УДК 546

ВЫСОКОТЕМПЕРАТУРНЫЙ СИНТЕЗ ЛИТЫХ МАТЕРИАЛОВ НА ОСНОВЕ МАХ-ФАЗЫ Cr₂AIC ИЗ СМЕСЕЙ CaCrO₄ + AI + C

© 2020 г. В. А. Горшков^{1, *}, П. А. Милосердов¹, Н. В. Сачкова¹

¹Институт структурной макрокинетики и проблем материаловедения им. А.Г. Мержанова Российской академии наук, ул. Академика Осипьяна, 8, Черноголовка, Московская обл., 142432 Россия

> **e-mail: gorsh@ism.ac.ru* Поступила в редакцию 31.01.2019 г. После доработки 24.09.2019 г. Принята к публикации 26.09.2019 г.

Представлены экспериментальные результаты высокотемпературного синтеза литых композиционных материалов системы Cr–Al–C с различным соотношением между MAX-фазой Cr₂AlC, карбидами и алюминидами хрома. Опыты проводили в универсальных CBC-реакторах под давлением аргона p = 5 МПа. В качестве шихт использовали смеси порошков хромата кальция (CaCrO₄) с алюминием (ACД-I) и углеродом. Показано, что, варьируя содержание углерода в шихте, можно существенным образом влиять на закономерности синтеза, фазовый состав и микроструктуру целевых продуктов. Обнаружено, что при стехиометрическом содержании углерода в исходной смеси синтезируются литые композиционные материалы, состоящие в основном из MAX-фазы Cr₂AlC, а также низшего карбида хрома Cr₇C₃ и алюминида хрома Cr₅Al₈. Введение дополнительного (сверхстехиометрического) количества углерода в исходную смесь приводит к увеличению содержания MAXфазы Cr₂AlC в целевом продукте, исчезновению алюминида хрома Cr₅Al₈, и образованию высшего карбида Cr₃C₂ вместо низшего. Полученные конечные продукты охарактеризованы методами рентгенографического и локального микроструктурного анализов. Изучены структура и состав целевых продуктов, полученных в различных условиях.

Ключевые слова: карбидная керамика, МАХ-фаза Cr₂AlC, CBC-металлургия, избыточное давление, горение, фазоразделение, кристаллизация, фазовый состав, микроструктура

DOI: 10.31857/S0002337X20030045

введение

В системе Cr–Al–C известны следующие соединения хрома: карбиды $Cr_{23}C_6$, Cr_7C_3 , Cr_3C_2 , алюминиды Cr_2Al , CrAl, Cr_5Al_8 и MAX-фаза Cr_2AlC . Все они относятся к тугоплавким соединениям, обладающим полезными практическими свойствами. Карбиды и алюминиды хрома давно известны и хорошо изучены [1–4]. В последнее время большой интерес возник к MAX-фазам карбидных тройных соединений из-за необычной комбинации свойств металлов и керамики, делающих их перспективными для использования в аэрокосмической, автомобильной и индустриальной сферах [5, 6]. В настоящее время Cr_2AlC является третьим наиболее широко изученным соединением после Ti_3SiC_2 и Ti_3AlC_2 среди семейства MAX-фаз.

В жидком состоянии хром и углерод неограниченно растворимы друг в друге. Кристаллическая структура Cr_2AIC представляет собой 6 плотноупакованных слоев, 4 из которых состоят из атомов Cr и 2 из атомов Al. Имеется предположение, что при комнатной температуре Cr_2AlC может вести себя как парамагнетик [7–9].

