УЛК 546.171.1:661.877

СИНТЕЗ НИТРИДОВ МОЛИБДЕНА

© 2020 г. В. М. Орлов^{1, *}, Р. Н. Осауленко², В. Я. Кузнецов¹

¹Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева — обособленное подразделение ФИЦ "Кольский научный центр Российской академии наук", Академгородок, 26A, Апатиты, Мурманская обл., 184209 Россия

²Петрозаводский государственный университет, пр. Ленина, 33, Петрозаводск, Республика Карелия, 185910 Россия

*e-mail: v.orlov@ksc.ru

Поступила в редакцию 30.12.2019 г. После доработки 02.07.2020 г. Принята к публикации 02.07.2020 г.

Исследовано влияние прекурсора на условия синтеза и характеристики нитридов молибдена. Азотирование порошков Mo, MoO_3 и $MgMoO_4$ вели в токе аммиака при температуре $500-800^{\circ}$ С. Использование в качестве прекурсора наноразмерного порошка молибдена позволяет снизить температуру и длительность синтеза. Установлена возможность аммонолиза непосредственно двойного оксида $MgMoO_4$. С его использованием получен продукт с удельной поверхностью до $29 \text{ m}^2/\text{г}$, что в 2-3 раза больше достигнутого при азотировании MoO_3 . Во всех случаях продукты синтеза представлены γ - и β -фазами Mo_3N с кубической и тетрагональной решетками соответственно.

Ключевые слова: азотирование, молибден, триоксид молибдена, молибдат магния, нитрид молибдена, аммиак

DOI: 10.31857/S0002337X2011010X

ВВЕДЕНИЕ

Развитие техники невозможно без использования новых функциональных материалов, например таких, как нитриды переходных металлов [1]. Одним из них является нитрид молибдена Mo_2N . Он существует в двух модификациях: тетрагональной β и кубической гранецентрированной γ [2]. Mo_2N рассматривается как перспективный катализатор различных процессов, в том числе синтеза аммиака, гидрообессеривания (HDS) топлив и гидроденитризации (HDN) нефти [3—5].

Существует несколько способов получения порошков нитридов молибдена. Авторы [6] исследовали возможность получения нитридов азотированием металлического порошка молибдена со средним размером частиц 2-7 мкм. Попытка получения нитридов в атмосфере азота при температуре 400-1000°C не дала положительных результатов. Азотированием в токе аммиака в течение 4 ч при температуре 700°C был получен нитрид Мо₂N с содержанием азота 6.8%. Известно несколько способов синтеза Mo2N с использованием в качестве прекурсора пентахлорида молибдена [7—9]. В работе [7] γ -Мо $_2$ N получали взаимодействием MoCl $_5$ с Са $_3$ N $_2$ при давлении 57 кбар. Добавление в шихту 3 молей NH₄Cl позволило получить кристаллический нитрид при нормальном давлении. Нанокристаллический γ-Мо₂N со средним размером частиц 30 нм получали взаимодействием металлического натрия с безводным $\mathrm{MoCl_5}$ и $\mathrm{NH_4Cl}$ в автоклаве при температуре $550^{\circ}\mathrm{C}$ [8]. В работе [9] синтез наноразмерного $\mathrm{MoN_x}$ осуществляли аммонолизом пентахлорида молибдена в обезвоженном хлороформе в течение 8 ч. Затем растворитель выпаривали при температуре $100^{\circ}\mathrm{C}$ в токе сухого аммиака. Полученный продукт подвергали термообработке при температуре $600-800^{\circ}\mathrm{C}$ в атмосфере аммиака в течение 10 ч. С ростом температуры термообработки от 600 до $800^{\circ}\mathrm{C}$ величина x изменилась с 1.321 до 0.769, а удельная поверхность уменьшилась с 49 до 16 м $^2/\mathrm{r}$.

