УЛК 546.07'821

СИНТЕЗ, СТРУКТУРА И СВОЙСТВА НАНОРАЗМЕРНОГО ДИБОРИДА ТИТАНА

© 2020 г. А. А. Винокуров¹, Д. Ю. Ковалев², И. И. Коробов¹, О. В. Кравченко¹, С. В. Коновалихин², Н. Ю. Хоменко², Г. В. Калинников¹, С. Е. Надхина¹, С. П. Шилкин¹, *

¹Институт проблем химической физики Российской академии наук, пр. академика Семенова, 1, Черноголовка, Московская обл., 142432 Россия

²Институт структурной макрокинетики и проблем материаловедения им А.Г. Мержанова Российской академии наук, ул. академика Осипьяна, 8, Черноголовка, Московская обл., 142432 Россия *e-mail: ssp@icp.ac.ru

Поступила в редакцию 03.03.2020 г. После доработки 19.06.2020 г. Принята к публикации 30.06.2020 г.

Различными методами физико-химического анализа исследованы продукты взаимодействия $TiCl_4$ с $NaBH_4$ в ионных расплавах NaCl/KCl или KBr под давлением аргона 5 $M\Pi$ а при 973 и 1023 K. Показано, что в этих условиях образуются наночастицы TiB_2 , кристаллизующиеся в гексагональной сингонии, пр. гр. P6/mmm, структурный тип AlB_2 , периоды решетки: a=0.3022-0.3025 нм, c=0.3214-0.3221 нм. Диаметры частиц наноразмерного TiB_2 в зависимости от температуры, оцененные из данных электронной микроскопии, измерения удельной поверхности и области когерентного рассеяния, составляют ~10 и ~15, ~12 и ~17 нм, ~5 и ~10 нм соответственно.

Ключевые слова: наночастица, диборид титана, тетрахлорид титана, борогидрид натрия, ионный расплав NaCl/KCl, KBr, реактор-автоклав

DOI: 10.31857/S0002337X20110160

ВВЕДЕНИЕ

Диборид титана (TiB_2), сочетающий в себе высокую температуру плавления (3498 К), высокую твердость (≥25 ГПа), высокий модуль упругости (≥450 ГПа) с низким удельным сопротивлением (10-30 Ом см), высокой теплопроводностью (60-120 Вт/(м К)), химической и коррозионной устойчивостью в реакционных газовых и жидких средах, низкой плотностью (4.5 г/см³), находит реальное применение в различных областях современной техники и промышленности [1-5]. В настоящее время интерес к дибориду титана и родственным ему соединениям заметно возрос в связи с созданием на их основе наноматериалов с высоким и разнообразным уровнем физико-химических, механических и других свойств, существенно отличающихся от свойств микрокристаллических аналогов (см., например, [6, 7]).

Наноразмерный диборид титана может быть получен при термолизе производных борогидрида титана при температуре ~488 K [8, 9], например по схеме

$$Ti(BH_4)_3 \cdot nSolv \xrightarrow{t}$$

$$\rightarrow TiB_2 + 0.5B_2H_6 + 4.5H_2 + nSolv,$$
(1)

где Solv — диметоксиэтан, тетрагидрофуран, диглим, триглим и др. Полученный по этой схеме TiB_2 в виде порошка или пленки рентгено-аморфен и кристаллизуется в вакууме после отжига при 1173-1273 К. Однако описанный процесс длителен и многостадиен, в результате чего TiB_2 оказывается в существенной мере загрязнен углеродом и кислородом. При механохимическом взаимодействии хлорида титана(III) с гидридом и борогидридом лития в высокоэнергетической мельнице также может быть получен наноразмерный TiB_2 по реакции [10]

$$TiCl3 + 2LiBH4 + LiH \xrightarrow{t}$$

$$\rightarrow TiB2 + 3LiCl + 4.5H2.$$
(2)

