УДК 544.654.2:620.181.4

ТЕРМОЦИКЛИЧЕСКИЕ ИССЛЕДОВАНИЯ ЭЛЕКТРОХИМИЧЕСКИ ОСАЖДЕННЫХ СПЛАВОВ Sn–Ni и In–Ni

© 2020 г. В. М. Рощин¹, И. Н. Петухов^{1, *}, А. С. Гак¹, М. С. Михайлова¹, В. А. Федоров²

¹Национальный исследовательский университет "МИЭТ", пл. Шокина, 1, Зеленоград, Москва, 124498 Россия ²Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук, Ленинский пр., 31, Москва, 119991 Россия

*e-mail: OFH.MIET@yandex.ru Поступила в редакцию 22.04.2019 г. После доработки 26.09.2019 г. Принята к публикации 01.10.2019 г.

Проведено электрохимическое осаждение сплавов Sn–Ni и In–Ni с содержанием легкоплавкого компонента 20 и 45 мас. %. Методом гравиметрического анализа определено содержание никеля в сформированных сплавах. Исследовано термическое поведение осажденного материала по программе циклического нагрева–охлаждения в интервалах температур 50–250, 50–300, 50–400°С. Полученные результаты могут быть использованы при высокоплотном монтаже бессвинцовыми припойными материалами с заданной температурой пайки.

Ключевые слова: электрохимическое осаждение, сплавы Sn–Ni, In–Ni, гравиметрический анализ, дифференциальная сканирующая калориметрия

DOI: 10.31857/S0002337X20030173

введение

При монтаже микроэлектронных компонентов одним из вариантов увеличения количества контактных структур на единицу площади и применения групповой технологии их формирования является направленное электрохимическое осаждение паяного материала [1]. Электролитические сплавы значительно отличаются по своему фазовому составу и свойствам от сплавов, получаемых металлургическим путем. Это расширяет гамму физико-химических, механических свойств и, соответственно, возможных областей их применения.

Важными аспектами технологии формирования паяного контакта являются знание процессов взаимной диффузии в многокомпонентных системах, а также прогнозирование образования новых фаз и фазовых переходов при допустимых технологических температурах [2]. Для ряда задач необходимо снизить температуру пайки, но в то же время сохранить высокие механическую прочность и температуру деградации паяного соединения. При последовательном монтаже компонентов микросборок интерес представляют припои с возможностью формирования паяных соединений, имеющих более высокую температуру деградации, определяемую составом припоя и возможными фазовыми превращениями. Одним из вариантов для многоступенчатой пайки корпусных и бескорпусных элементов является использование в качестве осажденного припоя сплавов, в которых температура пайки будет определяться содержанием легкоплавкого компонента, а температура распайки повысится в результате превращений при взаимодействии с тугоплавким компонентом. Ранее [3] были проведены исследования электрохимически осажденных систем Sn-Ag и In-Ag, выявившие частичное уменьшение термодинамического пика, соответствующего эвтектическому превращению в системе In-Ag в процессе термоциклирования, обусловленное фазовым превращением в электролитическом сплаве при температуре около 365°С.

Цель настоящей работы заключалась в формировании сплавов систем Sn—Ni и In—Ni с содержанием легкоплавкого компонента 20 и 45 мас. % и термоциклических исследованиях осажденного материала для выявления возможных фазовых изменений. Составы образцов выбраны на основе диаграмм состояния систем Sn—Ni, In—Ni [4] и соответствуют различным областям возможных фазовых переходов при плавлении осажденного материала.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Электрохимическое осаждение бинарных сплавов может проводиться как в одном процессе – с

Рис. 1. Микрофотографии поверхности после осаждения индия из базового (а) и оптимизированного (б) электролитов.

использованием электролита комплексного состава. так и послеловательным осажлением не менее двух слоев металлов с последующим оплавлением материала. Во втором случае для осаждения каждого слоя используется раствор соответствующего состава. Следует отметить, что при использовании электролита комплексного состава сложно получить бинарный сплав с заданным содержанием компонентов: в состав электролита требуется добавление вспомогательных компонентов (комплексообразователей), также необходимо точное поллержание параметров процесса (плотности тока, концентрации компонентов, температуры) [5]. При последовательном осаждении компонентов системы проще получать образцы заданного состава, так как после оптимизации технологического процесса и определения выхода по току по результатам предварительных исследований можно с высокой точностью прогнозировать массу осаждаемого материала в зависимости от силы тока и времени осаждения на основании закона Фарадея [6]:

$$m = \frac{I\tau M\eta}{nF}$$

где m — масса осаждаемого металла; I — сила тока; τ — время осаждения; M — молярная масса осаждаемого металла; η — выход по току; n — число электронов, принимающих участие в электрохимическом процессе; F — число Фарадея.