Несмотря на такое многообразие подходов, основным способом синтеза нитридов молибдена из-за относительной простоты его реализации можно считать аммонолиз МоО₃ [10–13]. Авторы [10, 11] использовали температурно-программированную реакцию, т.е. повышение температуры с заданной скоростью. Нагрев МоО₃ в токе аммиака от комнатной температуры до 623 К продолжался 0.5 ч. От 623 до 732 К скорость нагрева составляла 40 или 100 K/ч и далее до 973 K - 100 или 200 К/ч. Выдержка при конечной температуре длилась 1 ч. Полученный продукт дополнительно обрабатывали в токе водорода при температуре 673 К в течение 3 ч. Он представлял собой порошок γ-Мо₂N в некоторых случаях с небольшой примесью Мо или МоО₂. В зависимости от условий аммонолиза удельная поверхность изменялась от 4 до $116 \text{ m}^2/\text{г}$. Нитриды молибдена γ -Мо₂N и β -Mo₂N_{0.78} с использованием в качестве прекурсора МоО₃ получали в работе [12]. Синтез γ-Мо₂N осуществляли в токе NH₃ при скорости нагрева 5.6°С/мин до 357°С, 0.5°С/мин в интервале 357— 447°С и затем 2.1°С/мин до 785°С. Выдержка при конечной температуре составляла 5 ч. Удельная поверхность полученного γ -Mo₂N 85 м²/г. β -Mo₂N_{0.78} синтезировали обработкой МоО3 в токе смеси $H_2: N_2$ в соотношении 3: 1 при температуре 700°C и выдержке 2 ч. Удельная поверхность нитрида $9 \text{ м}^2/\text{г}$. Нитрид $\text{Mo}_3 \text{N}_2$ с мезопористой структурой и удельной поверхностью 45 м²/г в виде нанопроволок был получен аммонолизом нанопроволок MoO₃ в трубчатой печи при температуре 700°С с выдержкой в течение 3 ч [13]. По мнению авторов. мезопористая структура нитрида, обусловлена перегруппировкой структуры оксида металла в нитрид, что приводит к образованию пор в материале.

Использование нанопорошков металла в качестве прекурсора для синтеза нитридов в токе аммиака позволяет значительно снизить температуру и сократить длительность процесса [14, 15]. Поэтому представляло интерес исследовать условия азотирования нанопорошков молибдена, получаемых магниетермическим восстановлением двойных оксидов молибдена [16], а также возможность получения нитридов с увеличенной удельной поверхностью аммонолизом непосредственно двойного оксида молибдена.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве исходных материалов для азотирования использовали порошок молибдена с удельной поверхностью $4.8 \text{ m}^2/\Gamma$ (расчетный размер частиц 130 нм), полученный магниетермическим восстановлением молибдата кальция; молибдат MgMoO₄, синтезированный методом спекания [17]; а также МоО₃ квалификации "х. ч." в качестве прекурсора сравнения. Удельная поверхность МоО3 и $MgMoO_4$ составляла 0.4 и 1.5 м²/г соответственно. Реактор (рис. 1) представлял собой кварцевую ампулу диаметром 40 и длиной 700 мм. Кварцевые лодочки с материалом помещали в зоне печи с равномерным нагревом. Температуру измеряли с помощью хромель-алюмелевой термопары, горячий спай которой располагался над лодочкой с материалом. Температуру и скорость ее подъема поддерживали с помощью регулятора температуры Термодат-13К2. Подробно методика эксперимента описана ранее [14].

Процесс вели со скоростью подъема температуры 8 К/мин до 500—800°С. Длительность выдержки при максимальной температуре 1—5 ч. Скорость пропускания аммиака 150—200 мл/мин. После окончания выдержки реторту извлекали из печи, продукты реакции охлаждали в токе аммиака.

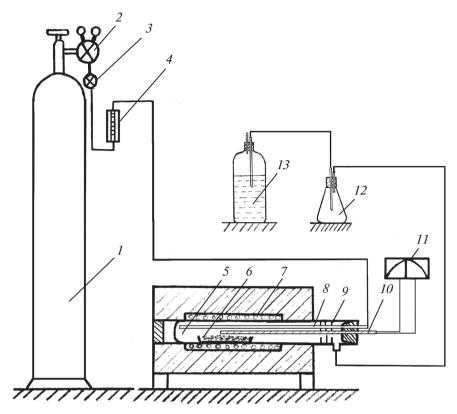
Длительность охлаждения до температуры 100°C составляла 15 мин.