При термической обработке до $\sim 873~\rm K$ предварительно активированной в высокоэнергетической мельнице смеси LiBH₄ с TiO₂ получен TiB₂ с размером кристаллитов в несколько нанометров [11]. Наночастицы TiB₂ могут быть получены при механохимическом взаимодействии микрокристаллических титана и бора в высокоэнергетической мельнице [12]. Наноразмерный диборид титана образуется также при взаимодействии борогидрида натрия с TiCl₄ при повышенных температурах и давлениях [13, 14] или Ti с BBr₃ в присутствии на-

трия при 673 К [15], а также карботермическим методом [16] по реакции

$$TiO_2 + B_2O_3 + 5C \xrightarrow{t} TiB_2 + 5CO,$$
 (3)

а также магнийтермическим восстановлением смесей оксидов титана и бора в расплаве LiCl/KCl [17]. Кроме того, наноразмерный диборид титана образуется при взаимодействии порошкообразных бора и титана в ионном расплаве $Na_2B_4O_7$ [18].

Каждая из перечисленных методик имеет свои преимущества и недостатки. Одни из них позволяют получать наночастицы с малым содержанием примесей, но с низкой производительностью, другие обеспечивают образование наночастиц диборида титана стехиометрического состава и определенного размера при невысоких температурах, однако требуют сложного аппаратурного оформления и т.д.

Целью данной работы является изучение возможности образования наночастиц TiB_2 при гетерофазном взаимодействии $TiCl_4$ с $NaBH_4$ в ионных расплавах NaCl/KCl или KBr и исследование их физико-химических свойств.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исходные реагенты. Борогидрид натрия с чистотой >99.5% получали перекристаллизацией технического препарата из 1N раствора NaOH и сушили в вакууме 1.33×10^{-1} Па при 373 К. В работе использовали товарный TiCl₄ марки ОТТ —О, который перед синтезом перегоняли в вакууме над медной стружкой; КСl, NaCl, КВг квалификации "х. ч."; аргон высокой чистоты (99.998%, ТУ 2114 — 005 - 0024760 - 99). Источником водорода с чистотой не менее 99.999% служил автономный лабораторный генератор водорода, содержащий в качестве рабочего материала гидридные фазы на основе интерметаллидов LaNi₅ и TiFe, принцип действия которого подробно описан в [19, 20].

Методы анализа. Рентгенофазовый анализ (**РФА**) полученных наночастиц TiB_2 проводили на дифрактометре ДРОН-3 с монохроматором на вторичном пучке. Регистрацию рентгенограмм вели в режиме пошагового сканирования на излучении CuK_{α} в интервале углов $20^{\circ}-90^{\circ}$ (2θ) с шагом съемки 0.02° и экспозицией 4 с в точке. Профильный анализ рентгенограмм осуществляли в программном пакете "Буревестник". Расчет метрики ячейки и параметров тонкой структуры проводили по 8 отражениям. Инструментальное уширение учитывали по уширению линий эталона — LaB_6 (SRM 660b). Для расчета размера кристаллитов D — областей когерентного рассеяния (**ОКР**) — использовали метод вторых моментов.

Термические исследования выполняли методом синхронного термического анализа на термоанализаторе Netzch STA 409 PC Luxx, сопряженном с квадрупольным масс-спектрометром QMS 403 С Aëolos при линейном нагреве образца со скоростью 10 К/мин в потоке аргона в интервале температур от 293 до 1273 К.

Электронно-микроскопические исследования и рентгеновский энергодисперсионный анализ осуществляли на комплексе, состоящем из растрового сканирующего автоэмиссионного электронного микроскопа Zeiss Supra 25 и рентгеноспектральной установки INCA x-sight. Электронные микрофотографии получали при низких ускоряющих напряжениях электронного пучка (~4 кВ). При таких ускоряющих напряжениях вклад в регистрируемый сигнал от подложки минимален либо отсутствует вовсе. Рентгеновский энергодисперсионный анализ осуществляли при ускоряющем напряжении ~8 кВ.

