УДК 536.413

ТЕПЛОВОЕ РАСШИРЕНИЕ МИКРО-И НАНОКРИСТАЛЛИЧЕСКИХ ПОРОШКОВ ZrB₂

© 2020 г. Д. Ю. Ковалев^{1,} *, С. В. Коновалихин¹, Г. В. Калинников², И. И. Коробов², С. Е. Кравченко², Н. Ю. Хоменко¹, С. П. Шилкин²

¹Институт структурной макрокинетики и проблем материаловедения им. А.Г. Мержанова Российской академии наук, ул. Академика Осипьяна, 8, Черноголовка, Московская обл., 142432 Россия ²Институт проблем химической физики Российской академии наук, пр. Академика Семенова, 1, Черноголовка, Московская обл., 142432 Россия

> *e-mail: kovalev@ism.ac.ru Поступила в редакцию 10.09.2018 г. После доработки 23.08.2019 г. Принята к публикации 09.10.2019 г.

Методом высокотемпературной рентгенографии проведены исследования нано- и микрокристаллического ZrB_2 в температурном интервале 300–1400 К. Определены температурные зависимости параметров элементарной ячейки нано- и микрокристаллического ZrB_2 . Показано, что коэффициент теплового расширения (КТР) ZrB_2 линейно зависит от температуры. Установлена анизотропия КТР: в температурном интервале 300–600 К как для микро-, так и для нанокристаллического ZrB_2 наблюдается анизотропия КТР: $\alpha_a < \alpha_c$. При T > 640 К КТР вдоль оси a становится выше, чем вдоль оси c. Обнаружено, что тепловое расширение нанокристаллического ZrB_2 существенно ниже, чем у микрокристаллического ZrB_2 . Предложена гипотеза для объяснения аномально низкого КТР нанокристаллического ZrB_2 , основанная на влиянии слоя борного ангидрида, присутствующего на поверхности наночастиц.

Ключевые слова: нано- и микрокристаллический ZrB₂, коэффициент теплового расширения, параметры ячейки, анизотропия, высокотемпературная рентгенография

DOI: 10.31857/S0002337X20030070

введение

Диборид циркония ZrB2 относится к классу бескислородных ультравысокотемпературных керамических материалов. Высокая температура плавления и теплопроводность, устойчивость к окислению в жидких и газовых средах обуславливают его применение в качестве конструкционного материала для элементов тепловой защиты аэрокосмической техники [1-4]. Благодаря высокой электропроводности, малым различиям параметров ячейки и коэффициента теплового расширения (КТР) при изменении температуры ZrB₂ является перспективным материалом подложки для полупроводниковых устройств на основе GaN [5, 6]. Применение ZrB₂ в качестве высокотемпературного материала требует информации о его термических свойствах, анизотропии и температурной зависимости КТР. Исследования КТР ZrB₂ ведутся уже более 60 лет и позволили накопить большой экспериментальный материал [6-15].

В первой работе А.М. Беликова [7], выполненной в 1959 г. методом рентгеновской дифракции (XRD) в температурном интервале 300–1070 К, была установлена анизотропия КТР. F.G. Keihn [8] также обнаружил анизотропность КТР, причем температурный интервал исследований был существенно расширен до 2073 К. Дилатометрические измерения КТР ZrB₂, проведенные Г.В. Самсоновым [9] в интервале 300-2500 К, показали, что величина КТР составляет $\alpha = 6.2 \times 10^{-6} \text{ K}^{-1}$. Анализ изменения параметров решетки ZrB₂ при нагреве в интервале 300-1500 К. проведенный В. Lönnberg [10], привел в автора к выводу о линейной зависимости КТР от температуры. Эти результаты подтвердило последнее исследование W. Paxton [15], выполненное методом энергодисперсионной рентгеновской дифракции (EDXRD) на пучке синхротронного излучения в интервале температур 300-1100 К. Известные литературные данные по КТР ZrB₂ обобщены в табл. 1.