Продукты, полученные с использованием в качестве прекурсора MgMoO₄, для удаления оставшегося MgO выщелачивали 2 раза по 1.5 ч 10%-ным раствором HCl. Порошок нитрида промывали дистиллированной водой до нейтральной реакции раствора и сушили при температуре 70°C в течение 8 ч.

Фазовый состав продуктов реакции определяли на дифрактометре ДРФ-2 с CuK_{α} -излучением и графитовым монохроматором. Идентификацию фаз осуществляли по базе дифрактометрических данных PDF-2 ICPDS-ICCD 2002. Для уточнения параметров кристаллической структуры использовали автоматизированный рентгеновский дифрактометр ДРОН-4, метод Ритвельда и базу данных структур неорганических кристаллов ICSD, Карлсруе, 2017. На приборе Micromeritics TriStar II 3020 измеряли удельную поверхность адсорбционным статическим методом БЭТ и параметры пористости методом ВЈН. Содержание азота и кислорода определяли методом газо-адсорбционной хроматографии в сочетании с импульсным нагревом на анализаторе К-671.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Взаимодействие порошка молибдена и его оксидных соединений с аммиаком может протекать по следующим реакциям:


$$8Mo + 4NH_3 = 4Mo_2N + 6H_2^{\uparrow}, \tag{1}$$

$$2Mo + 2NH_3 = 2MoN + 3H_2^{\uparrow},$$
 (2)

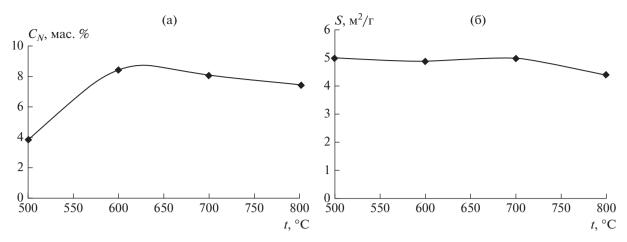
$$4\text{MoO}_3 + 8\text{NH}_3 = 2\text{Mo}_2\text{N} + 12\text{H}_2\text{O} + 3\text{N}_2^{\uparrow}, \quad (3)$$

$$4MgMoO_4 + 8NH_3 = 2Mo_2N + + 4MgO + 12H_2O + 3N_2^{\uparrow}.$$
 (4)

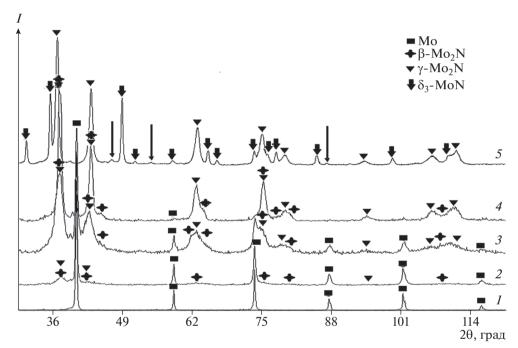
Азотирование порошка молибдена. Содержание азота в продуктах азотирования порошка молибдена и их удельная поверхность в зависимости от температуры выдержки приведены на рис. 2. Уже после часовой выдержки при температуре 500°C содержание азота в порошке составило 3.9% и достигло максимального значения при повышении температуры синтеза до 600°C (рис. 2a). Удельная поверхность нитридов, синтезированных в интервале 500-700°C, на уровне исходного порошка молибдена и несколько снижается после повышения температуры до 800°C (рис. 26). На рис. 3 представлены рентгенограммы исходного порошка молибдена и полученных при разных температурах продуктов. Уже после азотирования в течение 1 ч при температуре 500°C появляются слабые и широкие пики новых фаз: тетрагональной β-Мо₂N и кубической гранецентрированной γ -Mo₂N (рентгенограмма 2 на рис. 3). С увеличением длительности выдержки и температуры ин-

Рис. 1. Схема экспериментальной установки для азотирования: I — баллон с аммиаком, 2 — манометр, 3 — вентиль тонкой регулировки, 4 — ротаметр, 5 — кварцевый реактор, 6 — лодочка с материалом, 7 — печь сопротивления, 8 — трубка подачи аммиака, 9 — экраны, 10 — термопара, 11 — термодат-13K2, 12 — колба, 13 — водяной затвор.