Для уточнения качественного состава поверхности порошков диборида титана регистрировали рентгеновские фотоэлектронные спектры $(P\Phi \ni C)$ на электронном спектрометре для химического анализа PHOIBOS 150 MCD. Удельную поверхность образцов (S_{vn}) находили по величине адсорбции криптона при температуре жидкого азота после удаления из твердой фазы летучих примесей в вакууме 1.33×10^{-3} Па при температуре 373 К и рассчитывали по методу БЭТ. Площадь, занимаемую адсорбированным атомом криптона, принимали равной $19.5 \times 10^{-20} \,\mathrm{m}^2$. Ошибка определения не превышала $\pm 10\%$. Из данных измерения $S_{v\pi}$ проводили оценку размера частиц TiB_2 в предположении их сферической формы по известной формуле $d_x = 6/(\gamma S_{vx})$, где d_x — размер частиц, γ рентгеновская плотность.

Содержание бора, титана, хлорид-, бромидионов и кислорода определяли по стандартным аналитическим методикам, а также рентгеновским энергодисперсионным анализом. Содержание водорода определяли на CHNS/О-элементном анализаторе Vario EL cube Elementar. Давление в системе измеряли образцовыми манометрами класса точности 0.4.

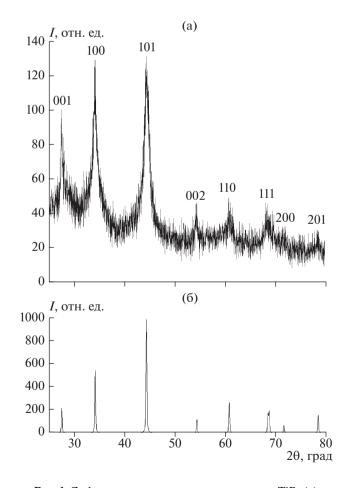
Методика эксперимента. Взаимодействие TiCl₄ с NaBH₄ в ионных расплавах NaCl/KCl или KBr осуществляли следующим образом: в реактор-автоклав из нержавеющей стали в атмосфере аргона высокой чистоты помещали кварцевую ампулу с тетрахлоридом титана, борогидридом натрия и эвтектикой 50 мол. % NaCl + 50 мол. % KCl или КВг. Реактор-автоклав охлаждали до 173 К и вакуумировали в течение 5 мин, заполняли аргоном под давлением 5 МПа и нагревали в течение заданного времени при температуре 973 или 1023 К. Температуры проведения реакции (973 и 1023 К) были выбраны исходя из температур плавления эвтектики 50 мол. % NaCl + 50 мол. % KCl (931 K) или KBr (1007 K). Давление аргона в реакторе-автоклаве, равное 5 МПа, создавали выше критиче-

Фазовый состав продуктов взаимодействия	а, нм	с, нм	Температура синтеза, К	Время синтеза, ч	Ионный расплав
TiB ₂ [13]*	0.3032	0.3229	973	12	_
TiB ₂ [14]*	0.3027	0.3213	1020	10	_
TiB_2	0.3023	0.3214	973	7	NaCl/KCl
TiB_2	0.3022	0.3221	1023	5	NaCl/KCl
TiB_2	0.3025	0.3215	1023	5	KBr

Таблица 1. Условия и результаты взаимодействия $TiCl_4$ с $NaBH_4$ в ионном расплаве NaCl/KCl или KBr и без него

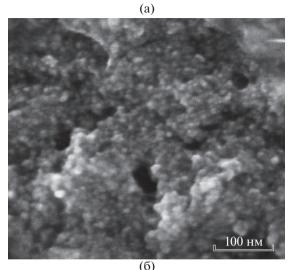
ского давления для $TiCl_4$ ($p_{\kappa} = 4.57 \ M\Pi a$), $NaBH_4$ брали в заведомом избытке по отношению к $TiCl_4$ (мольное соотношение реагентов 1 : 10).