Анализ выполненных исследований показывает, что сведения о величинах $KTP ZrB_2$ исчерпываются данными для поликристаллических объектов с размером зерна 0.5–7 мкм и монокристаллов. В то же время данные о KTP нанокристаллического ZrB_2 отсутствуют. Использование

α , 10 ⁻⁶ K ⁻¹	<i>Т</i> , К	Метод исследования	Источник
$\alpha_a = 6.63$ $\alpha_c = 7.35$	300-1070	XRD (поликристалл)	[7]
$ \alpha_a = 6.60 $ $ \alpha_c = 6.78 $ $ \alpha_a = 8.62 $ $ \alpha_c = 7.65 $	300–1023 1027–2073	XRD (порошок, <i>d</i> = 7 мкм)	[8]
6.2	300-2500	Дилатометр (поликристалл, пористость 8%)	[9]
$\begin{aligned} \alpha_a &= 4.397 \times 10^{-6} + 4.494 \times 10^{-9}T \\ \alpha_a(300) &= 5.75; \ \alpha_a(1100) &= 9.34 \\ \alpha_c &= 4.682 \times 10^{-6} + 4.190 \times 10^{-9}T \\ \alpha_a(300) &= 5.94; \ \alpha_a(1100) &= 9.29 \end{aligned}$	300-1500	XRD (поликристалл)	[10]
5.9	300-673	Дилатометр (монокристалл)	[6]
$\alpha_a = 6.66$ $\alpha_c = 6.93$	300-1073	Дилатометр (монокристалл)	[11]
7.45	300-1100	Pacчет DFT	[12]
6.8 8.4	300–1300 1300–1675	Дилатометр (поликристалл)	[13]
$\begin{array}{l} \alpha_a = 6.95\\ \alpha_c = 7.37 \end{array}$	300-1073	XRD (порошок, <i>d</i> = 0.5–3 мкм)	[14]
$\begin{aligned} \alpha_a(T) &= 2.651 \times 10^{-6} + 5.109 \times 10^{-9}T \\ \alpha_a(300) &= 4.18; \ \alpha_a(1100) &= 8.27 \\ \alpha_c(T) &= 3.278 \times 10^{-6} + 4.304 \times 10^{-9}T \\ \alpha_c(300) &= 4.57; \ \alpha_c(1100) &= 8.01 \end{aligned}$	300-1100	EDXRD (порошок, <i>d</i> < 6 мкм)	[15]

Таблица 1. КТР ZrB₂ по литературным данным

Примечание. α_a и α_c – коэффициенты термического расширения по осям *a* и *c*, *d* – дисперсность.

ZrB₂ в наноструктурном состоянии обещает расширение области его применения и инициирует работы, направленные на разработку новых методов синтеза наноразмерных тугоплавких боридов [16–18]. Переход в наноструктурное состояние приводит к значительному повышению механических свойств и изменению теплофизических параметров [19–21]. Обзор работ по синтезу, свойствам и стабильности наноструктурных TiB₂, ZrB₂ и HfB₂, проведенный в [19], показал ограниченность сведений о теплофизических свойствах этих соединений.

Целью настоящей работы является определение температурной зависимости и анизотропии КТР нанокристаллического ZrB₂ методом высокотемпературной рентгенографии.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Наноразмерный диборид циркония ZrB₂ был получен взаимодействием ZrCl₄ с NaBH₄ в моль-

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 56 № 3 2020

ном соотношении 1 : 10 при температуре 848 К и давлении аргона 4 МПа [16]. Электронно-микроскопические исследования порошка проводили на сканирующем автоэмиссионном электронном микроскопе Zeiss Supra 25 с энергодисперсионной приставкой INCA. Изображения получали при низких ускоряющих напряжениях электронного пучка (~4 кВ). Изображения порошкообразных образцов ZrB₂ обрабатывались в программе Image Pro Express 4.0. Микрофотографии частиц порошка ZrB₂ представлены на рис. 1. Средний диаметр частиц ZrB₂ составил 15 нм. Выделенный из реакционной смеси диборид циркония, по результатам химического и энергодисперсионного анализов, имеет состав ZrB_{2.04}O_{0.08}. По данным рентгеновской фотоэлектронной спектроскопии, в спектрах наряду с линиями ZrB₂ присутствуют линии, указывающие на присутствие в поверхностных слоях наночастиц ZrB2 оксидов циркония и бора [16]. Следов хлорид-ионов, водорода и азота не обнаружено. Исходя из данных химического и энергодисперсионного анализа, а также резуль-

