УДК 544.012;537.31/.32;666.654

ВЛИЯНИЕ ДОБАВКИ МЕДИ НА ТЕРМОЭЛЕКТРИЧЕСКИЕ СВОЙСТВА СЛОИСТОГО КОБАЛЬТИТА КАЛЬЦИЯ, ПОЛУЧЕННОГО ГОРЯЧИМ ПРЕССОВАНИЕМ

© 2020 г. А. И. Клындюк^{1, *}, И. В. Мацукевич², М. Янек³, Е. А. Чижова¹, З. Ленчеш⁴, О. Ханзел⁴, П. Ветешка³

¹Белорусский государственный технологический университет, ул. Свердлова, 13А, Минск, 220006 Беларусь ²Институт общей и неорганической химии Национальной академии наук Беларуси, ул. Сурганова, 9/1, Минск, 220072 Беларусь

³Slovak University of Technology in Bratislava, Radlinského, 9, Bratislava, SK-812 37 Slovakia

⁴Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dubravska cesta, 9, Bratislava, SK-845 36 Slovakia

*e-mail: klyndyuk@belstu.by

Поступила в редакцию 27.01.2020 г. После доработки 19.06.2020 г. Принята к публикации 30.06.2020 г.

Горячим прессованием получена низкопористая керамика на основе слоистого кобальтита кальция с добавками меди, изучены ее микроструктура, электротранспортные и термоэлектрические свойства. Установлено, что введение в керамику частиц меди приводит к снижению среднего размера частиц фазы $Ca_3Co_4O_{9+\delta}$, уменьшению коэффициента термо-ЭДС образцов и их пористости, а также к возрастанию удельной электропроводности и фактора мощности (*P*) керамики. Наибольшее значение фактора мощности найдено для горячепрессованной керамики состава $Ca_3Co_4O_{9+\delta} + 2$ мас. % Cu ($P_{1100} = 521$ мкВт/(м K²)), что в 1.4 раза выше, чем для базового образца $Ca_3Co_4O_{9+\delta}$ с той же предысторией ($P_{1100} = 363$ мкВт/(м K²)), и более чем в пять раз превышает величину фактора мощности низкоплотной керамики $Ca_3Co_4O_{9+\delta}$, получаемой обычным твердофазным методом.

Ключевые слова: термоэлектрическая керамика, $Ca_3Co_4O_{9+\delta}$, Cu, горячее прессование, электропроводность, термо-ЭДС

DOI: 10.31857/S0002337X20110056

введение

Слоистый кобальтит кальция Са₃Со₄О_{9 + б} является наиболее перспективной основой для разработки материалов *p*-ветвей высокотемпературных термоэлектрогенераторов, так как имеет одновременно высокие значения электропроводности (σ) и коэффициента термо-ЭДС (S) и низкую теплопроводность (λ), а также устойчив на воздухе при высоких температурах [1]. Функциональные характеристики (фактор мощности (Р), показатель термоэлектрической добротности (ZT)) керамики на основе $Ca_3Co_4O_{9+\delta}$ значительно хуже, чем у монокристаллов, однако могут быть существенно улучшены за счет использования альтернативных керамическому низкотемпературных (растворных) методов синтеза [2–5], спекания керамики горячим прессованием [3, 6-8] или искрового плазменного спекания [4, 9, 10], частичного замещения кальция висмутом [6, 11, 12] либо редкоземельными элементами [13, 14] или кобальта – переходными либо тяжелыми металлами [15, 16], а

также создания в керамике химической [17] либо фазовой неоднородности [18, 19].

Фазовая неоднородность в керамике на основе слоистого кобальтита кальция может быть создана путем отжига керамики при температурах, превышающих температуру перитектоидного разложения фазы $Ca_3Co_4O_{9+\delta}$ (на воздухе $T_{\pi} = 1199$ K [20]); варьированием катионной стехиометрии исходной шихты так, чтобы состав керамики выходил за пределы области гомогенности $Ca_3Co_4O_{9+\delta}$ [21] (по данным [20], на воздухе однофазный слоистый кобальтит кальция формируется в диапазоне составов $Ca_3Co_{3.87}O_{9+\delta}$ — $Ca_3Co_{4.07}O_{9+\delta}$); а также введением в материал на стадии синтеза или спекания второй фазы — простых или сложных оксидов металлов [19, 22, 23] либо металлического серебра [6, 8, 24].