Из способов получения MAX-фазы Cr₂AlC в литературе наиболее часто представлены методы горячего прессования и плазменно-искрового спекания [10, 11]. В работе [12] материал на основе Cr₂AlC был получен методом двухстадийного спекания, включающего прямую реакцию жидкого алюминия с карбидами хрома с образованием интерметаллидов Cr–Al и карбида Al_4C_3 , которые далее реагировали с формированием Cr₂AlC. Порошок Cr₂AlC также был успешно синтезирован из смеси гидрата сульфата алюминия $(Al_2(SO_4)_3 \cdot 18H_2O)$, аморфного диоксида кремния (SiO₂) в расплавленной солевой среде сульфата натрия (Na₂SO₄) [13]. Синтез высокочистой металлокерамики Cr₂AlC, включающий спекание (PLS) элементарных порошков с последующим плазменно-искровым спеканием (SPS) измельченного реакционного продукта, описан в работе [14].

Синтез тройного соединения Cr_2AlC из порошковой смеси Cr, Al_4C_3 и графита в соотношении Cr : Al : C = 2 : 1.1 : 1 методом спекания импульсным разрядом в вакууме в диапазоне температур от 850 до 1350°C был исследован в работе [15]. Было обнаружено, что количество фазы Cr₂AlC значительно увеличилось при проведении синтеза в температурном диапазоне от 950 до 1250°C в расчете на избыток Cr и Al₄C₃. Преимущественно однофазный Cr₂AlC с небольшим количеством Cr₇C₃ образуется при температуре спекания 1250°C. Предполагается, что фаза Cr₂AlC образуется вблизи частицы Al₄C₃ путем диффузии Cr и взаимного растворения Cr и Al₄C₃.

В работе [16] керамический материал на основе МАХ-фазы Cr₂AlC был получен методом горячего прессования в аргоне в диапазоне температур 850-1450°С. Исходные образцы в этом способе прессовали из порошков Cr. Al и углерода в соотношении Cr : Al : C = 1 : 1.2 : 1. Было обнаружено, что Cr_5Al_8 , Cr_2Al и Cr_7C_3 представляют собой промежуточные фазы, концентрация которых уменьшалась в процессе нагрева. Количество фазы Cr₂AlC постепенно увеличивалось с повышением температуры за счет реакции между интерметаллидом Cr-Al, хромом и графитом. Промежуточные фазы полностью исчезают при температуре выше 1250°С. Методом совмещения самораспространющегося высокотемпературного синтеза (СВС) и процесса изостатического прессования (HIP) синтезирован объемный нанослоистый композит, содержащий Cr₂AlC [17].

Большинство перечисленных процессов проводят при повышенных температурах (>1200°C), высоких давлениях прессования (до 20 МПа) с использованием сложного оборудования. Они малопроизводительны и энергозатратны. Наиболее перспективным способом получения таких материалов является одностадийный СВС [18]. Одним из направлений этого метода является СВС-металлургия, использующая исходные смеси, состоящие из оксидов металлов, металла-восстановителя (алюминия) и неметалла (углерод, бор, кремний). Температуры горения таких смесей превышают, как правило, температуры плавления исходных реагентов и конечных продуктов, получаемых в волне горения в жидкофазном (литом) состоянии [19]. Этим методом были получены литые материалы с различным содержанием фазы Cr_2AlC [20, 21], при этом авторы для получения целевых конечных продуктов использовали исходные смеси, содержащие хромовый ангидрид (CrO₃), который является гигроскопичным и термически нестабильным, что ограничивает практическую реализацию метода.

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 56 № 3 2020

Целью данной работы является разработка синтеза методом CBC-металлургии литых материалов на основе MAX-фазы Cr_2AlC с использованием в исходной смеси вместо хромового ангидрида (CrO_3) хромата кальция ($CaCrO_4$), имеющего более высокую термическую стабильность и малую гигроскопичность.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В экспериментах использовали смеси порошков хромата кальция квалификации "ч. д. а.", алюминия марки АСД-1 и графита марки ГМЗ с размером частиц 40–160 мкм. Исходные смеси готовили в планетарном смесителе или в шаровой мельнице. В качестве базовой использовали стехиометрическую смесь, состав которой рассчитывали из следующей реакции:

$$2CaCrO_4 + 5Al + C = Cr_2AlC + 2Al_2O_3 + 2CaO.$$
 (I)

Смеси помещали в прозрачные кварцевые стаканчики диаметром 15—25 мм, высотой 50—60 мм. Масса смеси во всех экспериментах составляла 20 г. Синтезы проводили в СВС-реакторе объемом 3 л при начальном избыточном давлении аргона 5 МПа.

