УДК 54.056

ПОЛУЧЕНИЕ ОСОБО ЧИСТОГО ИОДИДА ЦЕЗИЯ

© 2020 г. М. В. Мастрюков¹, М. Н. Бреховских^{1, *}, В. М. Климова², П. В. Корнев², В. А. Федоров¹

¹Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук, Ленинский пр., 31, Москва, 119991 Россия

²АО "Государственный научно-исследовательский и проектный институт редкометаллической промышленности "Гиредмет", Электродная ул., 2, стр. 1, Москва, 111524 Россия

> *e-mail: mbrekh@igic.ras.ru Поступила в редакцию 12.03.2020 г. После доработки 08.05.2020 г. Принята к публикации 18.05.2020 г.

В работе изложены результаты физико-химических исследований процесса получения особо чистого CsI квалификации 99.998 мас. % из технического продукта, синтезируемого взаимодействием карбоната цезия и иодистоводородной кислоты. Синтезированный CsI подвергается двухстадийной очистке, включающей вакуумную сушку и высокотемпературную дистилляцию. Рассчитаны кинетические константы и определена зависимость влагосодержания от температуры. Финишной стадией очистки CsI от лимитируемых примесей является высокотемпературная дистилляция. Полученные образцы охарактеризованы по содержанию примесей металлов методом масс-спектрометрии с индуктивно связанной плазмой и РФА. Результаты представлены впервые.

Ключевые слова: иодид цезия, очистка, дистилляция, сушка, синтез **DOI:** 10.31857/S0002337X20100103

введение

Иодид цезия используется для выращивания сцинтилляционных монокристаллов CsI:Na, CsI:Tl [1–3], а также для изготовления стекол, прозрачных в ИК-диапазоне [4, 5]. Основным методом получения монокристаллов на основе иодида цезия является метод Киропулоса [6], позволяющий получить цилиндрические слитки массой в несколько десятков килограммов. Качество сцинтилляционных детекторов, полученных из такого материала, существенно зависит от примесного состава исходного компонента. Требования, предъявляемые к чистоте CsI, обусловлены областью его применения.

Другой перспективной областью применения поликристаллического иодида цезия являются перовскитовые солнечные элементы состава CsPbI₃ [7, 8] и CsSnI₃ [9, 10], охарактеризованные (до 23%) [11] коэффициентом полезного действия и достаточно низкой стоимостью фотоэлементов. Неорганические галогенидные перовскиты, которые поглощают свет в солнечных элементах, обладают улучшенными оптоэлектрическими свойствами, такими как высокий коэффициент поглощения, низкая энергия связи, высокая длина пробега и подвижность носителей заряда, а также требуемый размер запрещенной зоны.

Требования, предъявляемые к чистоте CsI, обусловлены областью его применения. Следует отметить, что при получении особо чистых веществ на финишных стадиях глубокой очистки, как правило, используются физико-химические методы, позволяющие удалить лимитируемые примеси элементов, близкие по свойствам к основному веществу. Для водорастворимых веществ с сильной зависимостью растворимости от температуры на завершающих операциях, как правило, используют высокотемпературную дистилляцию или ректификацию [12]. Ионы Na⁺ и K⁺ изоморфны ионам Cs⁺, поэтому для окончательной очистки иодида цезия двукратная высокотемпературная дистилляция оказывается перспективной.

Промежуточной стадией подготовки материалов для глубокой очистки высокотемпературными методами является вакуумная сушка [13]. Однако процесс сушки иодида цезия недостаточно описан в литературе.

Целью работы является исследование возможности получения особо чистого иодида цезия по схеме: синтез технического продукта с последующей вакуумной сушкой и вакуумной дистилляцией.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез иодида цезия. Технический CsI получали растворением карбоната цезия в иодистоводородной кислоте по реакции

$$Cs_2CO_3 + 2HI \rightarrow 2CsI + H_2O + CO_2\uparrow \qquad (1)$$

при комнатной температуре в сосуде из ниобия, который инертен к взаимодействию с иодидом цезия при повышенной температуре. Использовали Cs_2CO_3 квалификации "х. ч." и НІ "ч.". Для полного растворения карбоната цезия раствор нагревали, кипения, рН 3, поскольку сосуд из ниобия не устойчив в кислой среде. Горячий раствор фильтровали, упаривали при температуре около 393 К, подвергали кристаллизации, затем проводили вакуумную сушку в кварцевой ампуле.

