УДК 563.63

СИНТЕЗ И ИССЛЕДОВАНИЕ ВЫСОКОТЕМПЕРАТУРНОЙ ТЕПЛОЕМКОСТИ ГЕРМАНАТОВ YbInGe₂O₇ И LuInGe₂O₇ В ОБЛАСТИ 350–1000 К

© 2020 г. Л. Т. Денисова^{1, *}, Л. А. Иртюго¹, Ю. Ф. Каргин², В. В. Белецкий¹, Н. В. Белоусова¹, В. М. Денисов¹

¹Институт цветных металлов и материаловедения Сибирского федерального университета, np. Свободный, 79, Красноярск, 660041 Россия ²Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук, Ленинский пр., 49, Москва, 119991 Россия *e-mail: antluba@mail.ru Поступила в редакцию 21.01.2019 г. После доработки 02.05.2019 г. Принята к публикации 06.06.2019 г.

Германаты YbInGe₂O₇ и LuInGe₂O₇ синтезированы методом твердофазных реакций из стехиометрических смесей исходных оксидов последовательным обжигом в интервале температур 1273–1473 К на воздухе. Методом дифференциальной сканирующей калориметрии измерена их молярная теплоемкость в области 350–1000 К. На основании экспериментальных зависимостей $C_p = f(T)$ рассчитаны изменения энтальпий, энтропий и приведенной энергии Гиббса оксидных соединений.

Ключевые слова: твердофазный синтез, германаты иттербия-индия и лютеция-индия, теплоем-кость, термодинамические свойства

DOI: 10.31857/S0002337X20020049

введение

Интересные физические свойства германатов редкоземельных элементов с общей формулой $LnMGe_{2}O_{7}$ (M = In, Mn, Fe, Y, Sc, Ga, Al; Ln = La-Lu) и возможность практического применения (светоизлучающие диоды, люминофоры, экраны в плазменных панелях [1]; ядерная медицина [2]; лазеры, рентгеновские люминесцентные экраны, термолюминесцентные дозиметры [3]) привлекли внимание исследователей. К настоящему времени проведен синтез и исследованы свойства следующих соединений: FeInGe₂O₇ [4], NdAlGe₂O₇ [5], YInGe₂O₇ [1, 6], NdAlGe₂O₇ и NdGaGe₂O₇ [7], Ho_{0.94}In_{1.06}Ge₂O₇ [2], Gd_{0.92}In_{1.08}Ge₂O₇ [8], $La(Pr)FeGe_2O_7$ [9], $LnFeGe_2O_7$ (Ln = La-Gd[10], La, Pr, Nd, Gd [11]) (кристаллическая структура); YInGe₂O₇ [1] (люминесценция); LnFeGe₂O₇ (Ln = La, Pr, Nd, Gd) [11]; TbFeGe₂O₇ [12] (оптические свойства); $LnFeGe_2O_7$ (Ln = La, Pr, Nd, Sm, Eu, Gd [10], La, Pr, Nd, Gd [12], Ho, Er [13], Y, Pr, Dy, Tm, Yb [14]) (магнитные свойства). Большое количество замещенных германатов редкоземельных элементов в сочетании с их возможным допированием дает возможность получения новых материалов с нужными электрофизическими свойствами. Так, например, в работе [1] синтезирован новый люминофор с красным излучением — YInGe₂O₇, активированный европием.

Несмотря на большое внимание к соединениям $LnMGe_2O_7$, многие их свойства не исследованы. В первую очередь это относится к теплофизическим свойствам. Имеются данные по высокотемпературной теплоемкости только для соединений $YInGe_2O_7$ [15] и $TmInGe_2O_7$ [16]. В то же время для уточнения фазовых равновесий и нахождения оптимальных условий синтеза подобных материалов методами термодинамического моделирования требуются данные об их термодинамических свойствах. Такие сведения для германатов $LnMGe_2O_7$ в литературе отсутствуют.

