УЛК 536.36

СИНТЕЗ, КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА LuGaTi₂O₇

© 2020 г. Л. Т. Денисова^{1, *}, М. С. Молокеев^{1, 2}, Л. Г. Чумилина¹, Ю. Ф. Каргин³, В. М. Денисов¹, В. В. Рябов⁴

 1 Сибирский федеральный университет, пр. Свободный, 79, Красноярск, 660041 Россия ²Институт физики им. А.В. Киренского ФИЦ КНЦ СО Российской академии наук, Академгородок, 50, Красноярск, 660036 Россия

³Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук, Ленинский пр., 49, Москва, 119991 Россия

⁴Институт металлургии УрО Российской академии наук, ул. Амундсена, 101, Екатеринбург, 620016 Россия

*e-mail: ldenisova@sfu-kras.ru Поступила в редакцию 14.06.2020 г. После доработки 06.08.2020 г. Принята к публикации 10.08.2020 г.

Методом твердофазного синтеза из исходных оксидов Lu₂O₃, Ga₂O₃ и TiO₂ последовательным обжигом на воздухе при температурах 1273 и 1573 К получены однофазные образцы LuGaTi₂O₇. Методом полнопрофильного анализа рентгеновских дифрактограмм поликристаллических порошков (метод Ритвельда) определена кристаллическая структура дититаната лютеция-галлия (пр. гр. Рспb; a = 9.75033(13) Å, b = 13.41425(17) Å, c = 7.29215(9) Å, V = 957.32(2) Å³, d = 6.28 г/см³). Температурная зависимость теплоемкости LuGaTi₂O₇ измерена в интервале 320-1000 К с использованием дифференциальной сканирующей калориметрии. На основании полученной зависимости $C_p = f(T)$ рассчитаны основные термодинамические функции оксидного соединения.

Ключевые слова: титанат лютеция-галлия, сложные оксидные соединения, высокотемпературная теплоемкость, термодинамические свойства

DOI: 10.31857/S0002337X20120052

ВВЕЛЕНИЕ

Неослабевающий интерес исследователей и практиков к титанатам редкоземельных элементов обусловлен возможностями их практического применения [1–5]. Наиболее исследованными являются дититанаты редкоземельных элементов $R_2Ti_2O_7$ ($R = P3\Theta$), сведения о кристаллической структуре которых приведены в [1, 6–10]. Установлено, что кубическую гранецентрированную структуру типа пирохлора (пр. гр. Fd3m) имеют соединения $R_2 Ti_2 O_7$ (R = Sm-Lu, Y) [6-10], а кристаллы La₂Ti₂O₇, Pr₂Ti₂O₇ и Nd₂Ti₂O₇ характеризуются моноклинной структурой (пр. гр. P2₁) [1, 11, 12]. В литературе имеются также данные о магнитных [1, 12, 13], электрических [1, 14] и диэлектрических свойствах [15], в то же время многие свойства R₂Ti₂O₇ (в первую очередь теплофизические) исследованы недостаточно. Кроме того, практически не изучены замещенные титанаты $RMTi_2O_7$ (M = Ga, Fe). Такие соединения впервые были получены Е.А. Генкиной с соавторами

[16], показано, что они образуются в системах с R = Sm-Lu, Y и M = Ga, Fe, а при замещении Ti на Sn и Zr и с M = Cr, Al не реализуются. В [16] также сообщалось, что для синтезированого ряда замещенных титанатов РЗЭ кристаллическая структура определена только для GdGaTi₂O₇. Заметим, что для замещенных германатов RMGe₂O₇ (M = Al, Ga, In, Fe) подобные сведения имеются [17-19].

Целью настоящей работы являлось исследование кристаллической структуры титаната LuGaTi₂O₇, изучение температурной зависимости теплоемкости синтезированных образцов в области 350-1000 К и определение по этим данным его основных термодинамических функций.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Принимая во внимание высокие температуры плавления исходных оксидов, замещенный титанат LuGaTi₂O₇ получали твердофазным методом. Для этого предварительно прокаленные

Рис. 1. Кристаллическая структура LuGaTi₂O₇.