тенсивность пиков фаз нитридов растет, а интенсивность максимумов фазы Мо уменьшается. После азотирования в течение 3 ч при температуре 800° С максимумы, соответствующие Мо, отсутствуют (рентгенограмма 5 на рис. 3).


Данные о структуре и фазовом составе продуктов азотирования Мо в зависимости от условий синтеза приведены в табл. 1. Отсутствие фазы β -Mo₂N в продукте, полученном после выдержки в течение 2 ч при температуре 800°С, объясняется тем, что содержание азота в нем составило 9%. Второй фазой в этом случае является гексагональный нитрид δ_3 -MoN. Его структура характеризуется упорядоченными дефектами в подрешетке азота. Атомы азота расположены в каждой второй тригональной призматической пустоте, построенной из слоев атомов металла. Наличие такого рода дефектов подтверждается присутствием на рентгенограмме 5 (рис. 3) сверхструктурных отражений этой фазы, показанных стрелками [18].

Азотирование оксидных соединений. Содержание азота (C_N), кислорода (C_0), поверхность (S) и фазовый состав продуктов, полученных азотированием MoO_3 и $MgMoO_4$ в зависимости от условий процесса, приведены в табл. 2, а их рентгенограммы на рис. 4 и 5. Состав продуктов, полученных азотированием MoO_3 при температуре 600° С,


свидетельствует о том, что процесс протекает в 2 стадии. Вначале происходит восстановление MoO_3 водородом, выделяющимся при разложении аммиака, до MoO_2 , а затем замещение в последнем кислорода азотом. Подробные данные о структуре и фазовом составе продуктов, полученных аммонолизом MoO_3 , приведены в табл. 3.

Азотирование $MgMoO_4$ при температуре $500^{\circ}C$ в течение 2 ч не привело к изменению фазового состава исходного вещества (табл. 2). Однако уже после часовой выдержки при температуре $600^{\circ}C$ в продуктах реакции наблюдается фаза Mo_2N (рентгенограмма I на рис. 5а). После увеличения длительности выдержки до 2 ч весь молибден, входящий в состав соединения, образует нитрид γ - Mo_2N (рентгенограмма 2 на рис. 5а). Рентгенограммы продуктов, полученных при более высокой температуре, приведены на рис. 5б. Уточненный с использованием метода Ритвельда фазовый состав и параметры решетки продуктов, полученных азотированием $MgMoO_4$, приведен в табл. 3.

Анализ характеристик продуктов, полученных азотированием всех трех прекурсоров, показывает, что практически все они представлены смесью фаз β - и γ -Mo₂N. Высокотемпературная фаза γ -Mo₂N присутствует даже в образцах, полученных азотированием порошка молибдена при

Рис. 2. Зависимости содержания азота (а) и удельной поверхности (б) от температуры азотирования порошка молибдена (выдержка 1 ч).

Рис. 3. Рентгенограммы порошка Мо (*1*) и продуктов, полученных его азотированием при 500°C, 1 ч (*2*); 500°C, 3 ч (*3*); 800°C, 1 ч (*4*); 800°C, 3 ч (*5*).

температуре 500°С. Это соответствует данным работы [19]. Авторы [19] установили, что увеличение содержания азота в нитриде с 28.7 до 34.5 ат. % (5.54—7.13 мас. %) приводит к уменьшению температуры фазового перехода β -Mo₂N \leftrightarrow γ -Mo₂N с 800 до 400°С. Присутствие высокотемпературной фазы γ -Mo₂N можно объяснить двумя факторами: медленной кинетикой превращения γ -фазы в β -фазу и уменьшением порядка в подрешетке азота с увеличением содержания азота. При содержании 34.5 ат. % N тетрагональная решетка нитрида преобразуется в кубическую [19].