Целью настоящей работы является исследование высокотемпературной теплоемкости $YbInGe_2O_7$ и LuInGe₂O₇ и определение их термодинамических свойств в области 350–1000 К.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Германаты YbInGe $_2O_7$ и LuInGe $_2O_7$ получали твердофазным синтезом из Yb $_2O_3$ (Lu $_2O_3$) ("х. ч."),

Рис. 1. Экспериментальный (I), расчетный (2) и разностный (3) профили рентгенограмм YbInGe₂O₇ (a) и LuInGe₂O₇ (б) (штрихи указывают расчетные положения рефлексов).

In₂O₃ ("ос. ч.") и GeO₂ (99.999%). Стехиометрические смеси предварительно прокаленных при 1173 К исходных оксидов тщательно перетирали в агатовой ступке и прессовали в таблетки. Их последовательно прокаливали на воздухе при температурах 1273 (40 ч), 1373 (100 ч) и 1473 К (60 ч) с промежуточными перетираниями через каждые 20 ч. Контроль фазового состава проводили с использованием рентгенофазового анализа (дифрактометр X'Pert Pro MPD PANalytical, Нидерланды, Си K_{α} -излучение). Дифрактограммы синтезированных образцов показаны на рис. 1. Параметры элементарных ячеек полученных германатов определяли подобно [17].

Теплоемкость YbInGe₂O₇ и LuInGe₂O₇ в области 350–1000 К измеряли методом дифференциальной сканирующей калориметрии на приборе STA 449 C Jupiter (NETZSCH, Германия). Мето-

Рис. 2. Влияние ионного радиуса РЗЭ на параметры элементарной ячейки *a* (*1*), *c* (2), *V*(3), β (4) соединений LnInGe₂O₇ (Ln = Lu–Tb).

дика экспериментов подобна описанной в работе [18]. Результаты обрабатывали с помощью пакета анализа NETZSCH Proteus Thermal Analysis и лицензионного программного инструмента Systat Sigma Plot 12 (Systat Software Inc, США). Ошибка измерений не превышала 2%.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Параметры элементарных ячеек синтезированных германатов YbInGe₂O₇ и LuInGe₂O₇ (пр. гр. *C*2/*c*) равны соответственно: a = 6.7750(2) Å, b == 8.8566(2) Å, c = 9.8299(2) Å, $\beta = 102.073(1)^{\circ}$, V == 576.79(2) Å³; a = 6.7628(1) Å, b = 8.8565(1) Å, c == 9.8388(1) Å, $\beta = 102.122(4)^{\circ}$, V = 576.15(1) Å³. Сравнить эти значения с данными других авторов не представлялось возможным вследствие их отсутствия. На рис. 2 показана корреляция ионных

2020

радиусов РЗЭ с параметрами элементарной ячейки соединений LnInGe₂O₇. Видно, что с увеличением ионного радиуса r^{3+} значения *а* и *V* увеличиваются, а *с* и β в целом уменьшаются. Обращает на себя внимание немонотонное изменение параметра *с* от r^{3+} . Не исключено, что это связано с очень незначительным его изменением по абсолютной величине по сравнению с другими параметрами. Величина *b* при этом остается практически постоянной и равной 8.867 ± 0.01 Å. Параметры элементарной ячейки соединений LnInGe₂O₇, полученные нами, для Ln = Tb, Dy и Ho удовлетворительно совпадают с данными [3]; для Er, Yb и Lu таких сведений нет. Значения ионных радиусов заимствованы из работы [19].

