УДК 548.736.5539.26538.913538.953

СИНТЕЗ, ФАЗОВЫЙ СОСТАВ И КИНЕТИКА ЗАТУХАНИЯ ФОТОПРОВОДИМОСТИ ПОЛИКРИСТАЛЛОВ ТВЕРДЫХ РАСТВОРОВ Cu₂ZnSn(S_xSe_{1 - x})₄

© 2020 г. В. Ф. Гременок¹, В. Г. Гуртовой¹, А. В. Станчик¹, Т. В. Шёлковая¹, В. А. Чумак¹, Е. В. Рабенок², В. В. Ракитин², Б. И. Голованов², Г. Ф. Новиков^{2, 3, *}

¹ГО "НПЦ НАН Беларуси по материаловедению", ул. П. Бровки, 19, Минск, 220072 Беларусь

²Институт проблем химической физики Российской академии наук, пр. академика Семенова, 1, Черноголовка, Московская обл., 142432 Россия

³Московский государственный университет им. М.В. Ломоносова, Ленинские горы, 1, ГСП-1, Москва, 119991 Россия

*e-mail: gfnovikov@gmail.com

Поступила в редакцию 13.01.2020 г. После доработки 14.05.2020 г.

Принята к публикации 18.05.2020 г.

Однотемпературным методом из элементов Cu, Zn, Sn, S и Se получены поликристаллы твердых растворов Cu₂ZnSn(S_xSe_{1-x})₄. С помощью рентгеноспектрального микроанализа определен химический состав полученных материалов, а также с использованием рентгеновского метода и спектроскопии комбинационного рассеяния света исследованы их кристаллическая структура и фазовый состав. Методом время-разрешенной микроволновой фотопроводимости изучено влияние содержания серы и селена на кинетику гибели фотогенерированных носителей тока в твердых растворах Cu₂ZnSn(S_xSe_{1-x})₄. Обнаружено, что при большем содержании серы образуются дополнительные глубокие уровни, которые могут служить акцепторами для электронов.

Ключевые слова: твердые растворы, комбинационное рассеяния света, метод время-разрешенной микроволновой фотопроводимости

DOI: 10.31857/S0002337X20100048

ВВЕДЕНИЕ

Согласно общим представлениям о природе фотовольтаического напряжения, возникающего при освещении двухслойной системы¹, в которой поглощающий слой — неорганический полупроводник [1], эффективность прямого преобразования света в электричество существенно зависит от диффузионной длины пробега носителей тока $L = (D\tau)^{1/2}$ в этом слое (здесь D и τ – коэффициент диффузии и время жизни носителей тока). Наглядные представления о степени такой зависимости дают численные расчеты SCAPS [2], позволяющие при наличии необходимых расчетных параметров учесть влияние химического состава и структуры поглощающих слоев на фотовольта-ические свойства фотопреобразователей.

Ярким примером систем, позволяющих в широких пределах менять химический состав поглощающих слоев, которые активно изучаются в последние десятилетия, являются четверные соединения меди типа Cu₂ZnSn(S_xSe_{1-x})₄ (CZTSSe). В последнее время пленки на основе соединений этого типа хорошо зарекомендовали себя в тонкопленочных солнечных элементах (**TCЭ**). Однако эффективность преобразования **TCЭ** на основе таких тонких пленок на сегодняшний день составляет 12.6%, что еще далеко от теоретического предела ~32% [3]. Причины такого отставания пока не выяснены. Вероятно, нестехиометрический состав и неидеальная структура слоев могут способствовать образованию побочных фаз и дефектов в пленках, что в свою очередь также может сказываться на снижении КПД тонкопленочных фотопреобразователей.

Дело в том, что энергетические дефекты в запрещенной зоне материала-полупроводника могут выступать в качестве центров захвата или рекомбинации носителей заряда и влиять на процессы гибели в них носителей заряда, генерированных светом [3]. В литературе также отмечено, что полученная низкая эффективность преобразования ТСЭ на основе тонких пленок CZTSSe может быть обусловлена наличием в их составе побочных фаз из-

¹ Имеется в виду классическая модель двухслойного образца с гетеропереходом на основе широкозонного (или оптического окна) и узкозонного полупроводникового материалов (или поглощающего слоя) [1].