Для проведения термоциклических исследований в качестве экспериментальных образцов использовалась проволока из никеля марки НП2, на которую первоначально осаждался легкоплавкий компонент, а затем проводилось финишное электрохимическое покрытие никелем в целях предотвращения плавления припоя на поверхности и более равномерного взаимодействия компонентов. Количество никелевой проволоки, на которую осаждался материал, учитывалось при расчете необходимых масс компонентов для получения заданных составов. Сила тока и время технологических операций задавались на основе предварительно проведенной оптимизации процессов и определения выхода по току. Осаждение осуществлялось при нормальных условиях с использованием в качестве анодов соответствующих металлов.

При осаждении олова из электролита, содержащего 60 г/л SnSO₄, 60 г/л H₂SO₄ и 2 г/л желатина [7, 8], с катодной плотностью тока 3 А/дм² выход по току составил 97 \pm 2% (взвешивание проводилось на лабораторных аналитических весах AND HR-150AZ, точность измерения 0.1 мг).

В связи с малым выходом по току (менее 70%) и неоднородностью выделяемого материала (рис. 1а, изображение получено с помощью микроскопа ММУ-ЗУ 4.2) при осаждении индия с катодной плотностью тока 5 А/дм² из базового трилонатного электролита [9], содержащего 35 г/л In₂(SO₄)₃, 80 г/л трилона Б и 100 г/л сульфата аммония, была проведена оптимизация состава раствора. С увеличением концентрации сульфата индия до 60 г/л повысилась емкость электролита катионами индия; при замене сернокислого аммония на уксуснокислый аммоний в электролите снизилась концентрация свободных ионов водорода, что привело к уменьшению выделения водорода при побочном процессе, а выход по току достиг $79 \pm 3\%$. Введение в электролит коллоидной выравнивающей добавки желатина в количестве 2 г/л привело к улучшению морфологии осаждаемого материала (рис. 1б).

Никелирование из сульфатного электролита, содержащего 250 г/л NiSO₄ · 7H₂O, 30 г/л H₃BO₃ и 15 г/л NaCl [7], с катодной плотностью тока 4 A/дм² отличалось однородностью осаждаемого материала и высоким выходом по току (98 \pm 1%).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В табл. 1 обобщены результаты формирования сплавов в системах Sn—Ni и In—Ni с содержанием легкоплавкого компонента 20 и 45 мас. %. Для проведения гравиметрического анализа содержания никеля [10] и термоциклических исследований экспериментальные образцы были разделены на две части.

Образец	Масса исходного никеля, мг	τ_{oc} , мин	<i>I</i> , мА	<i>m</i> , мг	τ_{oc} , мин	<i>I</i> , мА	<i>m</i> , мг	Содержание
		осаждение Sn или In			осаждение Ni			легкоплавкого компонента, мас. %
1	1.5	30	2	2.1	150	2.5	6.7	20.4Sn
2	1.3	60	2	4.3	85	2.5	3.8	45.7Sn
3	1.4	30	3	1.7	125	2.5	5.6	19.5In
4	1.3	60	3	3.5	60	2.5	2.7	46.7In

Таблица 1. Результаты формирования двойных сплавов

Таблица 2. Результаты гравиметрического определения содержания Ni

05	Масса исходного	Осадок, мг	Никель, мг	Осадок, мг	Никель, мг	Содержание
Образец	образца, мг	про	оба I	проба II		никеля в образце, мас. %
1	4.9	9.6	1.95	9.5	1.93	79.2
2	4.7	6.2	1.26	6.2	1.26	53.6
3	4.1	8.0	1.63	8.1	1.65	80.0
4	3.7	4.8	0.98	4.7	0.95	52.2

При гравиметрическом определении массы никеля осажденный материал растворялся в азотной кислоте и для контроля сходимости результатов проводились две серии экспериментов. В результате взаимодействия проб с реактивом Чугуева образовывался красно-бурый осадок диметилглиоксимата никеля, который отфильтровывался, прокаливался при 110°С до постоянной массы и далее взвешивался. Фактор пересчета определялся по формуле

$$\frac{M(\text{Ni})}{M([\text{C}_4\text{H}_7\text{O}_2\text{N}_2]_2\text{ Ni})} \approx \frac{58.7}{288.7} \approx 0.2033.$$

Результаты анализа (табл. 2) в пределах погрешности совпали с проведенными ранее взвешиваниями сформированных сплавов и показали хорошую воспроизводимость осаждения сплавов заданного состава.