На рис. 3 приведены зависимости теплоемкости YbInGe₂O₇ и LuInGe₂O₇ от температуры. Видно, что при росте температуры от 350 до 1000 К значения C_p закономерно увеличиваются, а на зависимостях $C_p = f(T)$ нет экстремумов. Можно полагать, что у германатов YbInGe₂O₇ и LuInGe₂O₇ в этой области температур нет полиморфных превращений. Это позволяет описать экспериментальные данные по теплоемкости уравнением Майера–Келли: $C_p = a + bT - cT^{-2}$, которое для данных соединений имеет следующий вид:

$$C_{p} = (252.72 \pm 0.43) + (18.95 \pm 0.50) \times 10^{-3}T - (1)$$

- (36.67 ± 0.46) × 10⁵T⁻²,
$$C_{p} = (252.90 \pm 1.02) + (15.41 \pm 1.10) \times 10^{-3}T - (2)$$

- (48.08 ± 1.12) × 10⁵T⁻².

Коэффициенты корреляции для уравнений (1) и (2) равны 0.9994 и 0.9970 соответственно, а максимальные отклонения от сглаживающих кривых — 0.36 и 0.89%.

На основании уравнений (1) и (2) по известным термодинамическим соотношениям рассчитаны термодинамические функции YbInGe₂O₇ и LuInGe₂O₇. Эти результаты приведены в табл. 1.

При анализе свойств редкоземельных элементов и их соединений принимают во внимание существование тетрад-эффекта, выделяя при этом четыре группы: La–Nd, Pm–Gd, Gd–Ho, Er–Lu [20–22]. В [23] установлено, что между значениями удельной теплоемкости c_p^{o} и ионными радиусами РЗЭ имеется корреляция. Из рис. 4 видно, что она наблюдается и для соединений Ln₂Ge₂O₇ и LnInGe₂O₇ (Ln = Gd–Lu). Значения c_p^{o} для оксидов

LnInGe₂O₇ (Ln = Gd–Lu). Значения c_p° для оксидов РЗЭ взяты из [24, 25], а для Ln₂Ge₂O₇ и RInGe₂O₇ получены нами.

Рис. 3. Влияние температуры на молярную теплоемкость YbInGe₂O₇ (1) и LuInGe₂O₇ (2).

Рис. 4. Изменение удельной теплоемкости в зависимости от ионного радиуса $P3\Im r^{3+}$: $1 - LnInGe_2O_7$, $2 - Ln_2Ge_2O_7$, $3 - Ln_2O_3$.

ЗАКЛЮЧЕНИЕ

Твердофазным синтезом при температурах 1273–1473 К из исходных оксидов Yb₂O₃ (Lu₂O₃), In₂O₃ и GeO₂ получены поликристаллические образцы YbInGe₂O₇ и LuInGe₂O₇. Исследовано влияние температуры на их молярную теплоемкость. Показано, что в интервале температур 350–1000 К полученные зависимости $C_p = f(T)$ хорошо описываются уравнением Майера–Келли.

Рассчитаны основные термодинамические функции оксидных соединений (изменения энтальпий, энтропий и приведенной энергии

<i>Т</i> , К	<i>С_р,</i> Дж/(моль К)	<i>H</i> °(<i>T</i>) − <i>H</i> °(350 K), кДж/моль	<i>S</i> °(<i>T</i>) − <i>S</i> °(350 K), Дж/(моль K)	Ф°(<i>T</i>) – Ф° (350 К), Дж/(моль К)
YbInGe ₂ O ₇				
350	229.4	-	_	_
400	237.4	11.68	31.19	1.98
450	243.2	23.70	59.50	6.82
500	247.6	35.98	85.35	13.40
550	251.0	48.44	109.1	21.04
600	253.9	61.07	131.1	29.30
650	256.4	73.83	151.5	37.93
700	258.5	86.70	170.6	46.73
750	260.5	99.68	188.5	55.59
800	262.2	112.7	205.4	64.43
850	263.8	125.9	221.3	73.20
900	265.3	139.1	236.4	81.85
950	266.7	152.4	250.8	90.37
1000	268.0	165.8	264.5	98.73
LuInGe ₂ O ₇				
350	219.1	-	_	_
400	229.0	11.22	29.94	1.90
450	236.1	22.86	57.35	6.56
500	241.4	34.80	82.51	12.91
550	245.5	46.97	105.7	20.31
600	248.8	59.33	127.2	28.33
650	251.5	71.84	147.2	36.72
700	253.9	84.48	166.0	45.29
750	255.9	97.23	183.6	53.93
800	257.7	110.1	200.1	62.56
850	259.3	123.0	215.8	71.11
900	260.8	136.0	230.7	79.57
950	262.2	149.1	244.8	87.90
1000	263.5	162.2	258.3	96.08