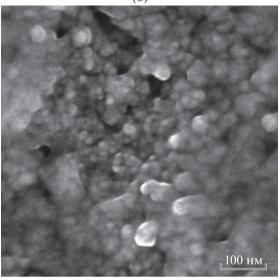
Далее температуру в реакторе доводили до комнатной и продукты реакции вакуумировали еще в течение 0.5 ч. После вскрытия реактора в атмосфере аргона полученную реакционную массу последовательно обрабатывали охлажденной дистиллированной водой, ацетоном, этиловым спиртом и вакуумировали при $313~\rm K$ в течение $5-6~\rm u$ до остаточного вакуума $1.3 \times 10^{-1}~\rm \Pi a$. Затем полученный порошок снова помещали в реактор, обрабатывали водородом из водородного аккумулятора в проточном режиме под давлением $5~\rm M\Pi a$ при $373~\rm K$ по методике [21] и затем снова вакуумировали при комнатной температуре до остаточного вакуума $1.33~\rm x~10^{-1}~\rm \Pi a$. Полученное вещество выгружали из реактора в атмосфере аргона.


РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В табл. 1 представлены результаты исследования взаимодействия TiCl₄ с NaBH₄ под давлением аргона при продолжительности реакции 5-7 ч в ионных расплавах NaCl/KCl или КВг. Полученный диборид титана, по результатам химического и энергодисперсионного анализов, имеет состав $TiB_{2.0-2.02}O_{0.01-0.03}$, следов хлорид-, бромид-ионов и водорода в нем не обнаружено. Результаты РФА свидетельствуют о том, что наночастицы диборида титана кристаллизуются в гексагональной сингонии, пр. гр. P6/mmm, структурный тип AlB₂ (рис. 1а) с периодами решетки (табл. 1), которые не противоречат данным [13–15, 18] и согласуются с рентгенодифракционной базой данных ICDD PDF-2 (рис. 16). Значимого количества примесных фаз не обнаружено.

Результаты термического анализа, РФА и электронной микроскопии указывают на то, что при нагревании в атмосфере аргона от 293 до 1273 К наночастицы диборида титана, полученные рассмотренным методом, не испытывают заметных превращений, связанных с выделением, поглощением


тепла, изменениями массы, размера и формы частиц, периодов кристаллической решетки и ОКР, что говорит об их высокой термостабильности.


В табл. 2 сопоставлены средние диаметры частиц TiB_2 , оцененные из данных электронно-микроскопических и рентгенографических исследований, а также по результатам измерения удельной поверхности. На рис. 2 представлены электронные микрофотографии частиц порошка TiB_2 , получен-

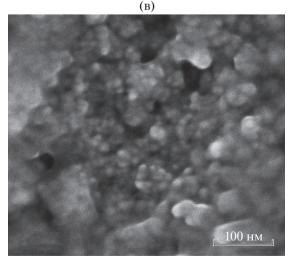


Рис. 1. Дифрактограмма наночастиц порошка ${\rm TiB}_2$ (а) и данные ICDD PDF-2, карта № 000-35-0741(б).

^{*} Взаимодействие TiCl $_4$ с NaBH $_4$ осуществлялось в отсутствие ионного расплава NaCl/KCl или KBr.

Рис. 2. Электронные микрофотографии наночастиц порошка TiB_2 , полученных при 974 (a), 1023 К в ионном расплаве NaCl/KCl (б) и при 1023 К в ионном расплаве KBr (в).

ных при 973 (а), 1023 К (б) в ионном расплаве NaCl/KCl и при 1023 K в ионном расплаве KBr (в). По данным сканирующей электронной микроскопии, форма частиц диборида титана, синтезированных при температурах 973 и 1023 К в ионных расплавах NaCl/KCl и KBr, не осколочная, а близка к сферической, что характерно для соединений, полученных в результате прохождения химической реакции. Размер частиц TiB₂, по данным электронной микроскопии, хорошо согласуется с результатами оценки эквивалентного диаметра частиц ТіВ2 исходя из определения удельной поверхности частиц ТіВ2 методом БЭТ (табл. 2). С повышением температуры синтеза размеры частиц TiB₂ увеличиваются. Полученные наночастицы ТіВ2 преимущественно агрегированы.