20

татов РФЭС полученный нанокристаллический порошок содержит 2 мас. % B_2O_3 и 1 мас. % ZrO_2 . Удельная поверхность порошка ZrB_2 составила $S_{yg} = 70 \text{ м}^2/\text{г}$. В качестве эталона для сравнения использовался микрокристаллический порошок ZrB_2 квалификации "ч.", дисперсностью 3–5 мкм с $S_{yg} = 0.35 \text{ м}^2/\text{г}$.

Рентгенофазовый анализ исходных порошков нано- и микрокристаллического ZrB₂ проводили на дифрактометре ДРОН-3 с монохроматором на вторичном пучке. Регистрацию спектра вели в режиме пошагового сканирования на излучении CuK_{α} в интервале углов $2\theta = 20^{\circ} - 135^{\circ}$ с шагом съемки 0.02° и экспозицией 4 с в точке. Профильный анализ рентгенограмм осуществляли в программном пакете "Буревестник". Расчет метрики ячейки и параметров тонкой структуры проводили по 20 отражениям. Инструментальное уширение учитывали по уширению линий эталона – LaB₆ (SRM 660b). Для расчета среднего размера кристаллитов применяли метод вторых моментов, реализованный в пакете "Буревестник" Strain&Size. Размер областей когерентного рассеяния составил 10-12 нм, что коррелирует с данными электронной микроскопии.

Температурные рентгенодифракционные исследования проводили на дифрактометре ARL X'TRA с высокотемпературной приставкой HTK2000 Anton Paar в геометрии Брегга–Брентано на отражение. Регистрацию рентгенограмм осуществляли полупроводниковым детектором Пельтье с энергетическим разделением $K_{\alpha 1+2}$ - и K_{β} -линий. Эксперименты проводили на трубке с Си-анодом при напряжении 40 кВ и токе 40 мА.

Порошок ZrB₂ ровным слоем, толщиной около 100 мкм, наносили на поверхность вольфрамовой пластины-нагревателя. Далее проводили вакуумирование камеры до давления 2×10^{-3} Па. При максимальной температуре 1400 К остаточное давление в камере составляло 8×10^{-3} Па. Для юстировки камеры проводили регистрацию рентгенограммы при комнатной температуре и по известному угловому положению дифракционных линий диборида циркония корректировали положение образца относительно горизонтальной оси гониометра. Режим нагрева задавали контроллером Eurotherm 2604, использовалась термопара BP5\20, приваренная к нижней поверхности вольфрамового нагревателя. Для калибровки температуры на поверхности нагревателя предварительно проводили нагрев порошка гексагонального BN. нанесенного на поверхность нагревателя. КТР нитрида бора вдоль оси с элементарной ячейки $\alpha_c = 41.2 \times 10^{-6} \text{ K}^{-1}$ [22] позволяет определять температуру с погрешностью ±5 К. Для расчетов КТР ZrB_2 использовалась температура, определенная по смещению линии 002 BN.

Рис. 1. Электронная микрофотография частиц порошка ZrB_2 , полученных взаимодействием $ZrCl_4$ и NaBH₄ при 848 K.

Регистрацию рентгенограмм проводили в диапазоне температур 300—1400 К. Скорость нагрева между изотермическими участками — 100 К/мин. После достижения заданной температуры следовала выдержка в течение 4 мин, далее проводили регистрацию рентгенограммы в режиме пошагового сканирования в интервале углов $2\theta = 24^{\circ}-45^{\circ}$, с шагом съемки 0.02° и временем набора 1 с в точке.