Таблица 1. Термодинамические свойства YbInGe₂O₇ и LuInGe₂O₇

Гиббса). Установлена корреляция между удельной теплоемкостью и ионными радиусами РЗЭ для соединений $R_2Ge_2O_7$ и LnInGe₂O₇ (Ln = Gd–Lu).

БЛАГОДАРНОСТЬ

Работа выполнена при финансовой поддержке работ, выполняемых в рамках Государственного задания Министерства образования и науки Российской Федерации Сибирскому федеральному университету на 2017–2019 гг. (проект 4.8083.2017/8.9 "Формирование банка данных термодинамических характеристик сложнооксидных полифункциональных материалов, содержащих редкие и рассеянные элементы").

СПИСОК ЛИТЕРАТУРЫ

- Chang Y.-S., Lin H.-J., Chao Y.-L. et al. Preparation and Luminescent Properties of Europium-Activated YInGe₂O₇ Phosphors // J. Alloys Compd. 2008. V. 460. P. 421–425. https://doi.org/10.1016/j.jallcom.2007.05.060
- 2. Juarez-Arellano E.A., Rosales I., Oliver A. et al. In_{1.06}Ho_{0.94}Ge₂O₇: a Thortveitite-Type Compound // Acta Crystallogr., Sect. C. 2004. V. 60. P. i14–i16. https://doi.org/10.1107/S0108270103029056
- 3. Juarez-Arellano E.A., Compa-Molina J., Ulloa-Godinez S. et al. Crystallochemistry of Thortveitite-Like and Thortveitite-Type Compounds // Mater. Res. Soc. Symp. Proc. 2005. V. 848. P. FF6.15.1–FF6.15.8.

- Bucio L., Ruvalcaba-Sil J.L., Garcia-Robledo J. et al. The Crystal Structure of FeInGe₂O₇ // Z. Kristallogr. 2001. V. 216. P. 438–441.
- Kaminskii A.A., Mill B.V., Butashin A.V. et al. NdAl-Ge₂O₇ – Type Structure // Phys. Status Solid: A. 1987. V. 103. P. 575–592.
- Juarez-Arellano E.A., Bucio L., Ruvalcaba J.L. et al. The Crystal Structure of InYGe₂O₇ Germanate // Z. Kristallogr. 2002. V. 217. P. 201–204.
- Jarchow O., Klaska K.-H., Schenk-Strauβ H. Die Kristallstrukturen von NdAlGe₂O₇ und NdGaGe₂O₇ // Z. Kristallogr. 1985. V. 172. P. 159–166.
- Juarez-Arellano E.-A., Rosales I., Bucio L. Orozco E. In_{1.08}Gd_{0.92}Ge₂O₇: a New Member of the Thortveitite Family // Acta Crystallogr., Sect. C. 2002. V. 58. P. i135–i137.
- Bucio L., Cascales C., Alonso J.A. et al. Structural Characterization by Neutron Diffraction of FeRGe₂O₇, R = La, Pr // Mater. Sci. Forum. Swizerland. 1996. V. 228–231. P. 735–740.
- Милль Б.В., Казей З.А., Рейман С.И. и др. Магнитные и Мёссбауэровские исследования новых антиферромагнитных соединений RFeGe₂O₇ (R = La-Gd) // Вестн. МГУ. Сер. Физика, Астрономия. 1987. Т. 28. № 4. С. 95–98.
- Bucio L., Cascales C., Alonso J.A. et al. Neutron Diffraction Refinement and Characterization of FeRGe₂O₇ (R = La, Pr, Nd, Gd) // J. Phys.: Condens. Matter. 1996. V. 8. P. 2641–2653.
- Baran E.J., Cascales C., Marcader R.C. Vibrational and ⁵⁷Fe-Mössbauer Spectra of FeTbGe₂O₇ // Spectrochim. Acta A. 2000. V. 56. P. 1277–1281.
- Cascales C., Gutierrez Puebla E., Klimin S. et al. Magnetic Ordering in the Rare Earth Iron Germanates HoFeGe₂O₇ and ErFeGe₂O₇ // Chem. Mater. 1999. V. 11. P. 2520–2526.
- Cascales C., Fernandez-Diaz M.T., Monge M.A. et al. Crystal Structure and Low-Temperatute Magnetic Ordering in Rare Earth Iron Germanates RFeGe₂O₇, R = Y, Pr, Dy, Tm, and Yb // Chem. Mater. 2002. V. 14. P. 1995–2003. https://doi.org/10.1021/cm0111332