В последнем случае введение в керамику высокопроводящей фазы Ag позволяет значительно повысить удельную электропроводность образующихся при этом композитов и, как следствие, улучшить их термоэлектрические характеристики (*P*, *ZT*). Так, по данным [8], величина фактора мощности композита Ca₃Co₄O_{9+δ}/7.5 об. % Ag при температуре 1000 К составляет 0.47 мBт/(м K²), что на 40% выше, чем для керамики Ca₃Co₄O_{9+δ} без добавки серебра. Авторы [24] изучили термоэлектрические свойства композитов Ca₃Co₄O_{9+δ} + + *x* мас. % Ag (*x* = 0, 1, 3, 5 и 10) и установили, что наибольшее значение *P* демонстрирует материал состава Ca₃Co₄O_{9+δ} + 10 мас.% Ag – 0.43 мBт/(м K²) при температуре 1073 K, что на 40% выше, чем для базового образца Ca₃Co₄O_{9+δ}.

Целью данной работы было изучение возможности улучшения функциональных характеристик керамики на основе $Ca_3Co_4O_{9+\delta}$, полученной горячим прессованием, путем ее модификации частицами меди.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для получения порошка слоистого кобальтита кальция глицин-цитрат-нитратным методом 2 М водные растворы нитратов кальция и кобальта, приготовленные из Ca(NO₃)₂ · 4H₂O ("ч. д. а.") и Со(NO₃)₂ · 6H₂O ("ч. д. а."), смешивали с определенным количеством аминоуксусной (NH₂-CH₂-COOH) ("ч. д. а.") и лимонной (C₆H₈O₇) ("х. ч.") кислот при молярном соотношении компонентов $\Sigma n(M^{2+})$: $n(NH_2-CH_2-COOH)$: : $n(C_6H_8O_7) = 10:1:3$. Полученный раствор упаривали при постоянном перемешивании на магнитной мешалке IKA C-MAG HS-7 при температуре около 373 К до образования геля. Полученный гель продолжали выпаривать в нагревательном кожухе ITNS 1000 без перемешивания при 673 К, в ходе чего происходили карамелизация геля, его вспенивание и самовоспламенение в отдельной точке с мгновенным распространением фронта горения. В результате сгорания ксерогеля образовывался серо-коричневый порошок, который после кальцинирования на воздухе при 1073 К в течение 6 ч становился черным.

Синтез наночастиц меди (путем восстановления нитрата меди борогидридом натрия в водном растворе), а также композитов $Ca_3Co_4O_{9+\delta}$ + + *x* мас. % Cu (*x* = 1, 2, 5) проводили по методике, описанной в [25].

Спеченную керамику в форме таблеток диаметром 20 и толщиной 2–5 мм получали горячим прессованием на установке DSP–507 (Dr. Fritsch, Germany) в атмосфере аргона при температуре 1173 К под давлением 16.7 МПа в течение 15 мин. Для измерения электропроводности и термо-ЭДС из спеченной керамики вырезали образцы в форме прямоугольных параллелепипедов размером 4 × 4 × 7 и 4 × 4 × 20 мм, на торцах которых формировали Ад-электроды [26].

Фазовый состав образцов изучали при помощи рентгенофазового анализа (**РФА**) с использованием дифрактометра STOE Theta/Theta (Germany) (Co K_{α} -излучение), а их микроструктуру – с помощью сканирующей электронной микроскопии (**СЭМ**) на микроскопе SEM 7500F Jeol (Tokyo, Japan). Кажущуюся плотность ($\rho_{\text{каж}}$) спеченной керамики находили по массе и размерам образцов, а ее пористость вычисляли по формуле $\Pi = (1 - \rho_{\text{каж}}/\rho_{\text{рент}}) \times 100\%$, где $\rho_{\text{рент}}$ –рентгенографическая плотность образца ($\rho_{\text{рент}} = 4.677$ г/см³ [27]).