Процесс сушки изучали термогравиметрическим методом в температурном интервале 293— 493 К при скорости нагревания 2 К/мин. В изотермических условиях процесс сушки изучали путем выдержки порошков при различных температурах до постоянной массы.

Получение особо чистого иодида цезия. После вакуумной сушки иодид цезия помещали в кварцевую ампулу для высокотемпературной дистилляции в вакууме. Процесс перегонки осуществляли в условиях равновесия системы жидкость—пар. Температура горячей зоны составляла 1073 К, холодной зоны — 895 К, давление в ампуле поддерживалось ~10⁻³ Торр. Загрузку в ампулу проводили в условиях, исключающих контакт продукта с окружающей атмосферой.

Методы исследования. Рентгенограммы образцов были получены при комнатной температуре с использованием дифрактометра Bruker D8 Advance (Cu K_{α} -излучение, Ni-фильтр и детектор LYNXEYE). Данные дифракции были собраны в диапазоне 20 от 25° до 75° с шагом 0.01°. Идентификацию фазового состава образцов осуществляли с использованием программы Diffrac.eva и банка дифракционных данных картотеки ICDD-PDF 2.

Примесный состав определяли методом массспектрометрии с индуктивно связанной плазмой на спектрометре iCAP 6300 Duo (Thermo).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Для оценки кинетических параметров сушки использовалось дифференциальное уравнение с обобщенным коэффициентом диффузии

$$\frac{\partial x}{\partial \tau} = D_r \left(\frac{\partial^2 x}{\partial r^2} + \frac{2}{r} \frac{\partial x}{\partial \tau} \right)$$
(1)

с заданными граничными условиями

 $x_{(r=R)} = x_{p}; \partial x / \partial r_{(r=0)} = 0; x_{(r=0)} = x_{0},$ где x, x_{0} и x_{p} – текущее, начальное и равновесное влагосодержание соответственно; r – текущая координата по радиусу; R – радиус частицы; τ – время; D – обобщенный коэффициент диффузии воды в порах [14].

Рис. 1. Зависимости равновесного влагосодержания от температуры иодида цезия: *1* – расчет, *2* – эксперимент.

Предполагалось, что влага сосредоточена на внутренней поверхности закрытых пор. Принимали, что в момент времени $\tau = \tau_{\rm kp}$ при равномерном увлажнении частиц влагосодержание $x = x_{\rm kp}$.

Аналитическое решение уравнения для среднего по радиусу влагосодержания имеет вид

$$x = x_{p} + (x_{p} - x_{0}) \times$$

$$\times \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} Si(\pi n) \exp\left(-\frac{D_{r}\pi^{2}}{R^{2}}n^{2}\tau\right).$$
(2)

Приведенный коэффициент диффузии *D* воды в порах выражается через обобщенный коэффициент диффузии

$$D = \frac{D_r \pi^2}{R^2} = D_0 \exp\left(\frac{\Delta H}{RT}\right),\tag{3}$$

где D_0 – предэкспоненциальный множитель, ΔH – теплота десорбции. Зависимость равновесного влагосодержания от температуры (рис. 1) описывается уравнением

$$x_{\rm p} = x_{\rm p}^0 e^{-k_{\rm p}(T-T_0)},\tag{4}$$

где x_p^0 — равновесное влагосодержание при нормальной температуре $T_0 = 273$ K, k_p — константа температурной зависимости (K⁻¹).

В результате обработки экспериментальных данных была построена зависимость равновесного влагосодержания от температуры иодида цезия, полученная в процессе его вакуумной сушки. Показано, что при линейном повышении темпера-

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 56 № 10 2020

<i>Т</i> , К	<i>D</i> , м ² /с	τ, c
343	2.18×10^{-3}	2580
363	5.21×10^{-3}	1140
373	8.82×10^{-3}	840
443	3.93×10^{-2}	180

туры кривая влагосодержания описывается экспоненциальной зависимостью. С помощью уравнения (4) по методу наименьших квадратов были получены параметры равновесного влагосодержания x_p и константа k_p . Таким образом, теоретическое уравнение, описывающее зависимость равновесного влагосодержания иодида цезия от температуры описывается уравнением (5) (рис. 1, кривая *I*).

$$x_{\rm p} = 0.238 {\rm e}^{0.036(T-T_0)}.$$
 (5)

Экспериментальные данные приведены на кривой 2. Стандартное отклонение расчетных и экспериментальных данных $S_x = 0.02$. С учетом дисперсии воспроизводимости по критерию Фишера для интервала значимости 0.05 установлено соответствие расчетов эксперименту.