Для расчета метрики ячейки ZrB₂ в температурных экспериментах использовали три отражения: 001, 100, 101. Обработку экспериментальных данных осуществляли методом Ритвельда в программном комплексе "Буревестник". Уточнялись параметры решетки и тепловые параметры атомов. Для рентгенограмм при T > 1070 К также уточняли параметры ячейки продуктов окисления ZrB₂ – тетрагональной и моноклинной фаз ZrO₂. Рассчитанные в процессе уточнения взвешенный (R_{wp}) и профильный (R_p) факторы находятся в интервале: $R_{wp} = 8.3 - 9.6\%$, $R_p = 6.5 - 7.3\%$. Расчет КТР проводили в программе TEV 1.01, позволяющей определять тензор теплового расширения по дифракционным данным [23].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 2 представлены рентгенограммы исходных порошков нано- и микрокристаллического ZrB₂. Диборид циркония кристаллизуется в гексагональной сингонии, пр. гр. *P6/mmm*. Параметры решетки микрокристаллического ZrB₂ соответствуют данным базы файлов порошковой дифракции PDF-2 (табл. 2). Для нанокристаллического ZrB₂ объем элементарной ячейки оказался ниже, чем у микрокристаллического соединения за счет существенного уменьшения параметра *c*.

Эффект уменьшения параметров элементарной ячейки металлов при снижении размера ча-

Рис. 2. Рентгенограммы нано- и микрокристаллического ZrB₂ при 298 K.

стиц известен и объясняется увеличением лапласовского давления при уменьшении радиуса частицы. Экспериментальные данные, полученные на островковых вакуумных конденсатах металлов [24], показывают, что сжатие решетки обратно пропорционально радиусу частицы. Уменьшение межплоскостных расстояний также связывают с увеличением концентрации вакансий в малых частицах по сравнению с массивными образцами [25]. В кристаллах Рb и Вi, имеющих существенную анизотропию линейного коэффициента сжатия, уменьшение межплоскостных расстояний в наноразмерных частицах также анизотропно [24]. Полученные данные по уменьшению параметра с в нанокристаллическом ZrB₂ коррелируют с результатами исследования влияния размерного эффекта на метрику ячейки TiB_2 [26]. В частицах TiB_2 размером менее 22 нм образуются вакансионные дефекты в металлической подрешетке, что при анизотропии сжимаемости гексагонального кристалла приводит к преимущественному сжатию ячейки вдоль оси *с*.

273

Размер областей когерентного рассеяния нанокристаллического порошка ZrB_2 , оцененный по формуле Шеррера, составил 10–12 нм.

Температурные зависимости параметров решетки a и c микро- и нанокристаллического ZrB₂ представлены на рис. 3. Экспериментальные результаты показывают, что параметры ячейки увеличиваются с ростом температуры нелинейно, т.е. наблюдается зависимость КТР от температуры.

Аппроксимация температурной зависимости параметров решетки микрокристаллического ZrB_2 полиномом 2-й степени дает следующие выражения:

$$a(T) = 3.16 + 1.47 \times 10^{-5}T + 6.23 \times 10^{-9}T^{2},$$

$$c(T) = 3.52 + 1.95 \times 10^{-5}T + 4.48 \times 10^{-9}T^{2},$$

где *а* и *с* – параметры решетки в ангстремах.

Коэффициент детерминации R^2 при аппроксимации экспериментальных данных полиномом 2-й степени составляет $R^2 = 0.9998$ и 0.9987 для параметров решетки *а* и *с* соответственно. Квадратичная зависимость параметров ячейки от температуры приводит к линейной зависимости КТР от температуры. Взяв производную функции изменения параметра ячейки по температуре и разделив ее на параметр ячейки при T = 0 К, получим температурную зависимость мгновенного КТР для микрокристаллического ZrB₂:

$$\alpha_a(T) = 4.64 \times 10^{-6} + 3.93 \times 10^{-9}T,$$

$$\alpha_c(T) = 5.54 \times 10^{-6} + 2.54 \times 10^{-9}T.$$

В табл. 3 представлены КТР микрокристаллического ZrB_2 при температурах 300 и 1100 К в сравнении с данными [10, 15], полученными методами XRD. Относительная ошибка определения КТР составила 3–4%. Полученные значения КТР микрокристаллического ZrB_2 соответствуют литературным данным.