Электропроводность и термо-ЭДС материалов определяли в направлении, перпендикулярном оси прессования, на воздухе в интервале температур 300-1100 К по методикам [26]. Энергию активации электропроводности (E_a) образцов находили по линейным участкам зависимостей $ln(\sigma T) = f(1/T)$. Значения фактора мощности термоэлектриков вычисляли по формуле P = = $S^2 \sigma$ [1]. Температуропроводность (η) образцов Ca₃Co₄O_{9+ δ} + *x* мас. % Cu (*x* = 1, 2, 5) измеряли в направлении, параллельном оси прессования, при 300 К методом лазерной вспышки на установке Linseis LFA 1000 (Germany). Теплопроводность λ образцов находили по уравнению $\lambda =$ $= \eta \rho_{\kappa a \pi} c_{\nu \pi}$ по экспериментально найденным значениям их температуропроводности и кажущейся плотности, значения удельной теплоемкости (c_{va}) рассчитывали по данным [20]. Фононный (λ_{nh}) и электронный (λ_{e}) вклады в теплопроводность керамики вычисляли при помощи соотношений λ = $= \lambda_{ph} + \lambda_e, \lambda_e = \sigma LT$, где σ – удельная электропроводность керамики, L – число Лоренца (L = 2.45 × $\times 10^{-8} \text{ B}^2/\text{K}^2$). Величину ZT материалов находили по уравнению $ZT = (PT)/\lambda$ [1].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Полученный в результате сгорания ксерогеля порошок был образован объединенными в агломераты частицами размером 200-500 нм (рис. 1а). состоящими, согласно результатам РФА, из карбоната кальция CaCO₃ (ICDD PDF-2 2004, № 01-086-2341) и оксидов кобальта Со₃О₄ (ICDD PDF-2 2004, № 01-080-1539) и СоО (ICDD PDF-2 2004, № 01-089-7099) (рис. 1в, кривая 1, табл. 1). Частицы порошка после кальцинирования имели вид хорошо окристаллизованных пластин размером 500 нм-1 мкм с характерным для слоистого кобальтита кальция габитусом (рис. 1б), а на рентгеновской дифрактограмме порошка были идентифицированы рефлексы только одной фазы — $Ca_3Co_4O_{9+\delta}$ (рис. 1в, кривая 2, табл. 2) [28], параметры кристаллической структуры ко(a)

Рис. 1. Электронные микрофотографии (а, б) и рентгеновские дифрактограммы (в) порошка слоистого кобальтита кальция, полученного глицин-цитрат-нитратным методом, после сгорания ксерогеля (а, в, кривая *I*) и дополнительного кальцинирования при 1073 К в течение 3 ч (б, в, кривая 2) (на дифрактограмме 2 отмечены индексы Миллера фазы $Ca_3Co_4O_9 + \delta$).

торой составили: a = 0.4832 нм, $b_1 = 0.4567$ нм, $b_2 = 0.2843$ нм, c = 1.083 нм, $\beta = 98.24(1)^\circ$, что согласуется с данными [28]: a = 0.48376(7) нм, $b_1 =$ = 0.45565(6) нм, $b_2 = 0.28189(4)$ нм, c = 1.0833(1) нм, $\beta = 98.06(1)^{\circ}$.

На дифрактограммах композитов $Ca_3Co_4O_{9+\delta}$ + + *х* мас.% Cu (*x* = 1, 2, 5) (рис. 2, табл. 2) наблюдались отчетливые рефлексы основной фазы - слоистого кобальтита кальция, а также и слабовыраженные рефлексы примесной фазы меди (ICDD PDF-2 2004, № 01-089-2838), интенсивность которых увеличивалась с ростом x.