На основании математических уравнений, описывающих процесс вакуумной сушки иодида цезия, были рассчитаны значения кинетических констант и продолжительность процесса сушки для различных температур. Данные представлены в табл. 1. Экспоненциальная зависимость *D* от температуры является выражением того, что диффузия происходит вследствие термически активированного движения атомов, которое всегда описыва-

ется экспонентой: $e^{-\frac{q}{kT}}$, где q – энергия активации элементарного акта перемещения атома. Энергию активации можно оценить по наклону линии, описывающей зависимость в координатах $\ln D$ от T^{-1} . Рассчитанный коэффициент диффузии позволяет масштабировать и прогнозировать условия для промышленного производства иодида цезия.

После вакуумной сушки иодида цезия была проведена высокотемпературная дистилляция в условиях равновесия системы жидкость—пар при температурах горячей зоны 1073 К и холодной зоны 895 К, давление в ампуле поддерживалось ~ 10^{-3} Торр. Данный метод очистки позволяет избавиться от большинства основных примесей, в том числе щелочных металлов, которые могут переходить в основную фракцию в виде летучих иодидов.

Полученные образцы CsI охарактеризованы методом РФА (рис. 2), результаты которого под-

Рис. 2. Рентгенограмма особо чистого CsI, полученного дистилляционным методом.

Примесь	Содержание примесей в Cs ₂ CO ₃ , ppm	Содержание примесей в CsI после дистилляции, ppm
Al	8	0.1
Cl	10	3
Br	12	0.1
Ca	15	< 0.01
F	10	<0.01
Fe	1	0.07
Κ	100	10
Li	90	0.01
Mg	5	0.1
Na	20	4
Pb	1	<0.2
Rb	1000	0.8
Ti	20	0.6
Sr	10	0.4

Таблица 2. Результаты определения примесного состава образцов иодида цезия

тверждает химическую чистоту полученного образца CsI.

После очистки образцы иодида цезия были проанализированы на спектрометре с индуктивно связанной плазмой. В табл. 2 приведены данные по содержанию основных примесей в исходном карбонате цезия и в полученном иодиде цезия после комплексной очистки вакуумной сушкой и высокотемпературной дистилляцией. Трудноудаляемые примеси, которые находятся в форме оксидов или иодидов металлов, концентрируются в кубовом остатке в дистилляционной ампуле. Таким образом, полученные образцы отвечают квалификации "ос. ч." с содержанием основного компонента 99.998 мас. %. Переход примесей из конструкционного материала не наблюдался.

ЗАКЛЮЧЕНИЕ

Изучен процесс получения иодида цезия квалификации "ос. ч." (99.998 мас. % основного компонента) и оптимизированы режимы его синтеза. Рассчитаны кинетические константы вакуумной сушки, с помощью которых построена зависимость влагосодержания от температуры, что позволило скорректировать режимы вакуумной сушки и очистки методом высокотемпературной дистилляции. Полученные образцы охарактеризованы методом масс-спектрометрии с индуктивно связанной плазмой и РФА. Показано, что комбинация вакуумной сушки и высокотемпературной дистилляции позволяет получить иодид цезия высокой чистоты с содержанием примесей металлов <10⁻³%.

БЛАГОДАРНОСТЬ

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 19-33-90217.

Исследования выполнены с использованием оборудования ЦКП ИОНХ РАН, функционирующего при поддержке государственного задания ИОНХ РАН в области фундаментальных научных исследований.