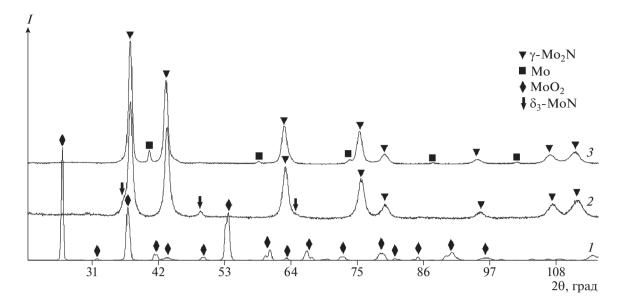
Обращает на себя внимание высокое содержание кислорода, особенно в продуктах азотирова-

ния молибдата. Однако присутствие оксидных фаз не обнаружено. Вероятно, значительна часть анализируемого кислорода сорбирована поверхностью порошка нитрида. Это подтверждается тем, что параметры решетки нитридов близки к эталонным. Сорбцией азота поверхностью, вероятно, объясняется и то, что при сверхстехиометрическом по отношению к нитриду Mo_2N содержании азота в ряде образцов не наблюдается присутствия фазы MoN.

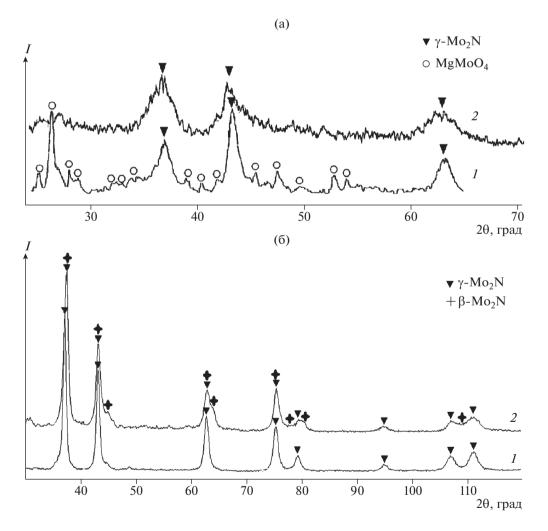
Пористая структура полученных продуктов существенно зависит от используемого прекурсора. Типичные кривые сорбции приведены на рис. 6. У продуктов, полученных азотированием Мо и MoO_3 (рис. 66, 6в), они по своему виду близки к

Таблица 1. Фазовый состав и параметры структуры продуктов азотирования порошка молибдена

Фазы	№ ICSD	Пр. гр.	a, Å		c, Å		Содержание,
			ICSD	эксп.	ICSD	эксп.	мас. %
			Исходні	ый Мо			•
Mo	52267	$Im\overline{3}m$	3.14737	3.146	-	_	100
	ı	1	Азотировани	e 500°C, 1 ч	I		•
Mo	52267	$Im\overline{3}m$	3.14737	3.1460(6)	-	_	71
β -Mo ₂ N	30593	$I4_1/amd$	4.2	4.2318(2)	8.0	7.9451(2)	16
γ -Mo ₂ N	172802	$Fm\overline{3}m$	4.16158	4.1714(5)	-	<u> </u>	13
	I	1	Азотировани	е 500°C, 5 ч	I		
Mo	52267	$Im\overline{3}m$	3.14737	3.1424(8)	-	_	58
β -Mo ₂ N	30593	$I4_1/amd$	4.2	4.2261(8)	8.0	7.9798(1)	21
γ -Mo ₂ N	172802	$Fm\overline{3}m$	4.16158	4.1887(9)	-	_	21
	I	1	Азотировани	e 800°C, 1 ч	I		
Mo	52267	$Im\overline{3}m$	3.14737	3.1468(9)	-	_	3
β -Mo ₂ N	30593	$I4_1/amd$	4.2	4.2126(1)	8.0	8.0443(4)	29
γ -Mo ₂ N	172802	$Fm\overline{3}m$	4.16158	4.1828(5)	-	<u> </u>	68
	I	Ĭ	і Азотировани	е 800°C, 2 ч	I		1
γ -Mo ₂ N	172802	$Fm\overline{3}m$	4.16158	4.1710(2)	-	_	70
δ_3 -MoN	99 452	$P6_3mc$	5.73659	5.7424(3)	5.6188(4)	5.6205(7)	30