Кажущаяся плотность керамики Са₃Со₄О_{9 + δ}, полученной горячим прессованием, составила 3.480 г/см³, что значительно выше, чем для керамики, получаемой традиционным твердофазным методом (2.47 г/см³ [18]), а для композитов

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 56 № 11 2020

 $Ca_3Co_4O_{9+\delta} + x$ мас. % Си она сильно возрастала и изменялась в пределах 4.378-4.524 г/см³, что отвечает пористости 3-6% (табл. 3). Таким образом, введение в керамику на основе слоистого кобальтита кальция, полученную горячим прессованием, частиц меди позволяет получить низкопористую керамику ($\Pi < 7\%$), кажущаяся плотность которой близка к рентгенографической.

Как видно из рис. За, керамика состава Са₃Со₄О_{9+б} имела слоистую микроструктуру и состояла из хорошо окристаллизованных пластин ("чешуек") размером 2-10 мкм и толщиной 500 нм-1 мкм, ориентированных преимущественно в направлении, перпендикулярном оси прессования. Размеры частиц основной фазы слоистого кобальтита кальция – в композитах $Ca_3Co_4O_{9+\delta} + x$ мас. % Cu были значительно ниже

20, град					
эксперимент*	CaCO ₃	Co ₃ O ₄	Co ₂ O ₃		
21.76		21.83			
26.84	26.81				
34.18	34.04				
36.20	36.06	36.02			
42.18	42.16				
42.64		42.51	42.71		
46.20	46.10				
49.58			49.73		
50.62	50.67				
51.74		51.85			
55.48	55.03				
56.94	56.65				
67.88	67.97				
70.06		69.22			
72.30	71.86		72.97		

Таблица 1. Положения максимумов рефлексов на рентгеновской дифрактограмме продукта сгорания ксерогеля

* Рис. 1в, кривая 1.

Таблица 2. Положения максимумов рефлексов на рентгеновских дифрактограммах образцов $Ca_3Co_4O_{9+\delta}$ (рис. 1в, кривая 2) (x = 0) и $Ca_3Co_4O_{9+\delta} + x$ мас. % Cu (рис. 2)

20, град							
x = 0	x = 1	x = 2	x = 3	$Ca_3Co_4O_{9+\delta}$	Cu		
9.56	9.58	9.56	9.52	9.57			
19.18	19.18	19.20	19.16	19.21			
29.02	29.00	28.98	28.96	28.98			
33.94	33.88	33.88	33.78	33.92			
35.38	35.36	35.36	35.30	35.39			
38.98	39.02	39.00	38.98	38.97			
41.00	40.94	41.10	40.90	41.00			
43.66	43.66	43.66	43.64	43.63			
46.26	46.26	46.20	46.16	46.29			
47.26	47.24	47.14	47.16	47.33			
49.36	49.38	49.32	49.32	49.30			
	50.90	50.96	50.96		50.79		
51.04	51.04	51.04	51.02	50.98			
57.16	57.26	57.26	57.22	57.18			
	59.92	59.90	59.90		59.37		
60.06	60.08	60.06	60.10	60.07			
62.66	62.52	62.54	62.58	62.58			
65.58	65.54	65.46	65.48	65.56			
70.04	70.18	70.12	70.16	70.09			

и изменялись в пределах 1–5 мкм (рис. 36, 3в). На основании результатов СЭМ можно заключить, что введение в керамику на основе слоистого кобальтита кальция наночастиц меди существенно затрудняет рост зерен в процессе ее спекания и позволяет получить более мелкокристаллическую и низкопористую керамику.

Вблизи комнатной температуры электропроводность керамики носила металлический характер ($\partial \sigma / \partial T < 0$), который около 500 К изменялся на полупроводниковый ($\partial \sigma / \partial T > 0$) (рис. 4a). Величина удельной электропроводности керамики Ca₃Co₄O_{9 + δ} была значительно выше ($\sigma_{300} \approx$ $\approx 45 \, \text{См/см}$), чем для материалов, синтезируемых обычным твердофазным либо цитратным методами (σ₃₀₀ ≈ 20−25 См/см [5, 12, 14, 16, 18]), что обусловлено ее более низкой пористостью, увеличивалась более чем в два раза при введении в керамику частиц меди и далее возрастала при увеличении содержания меди в композитах (рис. 4а). Величина энергии активации электропроводности для образца Са₃Со₄О_{9 + 8} составила 0.137 эВ, а для модифицированных медью материалов была заметно ниже: 0.092-0.111 эВ (табл. 3). Таким образом, введение в слоистый кобальтит кальция частиц меди приводит к ожидаемому увеличению электропроводности образующихся при этом материалов и снижению энергии электропереноса.