за узкой однофазной области существования CZTSSe, которые приводят к формированию дефектов различных типов. Так, в работе [4] отмечено, что такие дефекты приводят к образованию хвостовых полос поглощающего слоя и существенной рекомбинации, происходящей вблизи границы поглощающего слоя и подложки, что является основной причиной ухудшения напряжения холостого хода и коэффициента заполнения в TCЭ на основе пленок CZTSSe.

Влияние состава поглощающих слоев на их фотовольтаические свойства экспериментально наблюдалось неоднократно. Возможным объяснением данного эффекта может быть то, что в стехиометрическом и обедненном составах могут существенно различаться не только концентрации, но и пространственные распределения дефектов, а это может влиять на дрейфовые подвижности, времена жизни носителей тока и процессы разделения зарядов.

Целью данной работы является получение поликристаллов твердых растворов $Cu_2ZnSn(S_xSe_{1-x})_4$, исследование их кристаллической структуры, фазового состава, а также изучение влияния содержания серы и селена на кинетику гибели фотогенерированных носителей тока.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез соединений. Для синтеза четверных твердых растворов Cu₂ZnSn(S_xSe_{1-x})₄ использовался однотемпературный метод, обеспечивающий чистоту получаемого вещества и отсутствие потерь компонентов. В качестве исходных веществ выступали элементарные медь, цинк и олово чистотой 99.999%, сера и селен квалификации "ос. ч.". Синтез проводился в двойных кварцевых ампулах. Исходные компоненты в соотношениях, соответствующих формульному составу, в количестве ~15 г загружались в ампулу, которую затем вакуумировали. Далее ампула с исходными компонентами помещалась в другую вакуумированную ампулу, которая устанавливалась в вертикальную однозонную печь.

Ранее выполненные исследования температуры фазовых превращений соединений Cu_2ZnSnS_4 , $Cu_2ZnSnSe_4$ и их твердых растворов с помощью дифференциального термического анализа (**ДТА**) показали, что на **ДТА**-кривых присутствует один тепловой эффект [5, 6]. Для соединений он соответствует температуре плавления, для твердых растворов — точкам солидуса и ликвидуса. Построенная по результатам **ДТА** диаграмма состояния системы Cu_2ZnSnS_4 — $Cu_2ZnSnSe_4$ характеризуется небольшим интервалом кристаллизации, ее можно отнести к первому типу по классификации Розебома [7]. Температуру в печи поэтапно с двухчасовой выдержкой поднимали до значений, превышающих на $20-30^{\circ}$ С температуру плавления соединения, либо до температуры ликвидуса твердого раствора соответствующего состава [8]. При достижении нужной температуры включали вибрационное перемешивание, которое в значительной мере ускоряет образование соединения и препятствует взрыву ампул, и выдерживали в течение 4 ч. Затем вибрацию отключали и уменьшали температуру со скоростью 5°/ч до полного затвердения раствора. Для гомогенизации полученных слитков твердых растворов их отжигали в вакууме при 750 °С в течение 300 ч.

Методики измерений. Рентгенографические исследования проводили на рентгеновском дифрактометре ДРОН-3 в монохроматическом CuK_α-излучении. В качестве монохроматора применяли монокристаллическую графитовую пластинку, котоустанавливали рую на пути следования отраженного пучка. Образцами служили порошки полученных соединений и твердых растворов, запрессованные в пластмассовые кюветы. Дифрактограммы записывали с шагом 0.03° по шкале 20 и выдержкой 3 с. Анализ фазового состава проводился с использованием баз данных Joint Committee on Powder Diffraction Standard (JCPDS) и Crystallography Open Database (COD).