PDF2 card [27] Образец Нанокристалл Микрокристалл № 000-34-0423 № 000-75-1050 a, Å 3.169(0) 3.1689(7) 3.16870 3.1700 *c*, Å 3.524(6) 3.5302(5) 3.53002 3.5300 $V, Å^3$ 30.6(5) 30.70(2) 30.69 30.72

Таблица 2. Параметры элементарной ячейки ZrB₂ по данным XRD

В температурном интервале 300-600 К наблюдается анизотропия КТР: $\alpha_a < \alpha_c$ (табл. 3). При T = 640 K KTP изотропен, а при повышении температуры тепловое расширение ZrB₂ вдоль оси а становится выше, чем вдоль оси с. Известно, что анизотропия КТР в гексагональных кристаллах связана с анизотропией сил связи в направлениях осей решетки. В диборидах переходных металлов со структурой типа AlB₂ атомы металла располагаются слоями, параллельными базисной плоскости. В случае ZrB₂ расстояние Zr-Zr в плотноvпакованном базисном слое − 3.17 Å. Атомы бора располагаются слоями между слоями Zr, а расстояние B–B в слое, равное $a/\sqrt{3}$, составляет 1.83 Å. Сила связи в базальных плоскостях определяется сильной ковалентной связью В–В в боридных слоях. Жесткость связи вдоль оси с, определяемая связью Zr–B с расстоянием $(a^2/3 - c^2/4)^{1/2} = 2.54$ Å, слабее, чем В–В в базальной плоскости. Эти различия приводят к большему значению КТР вдоль оси с кристалла при низких температурах. Изменение соотношения α_a/α_c с повышением температуры связано с различной температурной зависимостью параметра Грюнайзера (у) для осей а и c, а КТР пропорционален γ . Согласно [28], параметр Грюнайзера ZrB₂ у_с вдоль оси с уменьшается в температурном интервале 300-700 K с 1.5 до 1.3, в то время как γ_a вдоль оси *а* увеличивается с ростом температуры с 1.4 до 1.45.

Температурная зависимость параметров ячейки нанокристаллического ZrB_2 принципиально отличается от микрокристаллического ZrB_2 (рис. 3), увеличение метрики ячейки нано- ZrB_2 в температурном интервале 300—1400 К происходит в меньшей степени. Аппроксимация температурной зависимости параметров решетки нанокристаллического ZrB_2 полиномом 2-й степени дает следующие выражения:

$$a(T) = 3.169 - 4.37 \times 10^{-6}T + 10.98 \times 10^{-9}T^{2},$$

$$c(T) = 3.524 + 0.11 \times 10^{-6}T + 8.576 \times 10^{-9}T^{2}.$$

Таблица 3. КТР ZrB₂

Рис. 3. Температурные зависимости параметров решетки нано- и микрокристаллического ZrB₂.

Ошибка в определении параметров ячейки нанокристаллического ZrB_2 составила ± 0.002 Å вследствие уширения и низкой интенсивности его дифракционных линий. Несмотря на бо́льшую ошибку в определении параметров ячейки по сравнению с микрокристаллическим ZrB_2 , коэффициент детерминации R^2 при аппроксимации экспериментальных данных полиномом 2-й степени составил $R^2 = 0.992$ и 0.948 для параметров решетки *а* и *с* соответственно. В трех экспериментах, проведенных с нанокристаллическим по-

α	<i>Т</i> , К	$\alpha^*, 10^{-6} \text{ K}^{-1}$				
		настоящая работа		[10]	[15]	
		микро-ZrB ₂	нано-ZrB ₂	[10]	[15]	
α _a	300	5.8	0.7	5.75	4.18	
	1100	9.0	6.3	9.34	8.27	
α,	300	6.3	1.5	5.94	4.57	
	1100	8.3	5.4	9.29	8.01	

* Расчет при аппроксимации функций a(T) и c(T) полиномом 2-й степени.

Таблица 4. α*, 10⁻⁶ К⁻¹

Образец	α _a	α	α_{cp}
Нанокристаллический ZrB ₂	4.6 ± 0.4	4.1 ± 0.4	4.4
Микрокристаллический ZrB ₂	7.3 ± 0.2	7.9 ± 0.2	7.7

* Расчет при линейной аппроксимации функций a(T) и c(T).