при 1173 К исходные оксиды (TiO₂ и Ga₂O₃ "ос. ч.", Lu₂O₃ "х. ч.") смешивали в стехиометрическом соотношении. После гомогенизации в агатовой ступке смеси прессовали в форме таблеток, которые последовательно обжигали на воздухе при 1273 К (10 ч) и три раза по 5 ч при температуре 1573 К. Для достижения полноты протекания твердофазной реакции таблетки после каждого отжига перетирали и снова прессовали. Фазовый состав полученных образцов контролировали методом рентгенографического анализа. Порошковые рентгенограммы LuGaTi₂O₇ регистрировали при комнатной температуре на дифрактометре D8 ADVANCE фирмы Bruker с использованием линейного детектора VANTEC и CuK_α-излучения. В ходе эксперимента использовалась щель первичного пучка 0.6 мм в диапазоне углов $2\theta =$ $= 11^{\circ} - 100^{\circ}$. Шаг сканирования 0.016° оставался постоянным во всем интервале углов, время экспозиции на каждом шаге 2 с.

Высокотемпературную теплоемкость C_p титаната LuGaTi₂O₇ измеряли при помощи термоанализатора STA 449 С Jupiter (NETZSCH, Германия) методом дифференциальной сканирующей калориметрии. Методика экспериментов подобна описанной в работе [20]. Экспериментальные результаты обрабатывали с помощью пакета программ NETZSCH Proteus Thermal Analysis и лицензионного программного инструмента Systat Sigma Plot (Systat Softwere Inc., США). Ошибка экспериментов не превышала 2%.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Все рефлексы на рентгенограммах были проиндицированы в ромбической ячейке Pcnb с параметрами, близкими к GdGaTi₂O₇ [16]. Поэтому структура этого соединения была взята в качестве исходной модели для уточнения методом Ритвельда в программе TOPAS 4.2 [21]. Ион Gd был заменен на ион Lu (рис. 1). В структуре GdGaTi₂O₇ один ион Ga разупорядочен по двум позициям -4c(Ga) и 8d(Ga^I) с заселенностями 0.78 и 0.11 соответственно [16]. Эти данные уточнялись на монокристаллических образцах, в нашем исследовании проведено уточнение структуры по порошку, которое является менее точным, поэтому указанные заселенности позиций были зафиксированы. Из исходной модели GdGaTi₂O₇ также известно, что три позиции в независимой части ячейки заселены Ti/Ga. Такое разупорядочение не включает в себя несколько позиций, как в случае с Ga/Ga^I. Поэтому мы попытались уточнить заселенности позиций Ti/Ga. Для повышения стабильности уточнения на сумму количества ионов Ті и Ga в ячейке наложено ограничение в виде линейных уравнений. В итоге уточнения прошли стабильно и дали низкие параметры недостоверности (табл. 1, рис. 2). Координаты атомов и тепловые параметры представлены в табл. 2, а основные длины связей — в табл. 3.

На рис. 3 (и в табл. 4) приведены экспериментальные данные по влиянию температуры на теплоемкость LuGaTi₂O₇. Видно, что с повышением температуры от 320 до 1000 К значения C_p закономерно увеличиваются, а на зависимости $C_p = f(T)$ нет экстремумов. Это может свидетельствовать о том, что в данном интервале температур фаза LuGaTi₂O₇ не испытывает полиморфных превращений. Полученные результаты хорошо описываются классическим уравнением Майера—Келли [22]

$$C_{p} = a + bT - cT^{-2}, (1)$$

которое для LuGaTi₂O₇ имеет следующий вид:

$$C_{p} = (252.43 \pm 0.61) + (25.7 \pm 0.7) \times 10^{-3}T - (39.56 \pm 0.59) \times 10^{5}T^{-2}.$$
 (2)

Коэффициент корреляции для уравнения (2) равен 0.9989, а максимальное отклонение экспериментальных точек от сглаживающей кривой – 0.65%.