- Денисова Л.Т., Каргин Ю.Ф., Иртюго Л.А. и др. Теплоемкость In₂Ge₂O₇ и YInGe₂O₇ в области температур 320–1000 К // Неорган. материалы. 2018. Т. 54. № 12. С. 1315–1319. https://doi.org/10.1134/S0002337X18120023
- 16. Денисова Л.Т., Иртюго Л.А., Белоусова Н.В. и др. Высокотемпературная теплоемкость и термодинамические свойства Tm₂Ge₂O₇ и TmInGe₂O₇ в области 350–1000 К // Журн. физ. химии. 2019. Т. 93. № 3. С. 1–3. https://doi.org/10.1134/S004445371903004X
- Денисова Л.Т., Чумилина Л.Г., Белоусова Н.В. и др. Высокотемпературная теплоемкость оксидов системы CdO-V₂O₅ // Физика твердого тела. 2017. Т. 59. № 12. С. 2490-2494. https://doi.org/10.21883/FTT.2017.12.45253.145
- Денисова Л.Т., Иртюго Л.А., Каргин Ю.Ф. и др. Высокотемпературная теплоемкость Tb₂Sn₂O₇ // Неорган. материалы. 2017. Т. 53. № 1. С. 71–73. https://doi.org/10.7868/S0002337X17010043
- Shannon R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides // Acta Crystallogr., Sect. A. 1976. V. 32. P. 751–767.
- Kawabe I. Lanthanide Tetrad Effect in the Ln³⁺ Ionic Radii and Refined Spinpairing Energy Theory // Geochem. J. 1992. V. 26. P. 309–335.
- 21. Ясныгина Т.А., Рассказов С.В. Редкоземельные спектры с тетрад-эффектом: проявление в палеозойских гранитоидах окинской зоны Восточного Саяна // Геохимия. 2008. № 8. С. 877–889.
- Третьяков Ю.Д., Мартыненко Л.И., Григорьев А.Н. и др. Неорганическая химия. Кн. 1. М.: Химия, 2001. 472 с.
- 23. Денисова Л.Т., Каргин Ю.Ф., Денисов В.М. Теплоемкость редкоземельных купратов, ортованадатов, алюмо-, гало и феррогранатов // Физика твердого тела. 2015. Т. 57. № 8. С. 1658–1662.
- Leitner J., Chuchvalec P., Sedmidybský D. et al. Estimation of Heat Capacities of Solid Mixed // Thermochim. Acta. 2003. V. 395. № 1–2. P. 27–46.
- Гордиенко С.П., Феночка Б.В., Виксман С.Ш. Термодинамика соединений лантаноидов. Киев: Наукова думка, 1979. 376 с.