Таблица 2. Состав продуктов, полученных азотированием MoO_3 и $MgMoO_4$

Прекурсор	t, °C	τ, ч	<i>C</i> _N , %	<i>C</i> _O , %	S , M^2/Γ	Фазы
MoO_3	600	1	_	_	_	MoO ₂
		3	2.5	>12	2.6	MoO ₂ , Mo ₂ N
	700	1	7.2	_	6.6	Mo ₂ N, MoN
		3	6.9	_	-	Mo ₂ N, MoN
	800	2	6.5	2.1	11	Mo ₂ N, Mo
${\sf MgMoO_4}$	500	2	_	_	_	MgMoO ₄ *
	600	1	_	_	_	MgMoO ₄ *, MgO, Mo ₂ N
	600	2	4.2	5.2	_	Mo ₂ N
	700	2	7.7	8.1	14.3	Mo ₂ N
	800	1	8.1	3.4	22.3	Mo ₂ N
	800	2	5.6	5.1	29	Mo ₂ N


^{*} Фазовый состав реакционной массы до выщелачивания.

типу II по классификации IUPAC, характерному для макропористых веществ [20]. Вид петли гистерезиса близок к типу D, присущему веществам с клиновидными порами. Совершенно другая пористая структура у продуктов, полученных аммонолизом MgMoO₄. Кривые сорбции также соответствуют типу II, однако гистерезис практиче-

ски отсутствует (рис. 6г). Объем пор составляет $0.1-0.18~{\rm cm}^3/{\rm r}$. Это более чем в 5 раз превышает объем пор в продуктах, полученных азотированием Мо и ${\rm MoO_3}$. Такое изменение — следствие дополнительных макропор, образовавшихся в результате выщелачивания оксида магния, входящего в состав молибдата.

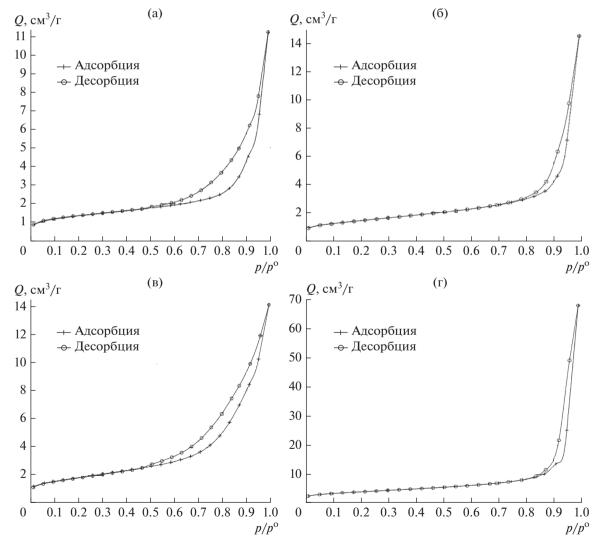

Рис. 4. Рентгенограммы продуктов, полученных азотированием MoO₃ при 600°C, 3 ч (1); 700°C, 1 ч (2); 800°C, 3 ч (3).

Рис. 5. Рентгенограммы продуктов, полученных азотированием $MgMoO_4$: а — температура $600^{\circ}C$, выдержка 1 ч (1), 2 ч (2); 6 — температура $800^{\circ}C$, выдержка 1 ч (1), 2 ч (2).