Коэффициент термо-ЭДС изученной в работе керамики был положительным, на основании чего можно заключить, что основными носителями заряда в ней являются дырки, а его величина увеличивалась с ростом температуры и уменьшалась при увеличении содержания меди в образцах (рис. 46), что согласуется с результатами работ [8, 24], авторами которых установлено снижение величины *S* композитов Ca₃Co₄O_{9 + δ}/Ag при увеличении содержания серебра.

Значения фактора мощности исследованных материалов возрастали при увеличении температуры и для композитов $Ca_3Co_4O_{9+\delta} + x$ мас. % Си были значительно выше, чем для базового образца состава $Ca_3Co_4O_{9+\delta}$ (рис. 4в), что обусловлено высокими значениями их удельной электропроводности. Наибольшая величина фактора мощности установлена для композита состава $Ca_3Co_4O_{9+\delta} + 2$ мас. % Си – $P_{1100} = 521$ мкВт/(м K²), что в 1.4 раза выше, чем для материала матрицы – $Ca_3Co_4O_{9+\delta}$ ($P_{1100} = 363$ мкВт/(м K²)) и более чем в пять раз превышает значение фактора мощности низкоплотной керамики $Ca_3Co_4O_{9+\delta}$, получаемой традиционным твердофазным методом ($P_{1100} = 100$ мкВт/(м K²) [18]).

Значения температуропроводности материалов Ca₃Co₄O_{9 + δ} + *x* мас. % Cu при температуре 300 К изменялись в пределах (5.25–5.75) × 10⁻⁷ м²/c,

Рис. 2. Рентгеновские дифрактограммы композитов $Ca_3Co_4O_{9+\delta} + x$ мас. % Cu: x = 1 (1), 2 (2) и 5 (3) (на дифрактограмме 3 отмечены индексы Миллера фазы $Ca_3Co_4O_{9+\delta}$).

а найденные по ним величины теплопроводности составляли $\approx 2.2-2.5$ Вт/м К) (табл. 3), что типично для низкопористой керамики на основе слоистого кобальтита кальция [5]. Электронная составляющая теплопроводности была невелика ($\lambda_e/\lambda \approx 3\%$), а фононная являлась преобладающей ($\lambda_{ph}/\lambda \approx 97\%$) (табл. 3), что характерно для материалов данного типа [12, 14]. Величина ZT_{300} модифицированной частицами меди керамики на основе слоистого кобальтита кальция при 300 К составила 0.0228–0.0275, а оценочные значения ZT_{1100} (рассчитанные без учета температурной зависимости λ) превышали 0.2 (табл. 3), что значительно выше, чем для материала состава Ca₃Co₄O_{9+ δ}, получаемого обычным твердофазным методом, и близко к значениям *ZT*

Таблица 3. Значения кажущейся плотности ($\rho_{\text{каж}}$), пористости (П), энергии активации электропроводности (E_a), температуропроводности (η_{300}), общей теплопроводности (λ_{300}), фононного ($\lambda_{ph, 300}$) и электронного ($\lambda_{e, 300}$) вкладов в нее и показателя термоэлектрической добротности (ZT_{300}, ZT_{1100}) композитов Ca₃Co₄O_{9 + δ} + x мас. % Cu

x	1	2	5
ρ _{каж} , г/см ³	4.378	4.524	4.401
П, %	6.4	3.3	5.9
<i>Е</i> _а , эВ	0.092	0.103	0.111
η ₃₀₀ , м ² /с	5.62×10^{-7}	5.75×10^{-7}	5.25×10^{-7}
λ ₃₀₀ , Вт/(м К)	2.414	2.527	2.246
λ _{ph,300} , Вт/(м К)	2.346	2.458	2.176
λ _{е,300} , Вт/(м К)	0.068	0.069	0.070
ZT ₃₀₀	0.0275	0.0227	0.0228
ZT ₁₁₀₀	0.236	0.223	0.213

КЛЫНДЮК и др.