Химический состав образцов определяли методом рентгеновского спектрального микроанализа (**PCM**) с дисперсией по энергии, используя сканирующий электронный микроскоп Stereoscan-360 с рентгеновским спектрометром AN 10000 (погрешность порядка 2 ат. %). Для исследования химического состава были использованы 5 кристаллитов каждого полученного соединения и твердых растворов.

Спектры комбинационного рассеяния света (**КРС**) были получены при комнатной температуре со спектральным разрешением не хуже 3 см⁻¹ с помощью конфокального комбинационного спектрометра Nanofinder HE (LOTIS TII). Возбуждение КРС осуществлялось твердотельным лазером в непрерывном режиме с длиной волны 532 нм и оптической мощностью 200 мкВт. Диаметр лазерного пятна на поверхности образца составлял ~0.6-0.7 мкм.

Для исследования кинетики гибели фотогенерированных носителей тока был применен метод времяразрешенной микроволновой фотопроводимости (FTRMC) в диапазоне частот 36 ГГц при комнатной температуре. Временное разрешение регистрирующей цепи было ~5 нс. Фотопроводимость возбуждали азотным лазером ЛГИ-21 с $\lambda =$ = 337 нм и длительностью импульса 8 нс. Максимальная плотность светового потока, падающего на образец за импульс (экспозиция), составляла 10^{15} фотон/см² за импульс. Интенсивность света

Рис. 1. Дифрактограммы $Cu_2ZnSn(S_xSe_{1-x})_4 c x = 0$ (1), 0.3 (2), 0.5 (3), 0.7 (4), 1.0 (5).

в экспериментах изменяли с помощью светофильтров.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1 представлены дифрактограммы твердых растворов $Cu_2ZnSn(S_xSe_{1-x})_4$ с x = 0, 0.3, 0.5,0.7, 1.0. На дифрактограммах присутствуют рефлексы, характерные только для тетрагональной структуры этих соединений, что свидетельствует об однофазности полученных образцов. Кроме того, из представленных дифрактограмм видно, что в $Cu_2ZnSn(S_xSe_{1-x})_4$ при замещении атомов селена атомами серы с меньшим атомным радиусом все рефлексы смещаются в область больших углов, т.е. происходит сжатие кристаллической решетки. Установлено, что зависимость параметров элементарной ячейки твердых растворов $Cu_2ZnSn(S_xSe_{1-x})_4$ (x = 0, 0.3, 0.5, 0.7, 1.0) [3, 8], рассчитанных методом наименьших квадратов, от х линейная в соответствии с законом Вегарла. Выполнение данного закона подтверждает, что исследованные образцы $Cu_2ZnSn(S_xSe_{1-x})_4$ являются твердыми растворами.

Из табл. 1 видно, что экспериментальные данные химического состава поликристаллов соединений Cu₂ZnSnS₄, Cu₂ZnSnSe₄ и их твердых растворов Cu₂ZnSn(S_xSe_{1-x})₄, полученные с помощью PCM, удовлетворительно согласуются с расчетными значениями в пределах погрешности измерений, которая не превышала 2%. Атомные соотношения элементов Cu/(Zn + Sn), Cu/Zn, и Zn/Sn в полученных поликристаллических образцах находятся в диапазонах 0.96–1.03, 1.89– 2.12 и 0.91–1.03 соответственно.

Как известно, метод КРС полезен для анализа кристаллической структуры и фазового состава соединений CZTSSe, поскольку основные рефлексы в рентгеновских спектрах соединений Cu₂ZnSnS₄ и Cu₂ZnSnSe₄ могут перекрываться с рефлексами возможных побочных фаз, таких как ZnS(Se), Cu₂SnS(Se)₃ и Cu₂S(Se) [9, 10], что затрудняет их обнаружение. Согласно неопределенному/неполному представлению структуры кестерита (пр. гр. $I\overline{4}$ ($\Gamma = 3A + 6B + 6E$)), для CZTSSe теоретически предсказано 27 активных комбинационных мод, из которых большинство экспериментально обнаружено для соединений CZTS и CZTSe [11, 12]. Обычно из всех этих мод наиболее сильными являются две моды А1-симметрии.