Таблица 3. Фазовый состав и параметры структуры продуктов азотирования MoO₃ и MgMoO₄

Фазы	№ ICSD	Пр. гр.	a, Å		c, Å		Содержание,	
		11p. 1p.	ICSD	эксп.	ICSD	эксп.	мас. %	
Азотирование MoO ₃ , 700°C, 1 ч								
γ -Mo ₂ N	172802	$Fm\overline{3}m$	4.16158	4.16669	_		91	
δ_3 -Mo $_2$ N	99 452	$P6_3mc$	5.73659	5.73652	5.6188(4)	5.60233	9	
Азотирование MoO ₃ , 800°C, 2 ч								
Mo	52267	$Im\overline{3}m$	3.14737	3.14873	-	_	3	
γ -Mo ₂ N	172802	$Fm\overline{3}m$	4.16158	4.17926	-	_	97	
Азотирование MgMoO ₄ , 800°С, 1 ч								
γ -Mo ₂ N	172802	$Fm\overline{3}m$	4.16158	4.1768(5)	-	_	100	
Азотирование MgMoO ₄ , 800°C, 3 ч								
β -Mo ₂ N	30593	$I4_1/amd$	4.2	4.2006(3)	8.0	8.0739(2)	35	
γ-Mo ₂ N	172802	$Fm\overline{3}m$	4.16158	4.1725(6)	_	! _	65	

Рис. 6. Кривые сорбции порошка Мо (а) и нитридов, полученных с использованием в качестве прекурсора Мо (б), MoO_3 (в), $MgMoO_4$ (г) при стандартных условиях.

ЗАКЛЮЧЕНИЕ

Исследован состав продуктов, полученных азотированием металлического порошка и триоксида молибдена, а также молибдата MgMoO₄ в токе аммиака в интервале 500—800°С. Использование в качестве прекурсора наноразмерного порошка молибдена с удельной поверхностью 4.8 м²/г (расчетный размер частиц 130 нм) позволило синтезировать продукт с содержанием азота на уровне 8% уже после часовой выдержки при температуре 600°С. Полученный результат показывает преимущество использованного метода, поскольку при азотировании порошка молибдена с размерами частиц 2—7 мкм для этого требовалась выдержка 4 ч при температуре 700°С [6].

Установлено, что аммонолиз оксида MoO_3 протекает в 2 стадии. Вначале он восстанавливается до MoO_2 , а затем уже следует замещение кислорода азотом с образованием нитрида. Продукт с содержанием азота 7% получен после часовой выдержки при температуре 700° С. Кривые сорбции нитридов, полученных азотированием Мо и MoO_3 , по своему виду близки к типу II по классификации IUPAC, характерному для макропористых веществ.

Впервые показана возможность получения нитридов молибдена азотированием в токе аммиака двойного оксида $MgMoO_4$. Его использование в качестве прекурсора вместо MoO_3 позволило в 2-3 раза увеличить удельную поверхность полученных продуктов. Присутствие в частицах азотированного продукта дополнительных прослоек оксида магния привело к ранее не наблюдавшемуся изменению пористой структуры нитрида после их выщелачивания. Кривые сорбции также соответствуют типу II, однако гистерезис практически отсутствует.

Фазовый состав полученных при 700 и 800° С продуктов представлен в основном сочетанием низкотемпературного тетрагонального нитрида β -Mo₂N и высокотемпературной кубической гранецентрированной фазы γ -Mo₂N. Соотношение между ними зависит от температуры синтеза и содержания азота в нитриде.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Том Л*. Карбиды и нитриды переходных металлов: пер. с англ.; под ред. Гельда П.В. М.: Мир, 1974. 296 с.
- 2. *Самсонов Г.В., Кулик О.П., Полищук В.С.* Получение и методы анализа нитридов. Киев: Наукова думка, 1978. 320 с.
- 3. Volpe L., Boudart M. Ammonia Synthesis on Molybdenum Nltride // J. Phys. Chem. 1986. V. 90. № 20. P. 4874–4877.
- 4. *Abe H., Cheung T.K., Bell A.T.* The Activity of Transition Metal Nitrides for Hydrotreating Quinoline and Thiophene // Catal. Lett. 1993. V. 21. № 1–2. P. 11–18.
- Oyama S.T. Preparation and Catalytic Properties of Transition Metal Carbides and Nitrides // Catal. Today. 1992. V. 15. № 2. P. 179–200.