Рис. 3. Электронные микрофотографии поверхности сколов (\perp оси прессования) керамики состава Ca₃Co₄O_{9 + δ} + *x* мас. % Cu: *x* = 0 (a), 1 (б), 2 (в) и 5 (г).

Рис. 4. Температурные зависимости удельной электропроводности (а), коэффициента термо-ЭДС (б) и фактора мощности (в) образцов состава $Ca_3Co_4O_{9+\delta} + x$ мас. % Cu: x = 0 (1), 1 (2), 2 (3) и 5 (4).

для высокоплотной керамики, получаемой горячим прессованием либо искровым плазменным спеканием [5].

ЗАКЛЮЧЕНИЕ

Методом горячего прессования получена высокоплотная керамика на основе $Ca_3Co_4O_{9+\delta}c$ добавками частиц меди, исследованы ее микроструктура, электротранспортные, теплофизические и термоэлектрические свойства.

Показано, что модификация слоистого кобальтита кальция, полученного горячим прессованием, частицами меди позволяет получить высокоплотную мелкокристаллическую керамику с высокими значениями электропроводности и улучшенными функциональными (термоэлектрическими) характеристиками.

Установлено, что среди исследованных образцов наибольшим значением фактора мощности характеризуется керамика состава $Ca_3Co_4O_{9+\delta}$ + + 2 мас. % Cu – 521 мкВт/(м K²) при температуре 1100 K, что в 1.4 раза больше, чем для базового образца $Ca_3Co_4O_{9+\delta}$, имеющего такую же предысторию ($P_{1100} = 363$ мкВт/(м K²)) и в 5.2 раза выше фактора мощности керамики $Ca_3Co_4O_{9+\delta}$, получаемой традиционным способом ($P_{1100} = 100$ мкВт/(м K²) [16]).

БЛАГОДАРНОСТЬ

Работа выполнена при поддержке ГПНИ "Физическое материаловедение, новые материалы и технологии" (подпрограмма "Материаловедение и технологии материалов", задание 1.55 "Разработка и исследование композиционных термоэлектриков на основе слоистого кобальтита кальция") и Национальной стипендиальной программы Словацкой Республики.

СПИСОК ЛИТЕРАТУРЫ

- Koumoto K., Terasaki I., Murayama N. (eds). Oxide Thermoelectrics. Research Signpost. Trivandrum, 2002. 255 p.
- Sotelo A., Constantinescu G., Rasekh Sh., Torres M.A., Diez J.C., Madre M.A. Improvement of Thermoelectric Properties of Ca₃Co₄O₉ Using Soft Chemistry Synthetic Methods // J. Eur. Ceram. Soc. 2012. V. 32. P. 2415– 2422.

https://doi.org/10.1016/j.jeurceramsoc.2012.02.012

 Katsuyama S., Takiguchi Y., Ito M. Synthesis of Ca₃Co₄O₉ Ceramics by Polymerized Complex and Hydrothermal Hot-Pressing Processes and the Investigation of Its Thermoelectric Properties // J. Mater. Sci. 2008. V. 43. P. 3553–3559.

https://doi.org/10.1007/s10853-008-2561-x

 Wu N.Y., Holgate T.C., Nong N.V., Pryds N., Linderoth S. High Temperature Thermoelectric Properties of Ca₃Co₄O_{9+δ} by Auto-Combustion Synthesis and Spark Plasma Sintering // J. Eur. Ceram. Soc. 2014.