Поскольку сведения по теплоемкости замещенного титаната LuGaTi₂O₇ в литературе отсутствуют, для сравнения на рис. 3 приведены значения теплоемкости титаната Lu₂Ti₂O₇ [23]. Видно, что замена части Lu на Ga приводит к уменьше-

 $I^{1/2}$

10

20

30

40

Рис. 2. Дифрактограммы LuGaTi₂O₇ при комнатной температуре: экспериментальный (*I*), расчетный (*2*) и разностный (*3*) профили рентгенограмм после уточнения методом Ритвельда; штрихи указывают расчетные положение рефлексов.

50

20, град

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 56 № 12 2020

60

70

80

90

Таблица 1. Основные параметры съемки и уточнения структуры кристалла LuGaTi₂O₇ (пр. гр. *Pcnb*)

a, Å	9.75033(13)
b, Å	13.46425(17)
<i>c</i> , Å	7.29215(9)
<i>V</i> , Å ³	957.32(2)
<i>d</i> , г/см ³	6.28
Интервал углов 20, град	11-100
$R_{wp}, \%$	4.78
$R_p, \%$	3.60
<i>R_B</i> , %	0.86
χ ²	2.3

Примечание. a, b, c, β — параметры ячейки, V — объем ячейки; d — рассчитанная плотность; факторы недостоверности: R_{wp} — весовой профильный, R_p — профильный, R_B — интегральный; χ^2 — качество подгонки.

нию теплоемкости, но вид кривых $C_p = f(T)$ остается симбатным во всем интервале исследованных температур.

Расчет теплоемкости при 298 К по аддитивному правилу Неймана—Коппа [24, 25] для LuGaTi₂O₇ дает значение $C_p = 208 \text{ Дж}/(\text{моль K})$, что на 3.5% отличается от величины, рассчитанной по уравнению (2). Необходимые данные по теплоемкости

Рис. 3. Температурные зависимости молярной теплоемкости $Lu_2Ti_2O_7(1)$ и LuGaTi₂O₇(2).

ДЕНИСОВА и др.

Атом	x	У	z	B _{iso}	Заселенность		
Lu	0.2474(6)	0.13403(10)	-0.0007(8)	0.56(10)	1		
Ti1	0.2542(18)	0.3855(3)	0.505(3)	1.00(15)	0.859(13)		
Gal	0.2542(18)	0.3855(3)	0.505(3)	1.00(15)	0.141(13)		
Ti2	0.5	0.25	0.251(2)	1.0(3)	0.808(47)		
Ga2	0.5	0.25	0.251(2)	1.0(3)	0.192(47)		
Ti3	0.0038(8)	0.4869(4)	0.2505(13)	1.0(2)	0.737(27)		
Ga3	0.0038(8)	0.4869(4)	0.2505(13)	1.0(2)	0.263(27)		
Ga	0	0.25	0.3305(14)	2.2(3)	0.78		
Gai	0.044(5)	0.287(3)	0.171(6)	2.2(3)	0.11		
01	0.1649(10)	0.3936(10)	0.242(5)	0.35(16)	1		
O2	0.3951(17)	0.1078(13)	0.252(6)	0.35(16)	1		
O3	0.103(2)	0.1537(9)	0.224(3)	0.35(16)	1		
O4	0.371(3)	0.286(2)	0.432(3)	0.35(16)	1		
05	0.375(3)	0.277(2)	0.057(4)	0.35(16)	1		
O6	0.366(3)	0.497(2)	0.436(4)	0.35(16)	1		
O 7	0.380(3)	0.487(2)	0.054(4)	0.35(16)	1		