Для уточнения качественного состава поверхности наночастиц TiB_2 регистрировали их $P\Phi$ ЭС. Наряду с линиями, характерными для диборида титана (187.5–187.7 эВ — В1s; 454.2—454.4 эВ — $Ti2p_{3/2}$), присутствуют слабые линии, соответствующие оксидам бора и титана (193.7—193.8; 463.2—463.3 и 468.7—468.2 эВ), что находится в соответствии с литературными данными.

Новизна предлагаемой методики синтеза ${\rm TiB}_2$ заключается в проведении реакции между ${\rm TiCl}_4$ и ${\rm NaBH}_4$ в ионном расплаве, что позволяет по сравнению с взаимодействием ${\rm TiCl}_4$ и ${\rm NaBH}_4$ в его отсутствие получать при меньших временах синтеза более мелкие наноразмерные частицы ${\rm TiB}_2$ без их консолидации при высоких температурах взаимодействия исходных реагентов, препятствием чему является присутствие расплава ${\rm NaCl/KCl}$ или ${\rm KBr}$.

В работе [13] в интервале температур 773—973 К была предложена возможная реакция образования наноразмерного диборида титана

 ${
m TiCl_4} + 2{
m NaBH_4} = {
m TiB_2} + 2{
m NaCl} + 2{
m HCl} + 3{
m H_2},$ (4) а при T < 723 К взаимодействие ${
m TiCl_4}$ с ${
m NaBH_4},$ по-видимому, может происходить по реакции

$$2TiCl4 + 2NaBH4 = = TiB2 + TiH2 + 2NaCl + 6HCl.$$
 (5)

Нами был проведен расчет термодинамических параметров для реакций (4), (5) в температурном интервале 623—1073 К (табл. 3). Для расчета использовали справочные данные [22]. Как следует из полученных данных, тепловой эффект и изменение энтропии в реакциях (4) и (5) практически не зависят от температуры, при этом реакция (4) является экзотермической, а реакция (5) эндотермической. Расчеты изменения энергии Гиббса в этих реакциях говорят о том, что реакция (4) в данном температурном интервале энергетически более выгодна и более вероятна, чем реакция (5).

Таблица 2. Средний диаметр частиц TiB_2 , полученных при взаимодействии $TiCl_4$ с $NaBH_4$ в ионном расплаве NaCl/KCl или KBr и без него при температурах 973 и 1023 K

,			
Температура синтеза, К	Средний диаметр частиц из данных электронной микроскопии, нм	D, нм	Средний диаметр частиц из данных $S_{ m yg}$, нм
973	~10	~5	~ 12 $(S_{yx} = 115 \text{ M}^2/\text{r})$
1023	~14	~7	\sim 17 (S_{yz} = 80 м ² /г)
1023	~15	~10	~ 16 $(S_{yx} = 82 \text{ m}^2/\text{r})$
973* [13]	10-20	_	-
1020* [14]	35–50	~ 30	$^{\sim}45$ $(S_{yx} = 30 \text{ m}^2/\text{r})$

^{*} Взаимодействие TiCl₄ с NaBH₄ осуществлялось в отсутствие ионного расплава NaCl/KCl или KBr.