рошком ZrB₂, были получены схожие результаты. Температурная зависимость мгновенного KTP для нанокристаллического ZrB₂ имеет вид:

$$\alpha_a(T) = -1.36 \times 10^{-6} + 6.93 \times 10^{-9} T,$$

$$\alpha_c(T) = 0.03 \times 10^{-6} + 4.87 \times 10^{-9} T.$$

Относительная ошибка определения КТР нанокристаллического ZrB_2 составила 8-10%.

В табл. 4 приведены значения КТР, полученные при использовании линейной аппроксимации температурной зависимости параметров ячейки ZrB₂, т.е. в предположении отсутствия температурной зависимости КТР. Среднее значение КТР для кристаллов гексагональной сингонии рассчитывалось по формуле: $\alpha_{cp} = (2\alpha_a + \alpha_c)/3$.

На рис. 4 представлена температурная зависимость КТР микро- и нанокристаллического ZrB₂ по нашим данным и результатам XRD [10, 15].

Анализ полученных результатов указывает на существенное отличие в тепловом расширении микро- и нанокристаллического ZrB_2 (табл. 3, 4). КТР нанокристаллов ZrB_2 ниже, чем у микрокри-

Рис. 4. Температурные зависимости КТР микро- и нанокристаллического ZrB₂ в сравнении с литературными данными.

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 56 № 3 2020

сталлического ZrB₂ (рис. 4). Такое соотношение ранее не наблюдалось при сопоставлении теплового расширения кристаллов разной дисперсности. Вещества в нанокристаллическом состоянии характеризуются большим значением КТР по сравнению с крупнокристаллическими аналогами [29-32]. Исследование теплового расширения нанокристаллического HfB₂ показало, что его КТР выше, чем у микрокристаллического аналога [29]. КТР нанокристаллов карбила бора размером 55 нм увеличивается на 10% [30] по сравнению микрокристаллами размером 300 нм. Авторы [30] объясняют изменение КТР увеличением поверхностной энергии кристаллической решетки нанокристаллического материала. КТР пленок Ni и Cu с размером зерна 25-35 нм выше, чем у крупнозернистых объектов [31]. Для сульфидов свинца и серебра в нанокристаллическом состоянии (40-50 нм) значения КТР также выше аналогичных величин для крупнокристаллических объектов [32, 33]. Изменение КТР связывается с ростом ангармонизма атомных колебаний в нанокристаллах за счет увеличения поверхностей раздела.

ЗАКЛЮЧЕНИЕ

Установлено, что у нанокристаллического ZrB_2 объем элементарной ячейки ниже, чем у микрокристаллического ZrB_2 за счет существенного уменьшения параметра *с*. Причиной уменьшения параметра ячейки *с* нанокристаллического ZrB_2 являются увеличение поверхностного давления в наноразмерных частицах и анизотропия упругих свойств кристалла.

Методом высокотемпературной рентгенографии проведены исследования теплового расширения нано- и микрокристаллического ZrB₂ в температурном интервале 300-1400 К. Метрика ячейки нано- и микрокристаллического ZrB₂ увеличивается с ростом температуры нелинейно. Полученные температурные зависимости параметров элементарной ячейки аппроксимированы полиномом 2-й степени, что определяет линейную зависимость КТР ZrB2 от температуры. В интервале 300-600 К как для микро-, так и для нанокристаллического ZrB₂ наблюдается анизотропия КТР: $\alpha_a < \alpha_c$. При *T* > 640 К КТР вдоль оси *а* становится выше, чем вдоль оси с. Изменение соотношения α_a/α_c с повышением температуры обусловлено различной температурной зависимостью параметра Грюнайзера для осей а и с. Значения КТР микрокристаллического ZrB₂, анизотропия и характер изменения отношения α_a/α_c с температурой соответствуют литературными данным. Тепловое расширение нанокристаллического ZrB₂ существенно ниже, чем у микрокристаллического ZrB₂.