На рис. 2 представлены спектры КРС поликристаллов Cu₂ZnSnS₄, Cu₂ZnSnSe₄ и Cu₂ZnSn(S_xSe_{1-x})₄, измеренные при комнатной температуре. В спектре КРС поликристаллов соединения CZTS (x = 1.0) обнаруживаются пики при 286, 336 и 370 см⁻¹, в то время как для CZTSe (x = 0) – при 172, 194 и 232 см⁻¹. В обоих случаях все обнаруженные пики могут быть отнесены к колебательным модам кестерита CZTS или CZTSe и находятся в хорошем соответствии с рассчитанными [13] и экспериментальными [14, 15] положениями для этих соединений. Причем получен-

x	Си, ат. %		Zn, ат. %		Sn, ат. %		S, ат. %		Se, ат. %	
	расч.	эксп.	расч.	эксп.	расч.	эксп.	расч.	эксп.	расч.	эксп.
1.0	25.00	24.26	12.50	12.82	12.50	12.47	50.00	50.45	_	_
0.3	25.00	24.72	12.50	12.68	12.50	12.60	15.00	14.78	35.00	35.22
0.5	25.00	25.16	12.50	11.86	12.50	12.98	25.00	25.42	25.00	24.58
0.7	25.00	24.87	12.50	12.14	12.50	12.99	35.00	35.22	15.00	14.78
0.0	25.00	25.37	12.50	12.48	12.50	12.21	—	—	50.00	49.94

Таблица 1. Расчетные и экспериментальные данные химического состава соединений Cu_2ZnSnS_4 , $Cu_2ZnSnSe_4$ и их твердых растворов $Cu_2ZnSn(S_xSe_{1-x})_4$

ные соединения CZTS и CZTSе имеют основную моду A_1 -симметрии около 336 и 194 см⁻¹ соответственно. Никаких колебательных мод, характерных для побочных фаз, явно не наблюдается, что свидетельствует об отсутствии примесных фаз в полученных поликристаллах.

В отличие от соединений CZTS и CZTSе твердые растворы Cu₂ZnSn(S_x Se_{1-x})₄ с x = 0.3, 0.5 и 0.7 имеют более сложные спектры КРС (см. рис. 2) и характеризуются наличием двух доминирующих широких пиков в области высоких (280–400 см⁻¹) и низких (150–270 см⁻¹) частот [16]. Пики в высокочастотной области идентифицируются как CZTSподобные, соответствующие модам A_1 -симметрии, включающим в себя колебания только ионов S,

Puc. 2. Спектры KPC Cu₂ZnSn(S_x Se_{1 - x})₄ c x = 0 (1), 0.3 (2), 0.5 (3), 0.7 (4), 1.0 (5).

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 56 № 10 2020

а пики в более низкой частотной области идентифицируются как CZTSe-подобные, соответствующие также модам А₁-симметрии, включающим колебания только ионов Se. На представленных спектрах КРС Cu₂ZnSn(S_xSe_{1-x})₄ с x = 0.3, 0.5 и 0.7 хорошо видно, что изменение концентрации халькогенов (S, Se) приводит к сдвигу комбинационных мод A_1 -симметрии CZTS и CZTSe в сторону более высокого (увеличение содержания серы) или более низкого (увеличение содержания селена) волнового числа. Кроме того, при увеличении содержания серы происходит снижение интенсивности колебательных мод CZTSe, а моды CZTS становятся доминирующими. Такое поведение хорошо согласуется с двухмодовым поведением соединения CZTSSe из-за сосуществования атомов S и Se [17]. Наблюдаемый сдвиг мод A₁-симметрии CZTS и CZTSe в направлении высокой частоты при увеличении содержания серы имеет линейный характер. Это явление обусловлено масс-эффектом и изменением прочности связи в образцах CZTSSe [18, 19].