СПИСОК ЛИТЕРАТУРЫ

- 1. Schotanus P., Kamermans R. Scintillation Characteristics of Pure and TI-Doped CsI Crystals // IEEE Trans. Nucl. Sci. 1990. V. 37. № 2. P. 177–182. https://doi.org/10.1109/23.106614
- 2. Mengesha W., Taulbee T.D., Rooney B.D., Valentine J.D. Light Yield Nonproportionality of CsI (Tl), CsI (Na), and YAP // IEEE Trans. Nucl. Sci. 1998. V. 45. № 3. P. 456–461. https://doi.org/10.1109/23.682426
- Collar J.I., Fields N.E., Hai M., Hossbach T.W., Orrell J.L., Overman C.T., Perumpilly G., Scholz B. Coherent Neutrino-Nucleus Scattering Detection with a CsI [Na] Scintillator at the SNS Spallation Source // Nucl. Instrum. Methods Phys. Res., Sect. A. 2015. V. 773. P. 56–65. https://doi.org/10.1016/j.nima.2014.11.037
- 4. Yang Z., Lucas P. Tellurium-Based Far-Infrared Trans-
- Yang Z., Lucas P. Tellurium-Based Far-Infrared Transmitting Glasses // J. Am. Ceram. Soc. 2009. V. 92. № 12. P. 2920–2923. https://doi.org/10.1111/j.1551-2916.2009.03323.x
- 5. Xu Y., Yang G., Wang W., Zeng H., Zhang X., Chen G. Formation and Properties of the Novel GeSe₂-In₂Se₃-CsI Chalcohalide Glasses // J. Am. Ceram. Soc. 2008. V. 91. № 3. P. 902-905. https://doi.org/10.1111/j.1551-2916.2007.02194.x
- 6. Zaslavsky B.G. Distinctive Features of Automated Pulling of Large Scintillation Alkali Iodides Single Crystals without Oxygen-Containing Impurities // J. Cryst. Growth. 2000. V. 218. № 2–4. P. 277–281. https://doi.org/10.1016/S0022-0248(00)00525-X
- Luo P., Xia W., Zhou S., Sun L., Cheng J., Xu C., Lu Y. Solvent Engineering for Ambient-Air-Processed, Phase-Stable CsPbI₃ in Perovskite Solar Cells // J. Phys. Chem. Lett. 2016. V. 7. № 18. P. 3603–3608. https://doi.org/10.1021/acs.jpclett.6b01576
- Ahmad W., Khan J., Niu G., Tang J. Inorganic CsPbI₃ Perovskite-Based Solar Cells: A Choice for a Tandem Device // Solar RRL. 2017. V. 1. № 7. P. 1700048. https://doi.org/10.1002/solr.201700048
- Chen Z., Wang J.J., Ren Y., Yu C., Shum K. Schottky solar cells based on CsSnI₃ thin-films // Appl. Phys. Lett. 2012. V. 101. № 9. P. 093901. https://doi.org/10.1063/1.4748888

- Shum K., Chen Z., Qureshi J., Yu C., Wang J. J., Pfenninger W., Vockic N., Midgley J., Kenney J.T. Synthesis and Characterization of CsSnI₃ Thin Films // Appl. Phys. Lett. 2010. V. 96. № 22. P. 221903. https://doi.org/10.1063/1.3442511
- Wu B., Zhou Y., Xing G., Xu Q., Garces H.F., Solanki A., Goh W.T., Padture N.P., Sum T.C. Long Minority-Carrier Diffusion Length and Low Surface-Recombination Velocity in Inorganic Lead-Free CsSnI₃ Perovskite Crystal for Solar Cells // Adv. Funct. Mater. V. 27. № 7. P. 1604818.

https://doi.org/10.1002/adfm.201604818

- 12. Бреховских М.Н., Мастрюков М.В., Корнев П.В., Гасанов А.А., Коваленко А.Э., Федоров В.А. Синтез и глубокая очистка дииодида олова // Неорган. материалы. 2019. Т. 55. № 9. С. 1029–1032. https://doi.org/10.1134/S0002337X1909001X
- 13. Семенов Г.В., Буданцев Е.В., Меламед Л.Э., Тропкина К.И. Математическое моделирование и экспериментальное исследование совмещенных циклов вакуумной сушки термолабильных материалов // Вестн. Междунар. академии холода. 2011. № 4. С. 5–11.
- Попов П.В. Диффузия: учебно-методическое пособие по курсу Общая физика. М.: МФТИ, 2016. 94 с.