Таблица 2. Координаты атомов и изотропные тепловые параметры структуры LuGaTi₂O₇

Таблица 3. Основные длины связей (Å) в структуре LuGaTi₂O₇

Lu-O2	2.37(4)	Ga–O3	1.811(17)
Lu–O2 ^I	2.30(4)	Ga–O5 ^{IV}	2.08(3)
Lu–O3	2.18(2)	Gai–O1	1.93(5)
Lu–O3 ^I	2.50(2)	Gai–O3	1.93(5)
Lu–O4 ^I	2.40(3)	Gai–O3 ^{VI}	1.68(5)
Lu–O5	2.33(3)	Gai–O4 ^I	1.93(5)
Lu–O6 ^{II}	2.21(3)	(Ti2/Ga2)–O4	1.88(3)
Lu–O7 ^{III}	2.40(3)	(Ti2/Ga2)–O5	1.90(3)
(Ti1/Ga1)–O1	2.11(4)	(Ti3/Ga3)–O1	2.012(13)
(Ti1/Ga1)–O1 ^{IV}	1.91(4)	(Ti3/Ga3)–O2 ^V	1.903(18)
(Ti1/Ga1)–O4	1.84(3)	(Ti3/Ga3)–O3 ^{VI}	2.167(15)
(Ti1/Ga1)–O5 ^{IV}	1.97(3)	(Ti3/Ga3)–O6 ^{VII}	1.93(3)
(Ti1/Ga1)–O6	1.91(3)	(Ti3/Ga3)–O7 ^{IV}	2.49(3)
(Ti1/Ga1)-O7 ^{IV}	1.92(3)	(Ti3/Ga3)–O7 ^{VII}	1.90(3)
(Ti2/Ga2)-O2	2.171(17)		

Примечание. Элементы симметрии: (I) -x + 1/2, y, z - 1/2; (II) -x + 1/2, y - 1/2, -z + 1/2; (III) x, y - 1/2, -z; (IV) -x + 1/2, y, z + 1/2; (V) -x + 1/2, y + 1/2, -z + 1/2; (VI) -x - y + 1/2, z; (VII) x - 1/2, -y + 1, -z + 1/2; (VIII) x - 1/2, -y + 1/2, z + 1/2.

1314

<i>Т</i> , К	<i>С_р,</i> Дж/(моль К)	<i>H</i> °(<i>T</i>) − <i>H</i> °(320 K), кДж/моль	<i>S</i> °(<i>T</i>) − <i>S</i> °(320 K), Дж/(моль K)	−(Δ <i>G</i> °/ <i>T</i>), * Дж/(моль К)
320	222.0	_	_	—
350	229.1	6.77	20.22	0.87
400	238.0	18.46	51.43	5.27
450	244.4	30.53	79.85	12.01
500	249.5	42.88	105.9	20.11
550	253.5	55.46	129.8	29.01
600	256.9	68.22	152.0	38.35
650	259.8	81.14	172.7	47.90
700	262.3	94.19	192.1	57.52
750	264.7	107.4	210.3	67.10
800	266.8	120.7	227.4	76.59
850	268.8	134.0	243.6	85.94
900	270.7	147.5	259.1	95.14
950	272.5	161.1	273.7	104.1
1000	274.2	174.8	287.7	113.0

Таблица 4. Термодинамические свойства LuGaTi₂O₇

* $-(\Delta G^{\circ}/T) = (H^{\circ}(T) - H^{\circ}(320 \text{ K}))/T - (S^{\circ}(T) - S^{\circ}(320 \text{ K})).$

 Lu_2O_3 , Ga_2O_3 и TiO₂ для расчета по этому уравнению взяты из работы [24].

С использованием полученных нами данных по теплоемкости в виде уравнения (2) по известным термодинамическим соотношениям рассчитаны основные термодинамические функции LuGaTi₂O₇. Эти результаты приведены в табл. 4.

ЗАКЛЮЧЕНИЕ

Твердофазным методом синтезирован замещенный титанат LuGaTi₂O₇ и определена его кристаллическая структура. Исследована температурная зависимость теплоемкости оксидного соединения. Установлено, что в области 320–1000 К экспериментальные данные хорошо описываются уравнением Майера–Келли. На основании этих данных рассчитаны основные термодинамические функции титаната лютеция-галлия.