В экспериментах изучали влияние содержания избытка углерода в исходной смеси (ΔC) на скорость горения (и), относительный выход металлической фазы в слиток ($\eta_{\rm B}$) и относительную потерю массы смеси при горении (η_л). Содержание избытка углерода в исходной смеси (ΔC) рассчитывали по формуле $\Delta C = (M_C^{\text{эксп}} - M_C^{\text{стех}})/M_C^{\text{стех}},$ где $M_{\rm C}^{\rm эксп}$ – количество углерода в смеси в эксперименте, $M_{\rm C}^{\rm стех}$ – количество углерода, рассчитанное из формулы (I). Скорость горения рассчитывали по формуле $u = h/\tau$, где h – высота слоя смеси в кварцевом стаканчике, т – время горения. Выход металлической фазы в слиток (η_в) и относительную потерю массы смеси (диспергирования) при горении (η_{II}) рассчитывали по формулам: η_{II} = $= m_{\rm cn}/M_{\rm cm} \times 100\%$, $\eta_{\rm d} = (M_{\rm cm} - M_{\rm k})/M_{\rm cm} \times 100\%$, где $M_{\rm cm}$ — масса исходной смеси, $M_{\rm k}$ — масса конечных продуктов горения, $m_{c\pi}$ – масса металлического слитка. Время горения смеси замеряли с помощью секундомера и видеозаписи.

Фазовый состав продуктов горения определяли методами рентгенофазового анализа и электронной микроскопии. Рентгенофазовый анализ проводился на дифрактометре ДРОН-3М с использованием излучения Си с монохроматором на вторичном пучке. Исследование микроструктуры и элементного анализа образцов проводили на автоэмиссионном сканирующем электронном микроскопе сверхвысокого разрешения ULTRA

Рис. 1. Кварцевая форма с исходной смесью (а), внешний вид конечных продуктов (б): верхний слиток (*1*) – оксидный Al₂O₃/CaO, нижний слиток (*2*) – целевой продукт Cr–Al–C.

plus Zeiss с системой микроанализа INCA 350 Oxford Instruments.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

При сжигании исходных смесей со стехиометрическим соотношением реагентов, рассчитанным из формулы (I), было обнаружено, что смеси горят в стационарном режиме с ровным фронтом. Скорость горения равна 11 мм/с. Конечные продукты в волне горения получаются в жидкофазном состоянии и из-за различных удельных весов под действием гравитации разделяются на два слоя: нижний – металлоподобный, верхний – оксидный. На рис. 1 представлены кварцевая форма (стаканчик) с исходной смесью (а), внешний вид конечных продуктов (б): верхний слиток (1) – оксидный Al₂O₃/CaO, нижний слиток (2) – целевой продукт Cr–Al–C. В дальнейших экспериментах было изучено влияние содержания избытка углерода в исходной смеси ΔC на закономерности синтеза: $(u, \eta_{\rm B}, \eta_{\rm J})$, а также на фазовый состав и микроструктуру конечных целевых продуктов. Из рис. 2 видно, что при добавлении избытка углерода в исходную смесь ($\Delta C = 0-3.75$) происходит увеличение выхода целевого продукта (η_в) от 15 до 27% при одновременном снижении относительной потери массы смеси (η_л) от 13 до 7.5% и скорости горения (*u*) от 11 до 7.5 мм/с.

