal Growth Kinetics // Langmuir. 1996. V. 12. P. 2853–2858.
- Amjad Z. The Influence of Polyphosphates, Phosphonates, and Poly(carboxylic acids) on the Crystal Growth of Hydroxyapatite // Langmuir. 1987. V. 3. P. 1063–1069.

- Agougui H., Aissa A., Maggi S., Debbabi M. Phosphonate-Hydroxyapatite Hybrid Compounds Prepared by Hydrothermal Method // Appl. Surf. Sci. 2010. V. 257. P. 1377–1382.
- Daniels Y., Lyczko N., Nzihou A., Alexandratos S.D. Modification of Hydroxyapatite with Ion-Selective Complexants: 1-hydroxyethane-1,1-Diphosphonic Acid // Ind. Eng. Chem. Res. 2015. V. 54. № 2. P. 585–596.
- Дятлова Н.М., Темкина В.Я., Попов К.И. Комплексоны и комплексонаты металлов. М.: Химия, 1988. 544 с.
- Kanzaki N., Onuma K., Treboux G. et al. Inhibitory Effect of Magnesium and Zinc on Crystallization Kinetics of Hydroxyapatite (0001) Face // J. Phys. Chem. B. 2000. V. 104. P. 4189–4194.
- Bracci B., Torricelli P., Panzavolta S. et al. Effect of Mg²⁺, Sr²⁺, and Mn²⁺ on the Chemico-Physical and in vitro Biological Properties of Calcium Phosphate Biomimetic Coatings // J. Inorg. Biochem. 2009. V. 103. P. 1666–1674.
- Фадеева И.В., Шворнева Л.И., Баринов С.М., Орловский В.П. Синтез и структура магнийсодержащих гидроксиапатитов // Неорган. материалы. 2003. Т. 39. № 9. С. 1102–1105.
- Кубарев О.Л., Баринов С.М., Комлев В.С. Распределение магния при синтезе бифазных фосфатов кальция // Докл. АН. 2008. Т. 418. № 4. С. 497–499.
- Gozalian A., Behnamghader A., Daliri M., Moshkforoush A. Synthesis and Thermal Behavior of Mg-Doped Calcium Phosphate Nanopowders via the Sol Gel Method // Sci. Iran. F. 2011. V. 18. P. 1614–1622.
- Иванец А.И., Китикова Н.В., Шашкова И.Л., Кульбицкая Л.В. Стабильность кальциевых и магниевых фосфатных сорбентов в растворах хлорида кальция и комплексообразующих реагентов // Журн. прикл. химии. 2015. Т. 88. № 2. С. 227–233.
- Dorozhkina E.I., Dorozhkin S.V. Mechanism of the Solid-State Transformation of a Calcium-Deficient Hydroxyapatite (CDHA) into Biphasic Calcium Phosphate (BCP) at Elevated Temperatures // Chem. Mater. 2002. V. 14. P. 4267–4272.
- Thommes M., Kaneko K., Neimark A.V. et al. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Thechnical Report) // Pure Appl. Chem. 2015. V. 87. P. 1051–1069.
- Barralet J.E., Best S.M., Bonfield W. Effect of Sintering Parameters on the Density and Microstructure of Carbonate Hydroxyapatite // J. Mater. Sci.–Mater. Med. 2000. V. 11. P. 719–724.