БЛАГОДАРНОСТЬ

Авторы благодарят Красноярский региональный центр коллективного пользования ФИЦ КНЦ СО РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. Комиссарова Л.И., Шацкий В.М., Пушкина Г.Я., Шербакова Л.Г., Мамсурова Л.Г. Соединения редкоземельных элементов. Карбонаты, оксалаты, нитраты, титанаты М.: Наука, 1984. 235 с.
- 2. Суслов Д.Н. Теплоемкость и теплопроводность титаната диспрозия // Перспективные материалы. 2004. № 3. С. 28–30.
- Васильева М.Ф., Герасюк А.К., Гоев А.И., Потелов В.В., Сеник Б.Н., Сухачев А.Б., Жигарновский Б.М., Кириленко В.В. Высококачественные оптические покрытия для видимой и ближней ИК-областей спектра, созданные на базе новых пленкообразующих материалов – дититаната гадолиния и дититаната лютеция // Прикл. физика. 2007. № 5. С. 91–98.
- Li C., Xiang H., Chen J., Fang L. Phase Transition, Dielectric Relaxation and Piezoelectric Properties of Bismuth Doped La₂Ti₂O₇ Ceramics // Ceram. Int. 2016. V. 42. P. 1153–1158.

- Gao Z., Liu L., Han X., Meng X., Cao L., Ma G., Liu Y., Yang J., Xie Q., He H. A Ferroelectric Ceramic with Perovskite-Like Layered Structure (PLS) // J. Am. Ceram. Soc. 2015. V. 98. № 12. P. 3930–3934.
- 6. Портной К.И., Тимофеева Н.И. Кислородные соединения редкоземельных элементов. М.: Металлургия, 1986. 480 с.
- Farmer J.M., Boatner L.A., Chakoumakos B.C., Du M.-H., Lance M.J., Rawn C.J., Bruan J.C. Structural and Crystal Chemical Properties of Rare-Earth Titanate Pyrochlores // J. Alloys Compd. 2014. V. 605. P. 63–70. https://doi.org/10.1016/j.jallcom.2014.03.153
- Liu C.G., Chen L.G., Yang D.Y., Wen J., Dong L.Y., Li Y.H. The "Bimodal Effect" of the Bulk Modulus of Rare-Earth Titanate Pyrochlore // Comp. Mater. Sci. 2016. V. 114. P. 233–235. https://doi.org/10.1016/j.commatsci.2015.12.024
- Zhang W., Zhang L., Zong H., Li L., Yang X., Wang X. Synthesis and Characterization of Ultrafine Ln₂Ti₂O₇ (Ln = Sm, Gd, Dy, Er) Pyrochlore Oxides by Stearic Method // Mater. Character. 2010. V. 61. P. 154–158. https://doi.org/10.1016/j.materchar.2009.11.005
- Baraudi K., Gaulin B.D., Lapidus S.H., Gaudet J., Cava R.J. Symmetry and Light Stuffing of Ho₂Ti₂O₇, Er₂Ti₂O₇, and Yb₂Ti₂O₇ Characterized by Synchrotron X-Ray Diffraction // Phys. Rev. B. 2015. V. 92. P. 024110-1-024110-7. https://doi.org/PhysRevB.92.024110
- Hwang D.W., Lee J.S., Li W., Oh S.H. Electronic Band Structure and Photocatalytic Activity of Ln₂Ti₂O₇ (Ln = = La, Pr, Nd) // J. Phys. Chem. B. 2003. V. 107. P. 4963–4970.