Одним из методов, позволяющих исследовать кинетику гибели фотогенерированных носителей тока, является метод время-разрешенной люминесценции [20, 21], основанный на исследовании кинетики затухания спектра излучения. Однако этим методом регистрируются только процессы, протекающие с излучением света, например рекомбинационная люминесценция. Для регистрации процессов гибели свободных носителей тока, идущих без излучения света - захват акцепторами, ловушками, электрон-дырочная рекомбинация, рекомбинация через локализованные состояния и т.д., – этот метод не пригоден. Электрические методы применимы в более общем случае. Одним из таких методов является метод времяразрешенной микроволновой фотопроводимости (FTRMC) [22]. Этот метод позволяет следить за изменением концентрации носителей тока в образце. Кроме того, важно отметить, что благодаря обычно малому дрейфовому смещению носителей тока под действием электрического поля метод позволяет исследовать микро- и макрообъекты.

Рис. 3. Спады микроволновой фотопроводимости образцов $Cu_2ZnSn(S_xSe_{1-x})_4 \text{ с } x = 0.3$ (*1*) и 1.0 (*2*).

Рис. 4. Зависимости амплитуды микроволнового фотоответа от интенсивности падающего света для образцов Cu₂ZnSn(S_xSe_{1-x})₄ с x = 0.3 (*1*) и 1.0 (*2*).

Исследование кинетики гибели фотогенерированных носителей тока показало, что при включении света отраженная мощность сначала резко возрастала — фотоотклик, а затем постепенно возвращалась к исходному состоянию. На рис. 3 для примера приведены спады микроволновой фотопроводимости для двух образцов $Cu_2ZnSn(S_xSe_{1-x})_4$ с разным содержанием серы и селена (x = 0.3 и 0.1). Зависимости амплитуды фотоотклика от интенсивности света $\Delta P_{max}(I_0)$ для исследуемых образцов были нелинейными. Этот факт свидетельствует о том, что при использованных в эксперименте интенсивностях света был заметен вклад в фотоотклик процесса гибели второго порядка (рекомбинация электронов и дырок) на време-

нах, меньших временного разрешения установки $\tau_{np} < 5$ нс. Из рис. 3 можно видеть, что на больших временах проявляется "медленная" компонента фотоотклика (кривая 2), свидетельствующая о перезахвате электронов в мелких ловушках для образцов с большим содержанием серы. Таким образом, обнаружено, что при большем содержании серы образуется бо́льшая концентрация мелких ловушек по сравнению с образцами, в которых содержание селена выше [23].

Если принять это предположение, то разная степень нелинейности зависимости $\Delta P_{\text{max}}(I)$ в образцах с разным *х* может быть связана с разным соотношением процессов гибели избыточных носителей тока первого и второго порядков в этих образцах. Так, для процесса гибели электрона первого порядка (например, захват в ловушки) следует ожидать линейной зависимости амплитуды фотоотклика от интенсивности света. Тогда как для процесса рекомбинации свободных электронов и дырок (второй порядок реакции) зависимость $\Delta P_{\text{max}}(I)$ лишь при очень малых временах может быть линейной, а далее должна приближаться к $I^{1/2}$ [23].

Различия соотношения процессов гибели избыточных носителей тока первого и второго порядков естественно ожидать в образцах $Cu_2ZnSn(S_xSe_{1-x})_4$ при увеличении содержания серы, поскольку возникают дополнительные глубокие уровни, которые могут служить акцепторами электронов (рис. 4).

ЗАКЛЮЧЕНИЕ

Поликристаллические четверные полупроводниковые соединения $Cu_2ZnSnSe_4$, Cu_2ZnSnS_4 и их твердые растворы $Cu_2ZnSn(S_xSe_{1-x})_4$ были синтезированы однотемпературным методом из элементов Cu, Zn, Sn, S и Se. Установлено, что экспериментальные данные химического состава полученных поликристаллических образцов незначительно отличаются от расчетных в пределах относительной погрешности измерений (2 ат. %). Показано, что как исходные соединения Cu2ZnSnSe4, Cu₂ZnSnS₄, так и твердые растворы на их основе являются однофазными и кристаллизуются в тетрагональной структуре. Установлено также, что параметры элементарной ячейки уменьшаются с ростом концентрации серы линейно в соответствии с законом Вегарда, что свидетельствует об образовании непрерывного ряда твердых растворов в области 0 < *x* < 1.