Рентгенофазовый анализ (рис. 3) показал, что при сжигании смеси (I) со стехиометрическим соотношением реагентов целевой продукт состоит из MAX-фазы Cr_2AlC , низшего карбида хрома Cr_7C_3 и алюминида хрома Cr_5Al_8 . Дифракционные линии MAX-фазы Cr_2AlC узкие, что свидетельствует о высокой степени совершенства ее кристаллической структуры. Параметры элементарной ячейки синтезированной МАХ-фазы Cr₂AlC (a = 0.286 нм, c = 1.283 нм) практически совпадают с данными базы PDF2 (№ 89–2275: a = 0.286 нм, c = 1.282 нм). Количественный анализ, проведенный методом Ритвельда, показал, что содержание фазы Cr₂AlC составляет 67 об. %.

На рис. 4 представлены микроструктура, элементный и расчетный фазовый состав образца, полученного при горении стехиометрической смеси: $CaCrO_4 + Al + C (\Delta C = 0)$. Видно, что материал состоит в основном из фазы Cr_2AlC , а также небольшого количества алюминида хрома Cr_5Al_8 и карбида хрома Cr_7C_3 . Результаты электронной микроскопии хорошо соответствуют данным рентгенофазового анализа, представленным на рис. 3. По данным ло-

Рис. 2. Влияние избытка углерода в исходной смеси (ΔC) на скорость горения *u*, выход металлической фазы (η_B) и разброс продуктов горения (диспергирование) (η_{π}).

Рис. 3. Дифрактограмма образца, полученного из стехиометрической ($\Delta C = 0$) смеси (I) ($M_{cm} = 20$ г).

кального микроструктурного анализа (рис. 4), кроме указанных выше фаз в целевом продукте присутствует в небольшом количестве тройная карбидная фаза $Cr_xAl_yC_z$, состав которой из-за ее малого содержания определить не удалось.

С введением в исходную смесь дополнительного (сверхстехиометрического) количества углерода в целевом продукте исчезает (за счет образования MAX-фазы Cr_2AIC) алюминид хрома Cr_5AI_8 , а вместо низшего карбида Cr_7C_3 образуется высший карбид Cr_3C_2 . На рис. 5 представлена дифрактограмма образца, полученного при горении исходной смеси с избытком углерода $\Delta C = 2.5$. Видно, что целевой продукт состоит из фазы Cr_2AlC и небольшого количества высшего карбида хрома Cr_3C_2 . Дифракционные линии MAX-фазы Cr_2AlC узкие. Наличие карбидов и алюминидов хрома в конечном целевом продукте объясняется тем, что во время горения исходной смеси, состав которой рассчитан в соответствии с (I), углерод и алюминий в волне горения образуют газообразные продукты (CO, CO₂, Al^g, AlO, Al₂O) и удаляются из расплава. Вследствие этого в системе образуется их "дефицит" по сравнению со стехиометрическим содержанием, что приводит к образованию фаз Cr_5Al_8 и Cr_7C_3 [20, 21].

На рис. 6 представлены микроструктура, элементный и фазовый состав целевого продукта, полученного при горении исходной смеси с избытком углерода $\Delta C = 2.5$. Видно, что материал состоит из MAX-фазы Cr₂AlC и зерен высшего карбида Cr₃C₂.

На рис. 7 представлены микроструктура, элементный и фазовый состав поверхности излома целевого продукта, полученного при горении смеси с избытком углерода $\Delta C = 2.5$. Видно, что зерна MAX-фазы Cr₂AlC имеют слоистую структуру, внутри них находятся зерна Cr₃C₂.