https://doi.org/10.1021/jp034229n

- Xing H., Long G., Guo H., Zou Y., Feng C., Cao G., Zeng H., Xu Z.-A. Anisotropic Paramagnetism of Monoclinic Nd₂Ti₂O₇ Single Crystals // J. Phys.: Condens. Matter. 2011. V. 23. P. 216005-1–216005-6. https://doi.org/10.1088/0953-8984/23/21/216005
- Ben Amor N., Bejar M., Hussein M., Dhahri E., Valente M.A., Hlil E.K. Synthesis, Magnetic Properties, Magnetic Entropy and Arrot Plot of Antiferromagnetic Frustrated Er₂Ti₂O₇ Compound // Supercond. Nov. Magn. 2012. V. 25. P. 1035–1042. https://doi.org/10.1007/s10948-011-1344-9
- 14. Gao Z., Wu L., Gu W., Zhang T., Liu G., Xie Q., Li M. The Anisotropic Conductivity of Ferroelectric La₂Ti₂O₇ Ceramics // J. Eur. Ceram. Soc. 2017. V. 37. № 1. P. 137–143.

https://doi.org/10.1016/j.jeurceramsoc.2016.08.020

- 15. *Gao Z., Shi B., Ye H., Yan H., Reece M.* Ferroelectric and Dielectric Properties of Nd_{2−x}Ce_xTi₂O₇ ceramics // Adv. Appl. Ceram. 2014. V. 144. № 4. P. 191–197. https://doi.org/10.1179/1743676114Y.0000000221
- Генкина Е.А., Адрианов И.И., Белоконева Е.А., Милль Б.В., Максимов Б.А., Тамазян Р.А. Синтетический GdGaTi₂O₇ – новая полиморфная модификация полимигнита // Кристаллография. 1991. Т. 36. № 9. С. 1408–1414.
- Jarchow O., Klaska K.-H., Schenk-Strauβ H. Die Kristallstructuren von NdAlGe₂O₇ und NdGaGe₂O₇ // Z. Kristallogr. 1985. B. 172. S. 159–166.
- Kaminskii A.A., Mill B.V., Butashin A.V., Belokoneva E.L., Kurbanov K. Germanates with NdAlGe₂O₇ – Type Structure // Phys. Status Solidi A. 1987. V. 103. P. 575– 582.
- Juarez-Arellano E.A., Campa-Molina J., Ulloa-Godinez S., Bucio L., Orozco E. Crystallochemistry of Thortveitite-Like and Thortveitite-Type Compounds // Mater. Res. Soc. Symp. Proc. 2005. V. 848. P. FF6.15.1–FF6.15.8.
- Денисова Л.Т., Иртюго Л.А., Каргин Ю.Ф., Белецкий В.В., Денисов В.М. Высокотемпературная теплоемкость Tb₂Sn₂O₇ // Неорган. материалы. 2017. T. 53. № 1. С. 71–73. https://doi.org/10.7868/S0002337X17010043
- 21. Bruker AXS TOPAS V4: General Profile and Structure Analysis Softwere for Powder Diffraction Data. – User's Manual. Bruker AXS, Karlsruhe, Germany. 2008.
- 22. *Maier C.G., Kelley K.K.* An Equation for the Representation of High Temperature Heat Content Data // J. Am. Chem. Soc. 1932. V. 54. P. 3243–3246. https://doi.org/10.1021/ja01347a029
- Денисова Л.Т., Чумилина Л.Г., Рябов В.В., Каргин Ю.Ф., Белоусова Н.В., Денисов В.М. Теплоемкость Gd₂Ti₂O₇ и Lu₂Ti₂O₇ со структурой пирохлора в области 350– 1000 К // Неорган. материалы. 2019. Т. 55. № 5. С. 516–520. https://doi.org/10.1134/S0002337X19050026
- Leitner J., Chuchvalec P., Sedmidubský D., Strejc A., Abrman P. Estimation of Heat Capacities of Solid Mixed Oxides // Thermochim. Acta. 2003. V. 395. P. 27–46.

https://doi.org/10.1016/S0040-6031(02)00176-6

 Leitner J., Voňka P., Sedmidubský D., Svoboda P. Application of Neumann-Kopp Rule for the Estimation of Heat Capacity of Mixed Oxides // Thermochim. Acta. 2010. V. 497. P. 7–13. https://doi.org/10.1016/j.tca.2009.08.002