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 56 № 11

V. 34. № 4. P. 925–931.

https://doi.org/10.1016/j.jeurceramsoc.2013.10.022

- Królicka A.K., Piersa M., Mirowska A., Michalska M. Effect of Sol-Gel and Solid-State Synthesis Techniques on Structural, Morphological and Thermoelectric Performance of Ca₃Co₄O₉ // Ceram. Int. 2018. V. 44. № 12. P. 13736–13743. https://doi.org/10.1016/j.ceramint.2018.04.215
- Song Y., Sun Q., Zhao L., Wang F., Jiang Z. Synthesis and Thermoelectric Power Factor of (Ca_{0.95}Bi_{0.05})₃Co₄O₉/Ag Composites // Mater. Chem. Phys. 2009. V. 113. № 23. P. 645–649.

https://doi.org/10.1016/j.matchemphys.2008.08.029

 Torres M.A., Garcia G., Urrutibeascoa I., Madre M.A., Diez J.C., Sotelo A. Fast Preparation Route to High-Performances Textured Sr-Doped Ca₃Co₄O₉ Thermoelectric Materials Through Precursor Powder Modification // Sci. China Mater. 2019. V. 62. № 3. P. 399– 406.

https://doi.org/10.1007/s40843-018-9339-1

Xiang P.-H., Kinemuchi Y., Kaga H., Watari K. Fabrication and Thermoelectric Properties of Ca₃Co₄O₉/Ag Composites // J. Alloys Compd. 2008. V. 454. № 1–2. P. 364–369.

https://doi.org/10.1016/j.jallcom.2006.12.102

- *Zhang Y., Zhang J.* Rapid Reactive Synthesis and Sintering of Textured Ca₃Co₄O₉ Ceramics by Spark Plasma Sintering // J. Mater. Process. Technol. 2008. V. 208. № 1–3. P. 70–74. https://doi.org/10.1016/j.jmatprotec.2007.12.093
- 10. Liu Y., Lin Y., Shi Z., Nan C.-W. Preparation of Ca₃Co₄O₉ and Improvement of its Thermoelectric Properties by Spark Plasma Sintering // J. Am. Ceram. Soc. 2005. V. 88. № 5. P. 1337–1340. https://doi.org/10.1111/j.1551-2916.2005.00284.x
- Li S., Funahashi R., Matsubara I., Ueno K., Sodeoka S., Yamada H. Synthesis and Thermoelectric Properties of the New Oxide Materials Ca_{3-x}Bi_xCo₄O_{9-δ} (0.0 < x < < 0.75) // Chem. Mater. 2000. V. 12. № 8. P. 2424– 2427.

https://doi.org/10.1021/cm000132r

- Мацукевич И.В., Клындюк А.И., Тугова Е.А., Коваленко А.Н., Марова А.А., Красуцкая Н.С. Термоэлектрические свойства керамики Са_{3-x}Bi_xCo₄O_{9+δ} (0.0 ≤ x ≤ 1.5) // Неорган. материалы. 2016. Т. 52. № 6. С. 644-650. https://doi.org/10.7868/S0002337X16060099
- Prevel M., Perez O., Noudem J.G. Bulk Textured Ca_{2.5}(RE)_{0.5}Co₄O₉ (RE: Pr, Nd, Eu, Dy and Yb) Thermoelectric Oxides by Sinter-Forging // Solid State Sci. 2007. V. 9. № 3–4. P. 231–235. https://doi.org/10.1016/j.solidstatesciences.2007.01.003
- Клындюк А.И., Мацукевич И.В. Синтез и свойства твердых растворов Ca_{2.8}Ln_{0.2}Co₄O_{9+δ} (Ln – La, Nd, Sm, Tb–Er) // Неорган. материалы. 2012. Т. 48. № 10. С. 1181–1186.
- 15. Wang Y., Sui Y., Ren P., Wang L., Wang X., Su W., Fan H. Strongly Correlated Properties and Enhanced Thermoelectric Response in Ca₃Co_{4-x}M_xO₉ (M = Fe, Mn, and Cu) // Chem. Mater. 2010. V. 22. № 3. P. 1155– 1163.

https://doi.org/10.1021/cm902483a

2020

- 16. Клындюк А.И., Мацукевич И.В. Синтез, структура и свойства слоистых термоэлектриков Са₃Co_{3.85}M_{0.15}O_{9+δ} (M – Ti–Zn, Mo, W, Pb, Bi) // Неорган. материалы. 2015. Т. 51. № 9. С. 1025–1031. https://doi.org/10.7868/S0002337X15080102
- 17. Carvillo P., Chen Y., Boyle C., Barnes P.N., Song X. Thermoelectric Performance Enhancement of Calcium Cobaltite through Barium Grain Boundary Segregation // Inorg. Chem. 2015. V. 54. № 18. P. 9027– 9032.