На рис. 8 представлен характерный вид слоистой структуры МАХ-фазы Cr_2AlC . При этом наблюдается наноламинатная структура с толщиной слоев 3.06 и 12.9 нм. Данные локального микроструктурного анализа (рис. 6, 7 и 8) хорошо корре-

Спектр	С	Al	Cr	Фазы
1	8.3	0.2	91.5	Cr ₇ C ₃
2	10.0	0.7	89.3	Cr ₇ C ₃
3	7.6	0.3	92.1	Cr ₇ C ₃
4	8.6	0.4	91.0	Cr ₇ C ₃
5	8.6	18.7	72.1	Cr ₂ AlC
6	8.4	18.4	73.2	Cr ₂ AlC
7	0.1	44.5	55.4	Cr ₅ Al ₈
8	0.3	44.2	55.5	Cr ₅ Al ₈
9	23.1	47.9	29.0	$Cr_xAl_yC_z$
10	26.6	46.7	26.7	$Cr_xAl_yC_z$

Рис. 4. Микроструктура, элементный состав (мас. %) и расчетный фазовый состав целевого продукта при горении стехиометрической ($\Delta C = 0$) смеси (I) ($M_{cm} = 20$ г, фазовый состав рассчитывали из данных рентгенофазового и локального микроструктурного анализов).

Рис. 5. Дифрактограмма образца, полученного при горении исходной смеси с избытком углерода $\Delta C = 2.5 (M_{cM} = 20 \text{ г}).$

лируют с результатами рентгенофазового анализа (рис. 5).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

8 1 9 5 2 10 4 4 3 50 мкм

ским содержанием. Для устранения "дефицита" углерода в исходную стехиометрическую смесь в различном количестве вводили его избыток (ΔС).

$$2CaCrO_4 + 5Al + (C + \Delta C) =$$

= Cr₂AlC + 2Al₂O₃ + 2CaO + ↑ (CO, CO₂). (II)

Из анализа проведенных экспериментов можно предположить следующие химические стадии синтеза:

$$CaCrO_4 + Al + C \rightarrow Cr_2AlC + Al_2O_3 + CaO, \quad (1)$$

$$CaCrO_4 + C \rightarrow Cr_7C_3 + (CO, CO_2)\uparrow + CaO, \quad (2)$$

$$CaCrO_4 + \Delta Al \rightarrow Cr_5Al_8 + Al_2O_3 + CaO,$$
 (3)

$$Cr_7C_3 + \Delta C \rightarrow Cr_3C_2,$$
 (4)

$$Cr_5Al_8 + \Delta C \rightarrow Cr_2AlC,$$
 (5)

$$\operatorname{Cr}_{7}\operatorname{C}_{3} + \Delta \operatorname{Al} \to \operatorname{Cr}_{2}\operatorname{AlC}.$$
 (6)

При прохождении базовой реакции (1) из-за участия углерода в окислительно-восстановительной реакции (2) образуется низший карбид хрома Cr_7C_3 . При этом в системе остается избыток алюминия (Δ Al), который реагирует с CaCrO₄ (3) с образованием алюминида хрома Cr_5Al_8 (в литературе [16] известны также случаи формирования Cr_2Al). Введение в исходную базовую смесь избытка углерода (Δ C) привело к увеличению полноты реагирования и выхода целевого продукта (η_B) в отдельный слиток (рис. 2). При этом Δ C реагирует с Cr_7C_3 (4) и с Cr_5Al_8 (5), образуя Cr_3C_2 и Cr_2AlC . Избыток алюминия вступает в реакцию с

Спектр	С	Al	Cr	Фазы
1	8.5	18.4	73.1	Cr ₂ AlC
2	8.9	18.1	73.0	Cr ₂ AlC
3	9.1	18.0	72.9	Cr ₂ AlC
4	8.3	18.6	73.1	Cr ₂ AlC
5	13.0	1.3	85.7	Cr ₇ C ₃
6	13.1	0.9	86.0	Cr ₇ C ₃
7	8.3	18.5	73.2	Cr ₂ AlC
8	8.8	18.4	72.8	Cr ₂ AlC
9	12.8	1.3	85.9	Cr ₃ C ₂
10	13.2	1.9	84.9	Cr ₃ C ₂

Рис. 6. Микроструктура, элементный состав (мас. %) и расчетный фазовый состав целевого продукта, полученного при горении исходной смеси с избытком углерода $\Delta C = 2.5$ ($M_{\rm CM} = 20$ г, фазовый состав рассчитывали из данных рентгенофазового и локального микроструктурного анализов).