- Верхоглядова Т.С., Дубовик Г.Д., Самсонов Г.В. Азотирование порошков переходных металлов // Порошковая металлургия. 1961. № 4. С. 9–20.
- 7. O'Loughlin J.L., Wallace C.H., Knox M.S., Kaner R.B. Rapid Solid-State Synthesis of Tantalum, Chromium, and Molybdenum Nitrides // Inorg. Chem. 2001. V. 40. № 10. P. 2240–2245.
- 8. *Maa J., Duc Y.* A Convenient Thermal Reduction—Nitridation Route to Nanocrystalline Molybdenum Nitride (Mo₂N) // J. Alloys Compd. 2008. V. 463. № 1–2. P. 196–199.
- 9. *Choi D., Kumta P.N.* Synthesis and Characterization of Nanostructured Niobium and Molybdenum Nitrides by a Two-Step Transition Metal Halide Approach // J. Am. Ceram. Soc. 2011. V. 94. № 8. P. 2371–2378.
- Choi J.-G., Brenner J.R., Colling C.W. et al. Synthesis and Characterization of Molybdenum Nitride Hydrodenitrogenation Catalysts // Catal. Today. 1992. V. 15. № 2. P. 201–222.
- 11. *Choi J.-G., Curl R.L., Thompson L.T.* Molybdenum Nitride Catalysts. I. Influence of the Synthesis Factors on Structural Properties // J. Catal. 1994. V. 146. № 1. P. 218–227.
- 12. *Mckaya D., Hargreavesa J.S.J., Ricob J.L. et al.* The Influence of Phase and Morphology of Molybdenum Nitrides on Ammonia Synthesis Activity and Reduction Characteristics // J. Solid State Chem. 2008. V. 181. № 2. P. 325–333.
- 13. *Lee K.-H.*, *Lee Y.-W.*, *Ko A.-R. et al.* Single-Crystalline Mesoporous Molybdenum Nitride Nanowires with Improved Electrochemical Properties // J. Am. Ceram. Soc. 2013. V. 96. № 1. P. 37–39.
- 14. *Орлов В.М., Кузнецов В.Я., Осауленко Р.Н.* Аммонолиз магниетермических порошков тантала // Журн. неорган. химии. 2017. Т. 62. № 1. С. 38–43. https://doi.org/10.1134/S0036023617010132
- 15. *Орлов В.М., Осауленко Р.Н.* Свойства нитридов, полученных аммонолизом магниетермических порошков ниобия // Неорган. материалы. 2018. Т. 54. № 7. С. 675–680. https://doi.org/10.7868/S0002337X18070047
- 16. *Колосов В.Н., Мирошниченко М.Н., Орлов В.М.* Влияние химического состава прекурсоров и условий их восстановления на свойства магниетермических порошков молибдена // Неорган. материалы. 2017. Т. 53. № 10. С. 1081—1086. https://doi.org/10.7868/S0002337X17100098
- 17. Мирошниченко М.Н., Колосов В.Н., Макарова Т.И., Орлов В.М. Синтез молибдатов и вольфраматов кальция и магния // Изв. СПбГТИ(ТУ). 2017. № 38. С. 44—47.
- 18. *Ganin A.Yu., Kienle L., Vajenine G.V.* Synthesis and Characterisation of Hexagonal Molybdenum Nitrides // Solid State Chem. 2006. V. 179. № 8. P. 2339–2348.
- 19. Ettmayer P. Das System Molibdän-Stickstoff // Monatsh. Chem. 1970. B. 101. P. 127–140.
- 20. Sing K.S.W., Everett D.H., Haul R.A.W. et al. Reporting Physisorption Data for Gas/Solid Systems // Pure Appl. Chem. 1985. V. 57. № 4. P. 603–619.