https://doi.org/10.1021/acs.inorgchem.5b01296

- Мацукевич И.В., Клындюк А.И., Тугова Е.А., Томкович М.В., Красуцкая Н.С., Гусаров В.В. Синтез и свойства материалов на основе слоистых кобальтитов кальция и висмута // Журн. прикл. химии. 2015. Т. 88. Вып. 8. С. 1117–1123.
- Delorme F, Diaz-Chao P, Guilmeau E., Giovannelli F. Thermoelectric Properties of Ca₃Co₄O₉-Co₃O₄ Composites // Ceram. Int. 2015. V. 41. № 8. P. 10038–10043. https://doi.org/10.1016/j.acramint.2015.04.001

https://doi.org/10.1016/j.ceramint.2015.04.091

- Sedmidubsky D., Jakeš V., Jankovsky O., Leitner J., Sofer Z., Hejtmanek J. Phase Equilibria in Ca–Co–O System // J. Solid State Chem. 2012. V. 194. P. 199–205. https://doi.org/10.1016/j.jssc.2012.05.014
- Zhou X.-D., Pederson L.R., Thomsen E., Nie Z., Coffey G. Nonstoichiometry and Transport Properties of Ca₃Co_{4±x}O_{9+δ} (x = 0-0.4) // Electrochem. Solid-State Lett. 2009. V. 12. № 2. P. F1-F3. https://doi.org/10.1149/1.3039948
- Jankowski O., Huber S., Sedmidubsky D., Nadherny L., Hlasek T., Sofer Z. Towards Highly Efficient Thermoelectric: Ca₃Co₄O_{9 + δ}·nCaZrO₃ Composite // Ceram. Silik. 2014. V. 58. № 2. P. 106–110.

23. Gupta R.K., Sharma R., Mahapatro A.K., Tandon R.P. The Effect of ZrO₂ Dispersion on the Thermoelectric Power Factor of Ca₃Co₄O₉ // Physica B. 2016. V. 483. P. 48–53. https://doi.org/10.1016/j.physb.2015.12.028

24. Kahraman F., Madre M.A., Rasekh Sh., Salvador C., Bosque P., Torres M.A., Diez J.C., Sotelo A. Enhance-

- Bosque P., Torres M.A., Diez J.C., Sotelo A. Enhancement of Mechanical and Thermoelectric Properties of Ca₃Co₄O₉ by Ag Addition // J. Eur. Ceram. Soc. 2015. V. 35. № 14. P. 3835–3841. https://doi.org/10.1016/j.jeurceramsoc.2015.05.029
- 25. Matsukevich I.V., Atkinson I., Basarab S.V., Petcu G., Petrescu S., Pârvulescu V., Fruth V. Composite Materials Based on MgO and Metallic Nanoparticles for Catalytic Applications // Roman. J. Mater. 2019. V. 49. № 4. P. 483–490.
- Klyndyuk A.I., Chizhova Ye.A. Thermoelectric Properties of the Layered Oxides LnBaCu(Co)FeO_{5 + δ} (Ln = La, Nd, Sm, Gd) // Funct. Mater. 2009. V. 16. № 1. P. 17–22.
- Madre M.A., Costa F.M., Ferreira N.M., Sotelo A., Torres M.A., Constantinescu G., Rasekh Sh., Diez J.C. Preparation of High-Performance Ca₃Co₄O₉ Thermoelectric Ceramics Produced by a New Two-Step Method // J. Eur. Ceram. Soc. 2013. V. 33. № 10. P. 1747–1754.

https://doi.org/10.1016/j.jeurceramsoc.2013.01.029

 Masset A.C., Michel C., Maignan A., Hervieu M., Toulemonde O., Studer F., Raveau B. Misfit-Layered Cobaltite with an Anisotropic Giant Magnetoresistance: Ca₃Co₄O₉ // Phys. Rev. B: Condens. Matter. 2000-I. V. 62. № 1. P. 166–175. https://doi.org/10.1103/PhysRevB.62.166