Показано, что основные моды A_1 -симметрии в спектрах КРС твердых растворов Cu₂ZnSn(S_xSe_{1-x})₄ сдвигаются в область высоких частот с увеличением содержания серы, что обусловлено массэффектом и изменением силы связи.

Исследование влияния содержания серы и селена на кинетику гибели фотогенерированных носителей тока в поликристаллических твердых растворах $Cu_2ZnSn(S_xSe_{1-x})_4$ показало различное соотношение процессов гибели избыточных носителей тока первого и второго порядков. Это обусловлено тем, что при увеличении содержания серы возникают дополнительные глубокие уровни, которые могут служить акцепторами для электронов.

БЛАГОДАРНОСТЬ

Данные исследования выполнены с использованием УНУ "Установка для измерения времен жизни фотогенерированных носителей тока методом микроволновой фотопроводимости в диапазоне частот 36 ГГЦ" при финансовой поддержке Белорусского республиканского фонда фундаментальных исследований и Российского фонда фундаментальных исследований (гранты Ф18Р-243, Бел_а 18-58-00021, Т20УКА-014), а также в рамках госзадания № АААА-А19-119070790003-7.

СПИСОК ЛИТЕРАТУРЫ

- 1. Фаренбрух А., Бъюб Р. Солнечные элементы: Теория и эксперимент. М.: Энергоатомиздат, 1987. 280 с.
- Burgelman M., Marlein J. Analysis of Graded Band Gap Solar Cells with SCAPS // Proc. of the 23rd Eur. Photovoltaic Solar Energy Conf. Valencia. 2008. P. 2151– 2155.
- 3. *Rakitin V.V., Novikov G.F.* The Solar Cells of Third Generation Based on Cupper Quadruple Compounds with Kesterite Structure // Russ. Chem. Rev. 2017. V. 86. № 2. P. 99–112.
- Yan Q., Cheng S., Li H., Yu X., Fu J., Tian Q., Jia H., Wu S. High Flexible Cu₂ZnSn(S,Se)₄ Solar Cells by Green Solution-Process // Solar Energy. 2019. V. 177. P. 508-516.
- Matsushita H., Ichikawa T., Katsui A. Structural, Thermodynamical and Optical Properties of Cu₂-II-IV-VI₄ Quaternary Compounds // J. Mater. Sci. 2005. V. 40. P. 2003–2005.
- Боднарь И.В., Викторов И.А., Волкова Л.В., Бунцевич Р.Л. Исследование системы Cu₂ZnSnS₄-Cu₂ZnSnSe₄ // Докл. БГУИР. 2015. № 4(90). C. 10–15.
- Новоселова А.В., Лазарев В.Б., Медведева З.С., Лужная Н.П., Левин А.А., Елисеев А.А., Зломанов В.П. Физико-химические свойства полупроводниковых веществ. М.: Наука, 1979. 340 с.
- Гременок В.Ф., Шелег А.У., Гуртовой В.Г., Хорошко В.В., Новиков Г.Ф. Получение и исследование кристаллической структуры системы Cu₂ZnSnS₄-Cu₂ZnSnSe₄ // Матер. 1-й Междунар. науч.-практ. конф. "Элементы, приборы и системы электронной техники". Запорожье. 2018. С. 29–31.
- Olekseyuk I.D., Dudchak I.V., Piskach L.V. Phase Equilibria in the Cu₂S–ZnS–SnS₂ System // J. Alloys Compd. 2014. V. 368. P. 135–143.