Таблица 3. Расчет термодинамических параметров для реакций (4), (5) в температурном интервале 623–1073 К

<i>T</i> , K	ΔH , к Λ ж/моль	ΔS , Дж/(моль K)	ΔG , кДж/моль	ΔH , кДж/моль	ΔS , Дж/(моль K)	ΔG , кДж/моль				
		(4)		(5)						
623	-135.8	390.4	-379.0	104.6	399.1	-144.0				
673	-135.8	390.3	-398.5	103.7	397.7	-163.9				
723	-136.0	390.0	-418.0	102.7	396.3	-183.8				
773	-136.3	389.7	-437.5	101.9	395.2	-203.6				
823	-136.5	389.3	-457.0	101.1	394.2	-223.3				
873	-136.8	389.0	-476.4	100.5	393.4	-243.0				
923	-137.0	388.8	-495.9	99.9	392.9	-262.7				
973	-137.2	388.6	-515.3	99.6	392.5	-282.3				
1023	-137.2	388.6	-534.7	99.5	392.4	-301.9				
1073	-137.1	388.7	-554.2	99.5	392.4	-321.5				

ЗАКЛЮЧЕНИЕ

Методами рентгенографии, сканирующей электронной микроскопии, РФЭС, термического, энергодисперсионного и элементного анализов, измерения удельной поверхности исследованы продукты взаимодействия TiCl₄ с NaBH₄ в ионных расплавах NaCl/KCl или KBr под давлением аргона 5 МПа при 973 и 1023 К. Показано, что в этих условиях образуются наночастицы ТіВ2, кристаллизующиеся в гексагональной сингонии, пр. гр. P6/mmm, структурный тип AlB_2 , с периодами решетки a = 0.3022 - 0.3025 нм, c == 0.3214-0.3221 нм. Диаметры частиц наноразмерного TiB₂ в зависимости от температуры, оцененные из данных электронной микроскопии, измерения удельной поверхности и ОКР, составляют ~ 10 и ~ 15 нм, ~ 12 и ~ 17 нм, ~ 5 и ~ 10 нм соответственно.

БЛАГОДАРНОСТЬ

Работа выполнена в рамках Государственного задания ИПХФ РАН (номер государственной регистрации темы АААА-А19-119061890019-5) с использованием оборудования Аналитического центра коллективного пользования ИПХФ РАН и Государственного задания ИСМАН (тема 44.1).

СПИСОК ЛИТЕРАТУРЫ

- 1. Berger M., Hogmark S., Karlsson L., Larsson M. Low Stress TiB₂ Coatings with Improved Tribological Properties // Thin Solid Films. 2001. V. 401. № 1–2. P. 179–186.
- Agarwal A., Dahotre N.B. Laser Surface Engineering of Steel for hard Refractory Ceramic Composite Coating // Int. J. Refract. Met. Hard Mater. 1999. V. 17. P. 283–293.
- 3. *Cardarelli F.* Material Handbook. Charm: Springer, 2018. P. 936–937.

- 4. *Ефимова К.А., Галевский Г.В., Руднева В.В.* Современное состояние производства диборида титана: оценка, определение доминирующих тенденций и перспектив // Научно-технические ведомости СПбПУ. Естественные и инженерные науки. 2017. Т. 23. № 2. С. 144—158. https://doi.org/10.18721/JEST.230213
- Самсонов Г.В., Серебрякова Т.И., Неронов В.А. Бориды. М.: Атомиздат, 1975. 376 с.
- 6. *Andrievski R.A., Khatchoyan A.V.* Nanomaterials in Extreme Environments, Fundamentals and Applications. Berlin: Springer, 2016. 107p. https://doi.org/10.1007/978-3-319-25331-2
- 7. Андриевский Р.А. Наноструктурные дибориды титана, циркония и гафния: синтез, свойства, размерные эффекты и стабильность // Успехи химии. 2015. Т. 84. Вып. 5. С. 540—554. https://doi.org/10.1070/RCR4469
- 8. *Jensen J.A.*, *Gozum J.E.*, *Pollina D.M.*, *Girolami G.S.* Titanium, Zirkonium and Hafnium Tetrahydroborates as "tailored" CVD Precursors for Metal Diboride Thin Films // J. Am. Chem. Soc. 1988. V. 110. № 5. P. 1643–1644. https://doi.org/10.1021/ja00213a058
- 9. Andrievski R.A., Kalinnikov G.V., Kravchenko S.E., Tarasov B.P., Shilkin S.P. Synthesis of Boride Ultrafine Powders and Films // Abstracts Papers Am. Chem. So. 1995. V. 210. P. 156-PMSE (2).
- Kim J.W., Shim J.-H., Ahn J.-P., Cho Y.W., Kim J.-H., Oh K.H. Mechanochemical Synthesis and Characterization of TiB₂ and VB₂ Nanopowders // Mater. Lett. 2008. V. 62. P. 2461–2464. https://doi.org/10.1016/j.matlet.2007.12.022
- 11. *Pan W.Y.*, *Qian W.B.*, *Mao Y.J.*, *Liu B.H.*, *Li Z.P.* Low-Temperature Synthesis of Nanosized Metal Borides Through Reaction of Lithium Borohydride with Metal Hydroxides or Oxides // J. Alloys Comp. 2015. V. 651. P. 666–672. https://doi.org/10.1016/j.jallcom.2015.08.149
- 12. Tang W.M., Zheng Z.X., Wu Y.C., Wang J.M., Lü J., Liu J.W. Synthesis of TiB₂ Nanocrystalline Powder by