Спектр	С	Al	Cr	Фазы
1	8.3	18.3	73.4	Cr ₂ AlC
2	13.2	1.1	85.7	Cr ₃ C ₂
3	13.1	0.7	86.2	Cr_3C_2
4	8.5	18.4	73.1	Cr ₂ AlC

Рис. 7. Микроструктура, элементный состав (мас. %) и расчетный фазовый состав поверхности излома целевого продукта, полученного при горении смеси с избытком углерода ΔC = 2.5 (фазовый состав рассчитывали из данных рентгенофазового и локального микроструктурного анализов).

 Cr_7C_3 и образует Cr_2AlC (6). В результате введение в исходную смесь избытка углерода приводит к увеличению содержания MAX-фазы Cr_2AlC в це-

Рис. 8. Характерный вид слоистой структуры МАХфазы Cr₂AlC.

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 56 № 3 2020

левом продукте, исчезновению алюминида хрома Cr_5Al_8 , а вместо низшего карбида хрома Cr_7C_3 образуется высший карбид Cr_3C_2 .

ЗАКЛЮЧЕНИЕ

Методом CBC-металлургии получены литые материалы на основе MAX-фазы Cr_2AlC с использованием в исходной смеси вместо хромового ангидрида (CrO₃) хромата кальция (CaCrO₄), имеющего более высокую термическую стабильность и малую гигроскопичность.

Изучено влияние содержания избытка углерода в шихте на закономерности синтеза (u, $\eta_{\rm B}$, $\eta_{\rm A}$), фазовый состав и микроструктуру конечных продуктов.

Изучены структурно-фазовые состояния целевых продуктов, полученных в различных условиях.

Обнаружено, что при стехиометрическом содержании углерода в исходной смеси синтезируются литые композиционные материалы, состоящие в основном из MAX-фазы Cr_2AlC , а также низшего карбида хрома Cr_7C_3 и алюминида хрома Cr_5Al_8 .

Введение дополнительного (сверхстехиометрического) количества углерода в исходную смесь приводит к увеличению содержания MAX-фазы Cr_2AIC в целевом продукте, исчезновению алюминида хрома Cr_5Al_8 , а вместо низшего карбида хрома Cr_7C_3 образуется высший карбид Cr_3C_2 .

БЛАГОДАРНОСТЬ

Работа выполнена при финансовой поддержке гранта РФФИ № 19-08-00053.

СПИСОК ЛИТЕРАТУРЫ

- 1. Кифер Р., Бенезовский Ф. Твердые материалы. М.: Металлургия, 1968. С. 384.
- 2. Руднева В.В., Галевский Г.В. Исследование коррозионной стойкости нанопорошков тугоплавких боридов и карбидов в растворах электролитов // Изв. вузов. Цв. металлургия. 2007. № 2. С. 67–70.
- 3. Ноздрин И.В., Галевский Г.В., Ширяева Л.С., Руднева В.В. Структура и свойства композиционных покрытий никель—нанопорошок карбонитрида хрома // Наноинженерия. 2013. № 7(25). С. 36–42.
- Guilemagy J.M., Espallargas N., Suegama P.H., Benedetti A.V. Comparative Study of Cr₃C₂-NiCr Coating // Corrosion Sci. 2006. V. 48. P. 2998-3013.
- Barsoum M.W. The MAX Phases: A New Class of Solids: Thermodynamically Stable Nanolaminates // Prog. Solid State Chem. 2000. V. 28. P. 201–281.
- Hettinger J.D., Lofland S.E., Finkel P., Meehan T., Palma J., Harrell K., Gupta S., Ganguly A., El-Raghy T., Barsoum M.W. Electrical Transport, Thermal Transport, and Elastic Properties of M₂AlC (M = Ti, Cr, Nb, and V) // Phys. Rev. B. 2005. V. 72. № 11. P. 115120.
- Tian W.B., Wang P.L., Zhang G., Kan Y., Li Y., Yan D. Synthesis and Thermal and Electrical Properties of Bulk Cr₂AlC // Scr. Mater. 2006. V. 54. P. 841–846.
- Lin Z., Zhou Y., Li M. Synthesis, Microstructure, and Property of Cr₂AlC // J. Mater. Sci. Technol. 2007. V. 23. № 6. P. 721–746.
- Schneider J.M., Sun Z., Mertens R., Uestel F., Ahuja R. Ab-Initio Calculations and Experimental Determination of the Structure of Cr₂AlC // Solid State Commun. 2004. V. 130. P. 445–449.
- Tian W., Vanmeensel K., Wang P., Zhang G., Li Y., Vleugels J., Van der Biest O. Synthesis and Characterization of Cr₂AlC Ceramics Prepared by Spark Plasma Sintering // Mater. Lett. 2007. V. 61. P. 4442–4445.
- Xiao L.O., Li S.B., Song G., Sloof W.G. Synthesis and Thermal Stability of Cr₂AlC // J. Eur. Ceram. Soc. 2011. V. 31. P. 1497–1502.
- 12. Panigrahi B.B., Chu M.C., Kim Y-II, Cho S.J, Gracio J.J. Reaction Synthesis and Pressureless Sintering of