- Dudchak I.V., Piskach L.V. Phase Equilibria in the Cu₂SnSe₃-SnSe₂-ZnSe System // J. Alloys Compd. 2003. V. 351. P. 145-150.
- Dimitrievska M., Fairbrother A., Fontane X., Jawhari T., Izquierdo-Roca V., Saucedo E., Perez-Rodriguez A. Multiwavelength Excitation Raman Scattering Study of Polycrystalline Kesterite Cu₂ZnSnS₄ Thin Films // Appl. Phys. Lett. 2014. V. 104. P. 021901.
- Guc M., Levcenko S., Izquierdo-Roca V., Fontane X., Arushanov E., Perez-Rodriguez A. Polarized Raman Scattering Analysis of Cu₂ZnSnSe₄ and Cu₂ZnGeSe₄ Single Crystals // J. Appl. Phys. 2013. V. 114. P. 193514.
- Khare A., Himmetoglu B., Johnson M., Norris D.J., Cococcioni M., Aydil E.S. Calculation of the Lattice Dynamics and Raman Spectra of Copper Zinc Tin Ghalcogenides and Comparison to Experiments // J. Appl. Phys. 2012. V. 111. P. 083707.
- Redinger A., Hones K., Fontane X., Izquierdo-Roca V., Saucedo E., Valle N., Perez-Rodriguez A., Siebentritt S. Detection of a ZnSe Secondary Phase in Coevaporated Cu₂ZnSnSe₄ Thin Films // Appl. Phys. Lett. 2011. V. 98. P. 101907.
- Wang K., Gunawan O., Todorov T., Shin B., Chey S.J., Bojarczuk N.A., Mitzi D., Guha S. Thermally Evaporated Cu₂ZnSnS₄ Solar Cells // Appl. Phys. Lett. 2010. V. 97. P. 143508.
- Dimitrievska M., Xie H., Fairbrother A., Fontane X., Gurieva G., Saucedo E., Perez-Rodriguez A., Schorr S., Iz-quierdo-Roca V. Multiwavelength Excitation Raman Scattering of Cu₂ZnSn(S_xSe_{1-x})₄ (0 ≤ x ≤ 1) Polycrystalline Thin Films: Vibrational Properties of Sulfoselenide Solid Solutions // Appl. Phys. Lett. 2014. V. 105. P. 031913.
- Grossberg M., Krustok J., Raudoja J., Timmo K., Altosaar M., Raadik T. Photoluminescence and Raman Study of Cu₂ZnSn(Se_xS_{1-x})₄ Monograins for Photovoltaic Applications // Thin Solid Films. 2010. V. 519. P. 7403–7406.
- Papadimitriou D., Esser N., Xue C. Structural Properties of Chalcopyrite Thin Films Studied by Raman Spectroscopy // Phys. Status. Solidi. B. 2005. V. 242. P. 2633–2643.
- Neumann H. Lattice Vibrations in AIBIIIC2VI Chalcopyrite Compounds // HeIv. Chim. Acta. 1985. V. 58. P. 337–346.
- Repins I.L., Metzger W.K., Perkins C.L., Li J.V., Contreras M.A. Measured Minority-Carrier Lifetime and CIGS Device Performance // Proc. of the 34th IEEE Photovoltaic Specialists Conf. Philadelphia. Pennsylvania. 2009. P. 000978–000983.
- Sakurai T., Taguchi K., Islam M.M., Ishizuka S., Yamada A. Time-Resolved Microphotoluminescence Study of Cu(In,Ga)Se₂ // Jpn. J. Appl. Phys. 2011. V. 50. P. 05FC01–05FC05.
- 22. Novikov G.F., Marinin A.A., Rabenok E.V. Microwave Measurements of the Pulsed Photoconductivity and Photoelectric Effect // Instrum. Exp. Tech. 2010. V. 53. № 2. P. 233–239.
- Novikov G.F. Two Advanced Research Methods: Frequency-Time-Resolved Microwave Photoconductivity and Broadband Photodielectric Spectroscopy // J. Renew. Sustain. Energy. 2015. V. 7. P. 011204-1–011204-10.