- Mechnical Alloying // Trans. Nonferrous. Met. Soc. China. 2006. V. 16. P. 613–617.
- 13. *Chen L., Gu Y., Qian Y., Chi L., Yang Z., Ma J.* A Facile One-Step Route to Nanocrystalline TiB₂ Powders // Mater. Res. Bull. 2004. V. 39. P. 609–613. https://doi.org/10.1016/j.materresbull.2003.12.005
- 14. *Кравченко С.Е., Торбов В.И., Шилкин С.П.* Получение наноразмерного порошка диборида титана // Неорган. материалы. 2010. Т. 46. № 6. С. 691—693.
- Chen L., Gu Y., Shi L., Yang Z., Ma J., Qian Y. A Reduction Boronation Route to Nanocrystalline Titanium Diboride // Solid State Commun. 2004. V. 130. P. 231–233. https://doi.org/10.1016/j.ssc.2004.01.037
- 16. Gorlanov E.S., Bazhin V.Yu., Fedorov S.N. Carbothermic Synthesis of Titanium Diboride: Upgrade //J.Sib. Fed. Univ. Chem. 2018. V. 11. № 2. P. 156–166. https://doi.org/10.17516/1998-2836-0065
- Javadi A., Pan S., Cao C., Yao G., Li X. Facile Synthesis of 10 nm Surface clean TiB₂ Nanoparticles // Mater. Lett. 2018. V. 229. P. 107–110. https://doi.org/10.1016/j.matlet.2018.06.054
- 18. *Волкова Л.С., Шульга Ю.М., Шилкин С.П.* Синтез наноразмерного диборида титана в расплаве безводного тетраборнокислого натрия // Журн. общ. химии. 2012. Т. 82. Вып. 5. С. 709—712.
- 19. Фокин В.Н., Фокина Э.Э., Шилкин С.П. Синтез гидридов некоторых металлов в крупнокристаллическом состоянии // Журн. общ. химии. 1996. Т. 66. Вып. 8. С. 1249—1252.
- 20. Fokin V.N., Fokina E.E., Tarasov B.P., Shilkin S.P. Synthesis of the Tetragonal Titanium Dihydride in Ultradispersed State // Int. J. Hydrogen Energy. 1999. V. 24. № 2–3. P. 111–114. https://doi.org/10.1016/S0360-3199(98)00070-6
- 21. Фокин В.Н., Троицкая С.Л., Фокина Э.Э., Румынская З.А., Шилкин С.П. О взаимодействии гидрида титана с кислородом // Журн. общ. химии. 1992. Т. 62. Вып. 8. С. 1719—1725.
- 22. NIST-JANAF Thermochemical Tables. 1998. https://doi.org/10.18434/T42S31