БЛАГОДАРНОСТЬ

Работа выполнена при поддержке РФФИ (грант № 17-03-00040).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Upadhya K., Yang J.M., Hoffman W.P.* Materials for Ultra-High Temperature Structural Applications // Am. Ceram. Soc. Bull. 1997. V. 76. P. 51–56.
- Opeka M.M., Talmy I.G., Zaykoski J.A. Oxidation-Based Materials Selection for 2000°C + Hypersonic Aero Surfaces: Theoretical Considerations and Historical Experience // J. Mater. Sci. 2004. V. 39. P. 5887– 5904.
- Monteverde F., Bellos A., Scatteia L. Processing and Properties of Ultra-High Temperature Ceramics for Space Applications // Mater. Sci. Eng. 2008. V. A485. P. 415–421.
- Simonenko E.P., Sevast'yanov D.V., Simonenko N.P., Sevast'yanov V.G., Kuznetsov N.T. Promising Ultra High Temperature Ceramic Materials for Aerospace Applications // Russ. J. Inorg. Chem. 2013. V. 58. P. 1669–1693.
- Kinoshita H., Otani S., Kamiyama S., Amano H., Akasaki I., Suda J. et al. ZrB₂ Substrate for Nitride Semiconductors // Jpn. J. Appl. Phys. 2003. V. 42. P. 2260– 2264.
- Kinoshita H., Otani S., Kamiyama S., Amano H., Akasaki I., Suda J. et al. Zirconium Diboride (0001) as an Electrically Conductive Lattice-Matched Substrate for Gallium Nitride // Jpn. J. Appl. Phys. 2001. V. 40. (12A). P. 1280–1282.
- Беликов А.М., Уманский Я.С. Анизотропия термических осцилляций атомов в карбидах и диборидах переходных металлов с гексагональной решеткой // Кристаллография. 1959. Т. 4. № 5. С. 684–686.
- Keihn F.G., Keplin E.J. High-Temperature Thermal Expansion of Certain Group IV and Group V Diborides // J. Am. Ceram. Soc. 1967. V. 50. № 2. P. 81–84.
- 9. Самсонов Г.В., Ковенская Б.А., Серебрякова Т.И., Тельников Е.Я. Термическое расширение диборидов переходных металлов IV и V групп // Теплофизика высоких температур. 1971. Т. 9. № 1. С. 195–197.
- 10. *Lönnberg B*. Thermal Expansion Studies on the Group IV–VII Transition Metal Diborides // J. Less-Common Met. 1988. V. 141. № 1. P. 145–156.
- Okamoto N., Kusakari M., Tanaka K., Inui H., Yamaguchi M., Otani S. Temperature Dependence of Thermal Expansion and Elastic Constants of Single Crystals of ZrB₂ and the Suitability of ZrB₂ as a Substrate for GaN Film // J. Appl. Phys. 2003.V. 93. № 1. P. 88–93.
- Milman V., Winkler B., Probert M.I.J. Stiffness and Thermal Expansion of ZrB₂: an ab Initio Study // J. Phys.: Condens. Matter. 2005. V. 17. № 13. P. 2233– 2241.
- Zimmermann J.W., Hilmas G.E., Fahrenholtz W.G. et al. Thermophysical Properties of ZrB₂ and ZrB₂–SiC Ceramics // J. Am. Ceram. Soc. 2008. V. 91. № 5. P. 1405–1411.