Cr₂AlC // Powder. Am. Ceram. Soc. 2010. V. 93. № 6. P. 1530–1533.

- Xiao D., Zhu J., Wang F., Tang Y. Synthesis of Nano Sized Cr₂AlC Powders by Molten Salt Method // J. Nanosci. Nanotechnol. 2015. V. 15. P. 7341–7345.
- Duan X., Shen L., Jia D., Zhou Y., Zwaag S., Sloof W.G. Synthesis of High-Purity, Isotropic or Textured Cr₂AlC Bulk Ceramics by Spark Plasma Sintering of Pressure-Less Sintered Powders // J. Eur. Ceram. Soc. 2015. V. 35. P. 1393–1400.
- Tian W.B., Sun Z.M., Du Y., Hashimoto H. Synthesis Reactions of Cr₂AlC from Cr–Al₄C₃–C by Pulse Discharge Sintering // Mater. Lett. 2008. V. 62. P. 3852– 3855.
- Tian W.B., Wang P.L., Kana Y.M., Zhang G.J., Li Y.X., Yan D.S. Phase Formation Sequence of Cr₂AlC Ceramics Starting from Cr–Al–C Powders // Mater. Sci. Eng. A. 2007 V. 443. P. 229–234.
- Ying G., He X., Li M., Li Y., Du S. Synthesis and Mechanical Properties of Nano-Layered Composite // J. Alloys Compd. 2010. V. 506. P. 734–738.
- Levashov E.A., Mukasyan A.S., Rogachev A.S., Shtansky D.V. Self-Propagating High-Temperature Synthesis of Advanced Materials and Coatings // Int. Mater. Rev. 2017. V. 62. № 4. P. 203–239.
- Левашов Е.А., Рогачев А.С., Курбаткина В.В., Максимов Ю.М., Юхвид В.И. Перспективные материалы и технологии самораспространяющегося высокотемпературного синтеза М.: Издат. Дом МИСиС, 2011. С. 378.
- Горшков В.А., Милосердов П.А., Лугинина М.А., Сачкова Н.В., Беликова А.Ф. Высокотемпературный синтез литого материала с максимальным содержанием МАХ-фазы Cr₂AlC // Неорган. материалы. 2017. Т. 53. № 3. С. 260–266.
- 21. Горшков В.А., Милосердов П.А., Сачкова Н.В., Лугинина М.А., Юхвид В.И. СВС-металлургия литых материалов на основе МАХ-фазы Cr₂AlC // Изв. вузов. Порошковая металлургия и функциональные покрытия. 2017. № 2. С. 47–54.