Исследование эволюции систем при нагревании проводилось на дифференциальном сканирующем калориметре DSC 204 F1 Phoenix (Netzsch). Для изучения возможности последовательного монтажа компонентов интегральных схем с применением осажденного материала проводился циклический нагрев и охлаждение образцов в температурных интервалах 50–250, 50–300, 50–400°С со скоростью 10°С/мин в атмосфере аргона.

При ДСК-анализе сплавов олово-никель выявлен эндотермический пик, соответствующий плавлению олова (рис. 2). Изменений на ДСКкривых, обусловленных возможными фазовыми превращениями при циклическом нагреве, не выявлено.

На рис. 3 и 4 представлены результаты термоциклических исследований сплавов индий—никель.

Необходимо отметить, что наблюдаемый на ДСК-кривых эндотермический пик при 156.7°С, характерный для плавления индия, не изменялся при первом и втором нагревах экспериментальных образцов до 250 и 300°С. В то же время при третьем нагреве сплава с содержанием 46.7 мас. % индия происходило существенное уменьшение данного пика, а для сплава с содержанием 19.5 мас. % индия фазовое превращение отсутствовало, что вызвано образованием интерметаллического соединения InNi, имеющего более высокую температуру плавления.

Рис. 2. ДСК-кривые при термоциклических исследованиях образца 1, содержащего 20.4% олова.

Рис. 3. ДСК-кривые при термоциклических исследованиях образца 4, содержащего 46.7% индия.

Рис. 4. ДСК-кривые при термоциклических исследованиях образца 3, содержащего 19.5% индия.

ЗАКЛЮЧЕНИЕ

Полученные экспериментальные данные показывают, что после оптимизации составов электролитов и определения выхода по току послойное электрохимическое формирование сплавов систем олово-никель и индий-никель заданного состава проходит с хорошей воспроизводимостью по содержанию компонентов, а покрытия имеют однородную морфологию.

При термоциклических исследованиях выявлено отсутствие пиков на ДСК-кривых после термообработки сплава индий—никель с содержанием 19.5 мас. % индия выше 300°С, что позволяет сделать вывод об образовании интерметаллического соединения InNi, имеющего более высокую температуру плавления.

БЛАГОДАРНОСТЬ

Работа выполнена при финансовой поддержке Министерства науки и образования РФ в рамках государственного задания № 4.6901.2017/8.9 и гос. заказа ИОНХ РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. Рощин В.М., Дихунян В.Л., Петухов И.Н., Сеньченко К.С., Кухтяева В.Р. Исследование процессов электрохимического формирования контактных структур для сборки интегральных микросхем // Неорган. материалы. 2015. Т. 51. № 3. С. 344–348. https://doi.org/10.7868/S0002337X15030136
- Рощин В.М., Дихунян В.Л., Петухов И.Н., Сеньченко К.С., Вагин М.С. Физико-химические особенности осаждения перитектических сплавов для высокоплотного монтажа кремниевых кристаллов // Микроэлектроника. 2016. Т. 45. № 5. С. 352–356. https://doi.org/10.7868/S0544126916040098
- 3. Петухов И.Н., Гак А.С. Исследование процессов электрохимического осаждения систем Sn-Ag и In-Ag заданного состава при формировании контактных структур // Электронные информационные системы. 2018. № 3(18). С. 81–87.
- Лякишев Н.П., Банных О.А., Рохлин Л.Л. и др. Диаграммы состояния двойных металлических систем: Справочник: В 3 т. М.: Машиностроение, 1996. 2000 с.
- Михайлова М.С., Рощин В.М., Шиляева Ю.И., Петухов И.Н., Федоров В.А. Электрохимическое формирование Ag–Sn на медных и титановых пластинах // Неорган. материалы. 2016. Т. 52. № 12. С. 1295–1299. https://doi.org/10.7868/S0002337X16110099
- Лукомский Ю.Я., Гамбург Ю.Д. Физико-химические основы электрохимии: Учебник. Долгопрудный: Издательский дом "Интеллект", 2008. 424 с.
- 7. Гамбуре Ю.Д. Гальванические покрытия. Справочник по применению. М.: Техносфера, 2006. 216 с.
- 8. Рощин В.М., Петухов И.Н., Сеньченко К.С., Рощина А.В., Шилина Т.В. Формирование двухкомпонентных вертикальных контактных структур для монтажа кристаллов интегральных схем // Изв. вузов. Электроника. 2016. Т. 21. № 2. С. 116–121.
- Беленький М.А., Иванов А.Ф. Электроосаждение металлических покрытий. Спр. изд. М.: Металлургия, 1985. 288 с.
- Хаханина Т.И., Никитина Н.Г. Аналитическая химия: уч. пособие. М.: Высшее образование, 2009. 278 с.