- Nakamori F., Ohishi Y., Muta H., Kurosaki K., Fukumoto K., Yamanaka S. Mechanical and Thermal Properties of Bulk ZrB₂ // J. Nucl. Mater. 2015. V. 467. P. 612–617.
- Paxton W.A., Özdemir T.E., Savkliyildiz I., Whalen T., Biçer H., Akdogan E.K., Zhong Z., Tsakalakos T. Anisotropic Thermal Expansion of Zirconium Diboride: an Energy-Dispersive X-Ray Diffraction Study // J. Ceram. 2016. Article ID 8346563. P. 1–5. https://doi.org/10.1155/2016/8346563
- Кравченко С.Е., Ковалев Д.Ю., Коробов И.И., Калинников Г.В., Коновалихин С.В., Хоменко Н.Ю., Шилкин С.П. Синтез наночастиц диборида циркония при взаимодействии ZrCl₄ и NaBH₄ в ионном расплаве бромида калия // Журн. общ. химии. 2018. Т. 88. № 8. С. 1402–1404.
- Кравченко С.Е., Бурлакова А.Г., Домашнев И.А., Надхина С.Е., Дремова Н.Н., Винокуров А.А., Шилкин С.П. Образование наночастиц диборида циркония при взаимодействии тетрахлорида циркония с борогидридом натрия // Неорган. материалы. 2017. Т. 53. № 8. С. 817-821.
- Бурлакова А.Г., Кравченко С.Е., Домашнев И.А., Винокуров А.А., Надхина С.Е., Волкова Л.С., Шилкин С.П. Особенности получения наноразмерных порошков диборида циркония различной дисперсности // Журн. общ. химии. 2017. Т. 87. № 5. С. 712–717.
- Carenco S., Portehault D., Boissiere C., Mezailles N., Sanchez C. Nanoscaled Metal Borides and Phosphides: Recent Developments and Perspectives // Chem. Rev. 2013. V. 113. № 10. P. 7981–8065.
- Андриевский Р.А. Наноструктурные дибориды титана, циркония и гафния: синтез, свойства, размерные эффекты, стабильность // Успехи химии. 2015. Т. 84. Вып. 5. С. 540–554.
- Andrievski R.A., Khatchoyan A.V. Nanomaterials in Extreme Environments. Fundamentals and Applications. Heidelberg: Springer, 2016. 107 p.
- 22. Pease R.S. An X-Ray Study of Boron Nitride // Acta Crystallogr. 1952. V. 5. P. 356–361.
- 23. *Langreiter T., Kahlenberg V.* TEV–A Program for the Determination of the Thermal Expansion Tensor from Diffraction Data // Crystals. 2015. V. 5. P. 143–153.
- Komnik Yu.F., Pilipenko V.V., Yatsuk L.A. Changes in Lattice Spacing in Bismuth and Zinc Island Films // Thin Solid Films. 1978. V. 52. P. 313–327.
- 25. Гладких Н.Т., Крышталь А.П., Богатыренко С.И. Температура плавления наночастиц и энергия образования вакансий в них // Журн. техн. физики. 2010. Т. 80. № 11. С. 111–114.
- 26. *Terlan B., Levin A.A., Börrnert F., Zeisner J., Kataev V., Schmidt M., Eychmüller A.* A Size-Dependent Analysis of the Structural, Surface, Colloidal, and Thermal Properties of $Ti_{1-x}B_2(x=0.03-0.08)$ Nanoparticles // Eur. J. Inorg. Chem. 2016. V. 21. P. 3460–3468.
- 27. International Centre for Diffraction Data, Joint Committee on Powder Diffraction Standards (JCPDS).
- 28. Xiang H., Feng Z., Li Z., Zhou Y. First-Principles Investigations on Elevated Temperature Elastic and Ther-

modynamic Properties of ZrB_2 and HfB_2 // J. Am. Ceram. Soc. 2017. V. 100. No 8. P. 3662–3672.

- Kovalev D.Yu., Shilkin S.P., Konovalikhin S.V., Kalinnikov G.V., Korobov I.I., Kravchenko S.E., Khomenko N.Yu., Andrievskii R.A. Thermal Expansion of Micro and Nanocrystalline HfB₂ // High Temperature. 2019. V. 57. № 1. P. 32–36.
- Pilladi T.R., Panneerselvam G., Anthonysamy S., Ganesam V. Thermal Expansion of Nanocrystalline Boron Carbide // Ceram. Int. 2012. V. 38. P. 3723–3728.
- Kuru Y., Wohlschlögel M., Welzel U., Mittemeijer E.J. Crystallite Size Dependence of the Coefficient of Thermal Expansion of Metals // Appl. Phys. Lett. 2007. V. 90. P. 2431131–2431133.

277

- Садовников В.И., Гусев А.И. Тепловое расширение наноструктурированных пленок PbS и ангармонизм атомных колебаний // ФТТ. 2014. Т. 56. Вып. 11. С. 2274–2278.
- Гусев А.И., Садовников В.И., Чукин А.В., Ремпель А.А. Тепловое расширение нанокристаллического и крупнокристаллического сульфида серебра Ag₂S // ФТТ. 2016. Т. 58. Вып. 2. С. 246–251.