УДК 546.05543.4548.3617.3

СТРУКТУРНО-МОРФОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ И РАСТВОРЕНИЕ КАРБОНАТГИДРОКСИАПАТИТА, ПОЛУЧЕННОГО В ПРИСУТСТВИИ ПРОЛИНА

© 2020 г. О. А. Голованова^{1, *}, С. А. Герк¹

¹Омский государственный университет им. Ф.М. Достоевского, пр. Мира, 55-А, Омск, 644077 Россия

*e-mail: golovanoa2000@mail.ru Поступила в редакцию 11.07.2019 г. После доработки 15.10.2019 г. Принята к публикации 20.10.2019 г.

Проведен синтез карбонатсодержащего гидроксиапатита из прототипа синовиальной жидкости человека в присутствии пролина. Показано, что полученные порошки содержат от 61 до 71 мас. % аминокислоты. Выявлено, что наличие пролина в модельном растворе не влияет на состав твердой фазы и размеры формирующихся кристаллитов, но изменяет кристалличность и удельную поверхность образцов. При высоких концентрациях аминокислоты отмечается формирование плохоокристаллизованных композитов, состоящих из меньших по размеру нанокристаллитов. Установлено, что растворение образцов в 0.9%-ном NaCl и ацетатном буфере является двухстадийным процессом. Наиболее растворимыми в слабокислых растворах являются осадки, содержащие аминокислоту.

Ключевые слова: композиты, биосовместимые материалы, кристаллизация, пролин, резорбция **DOI:** 10.31857/S0002337X20050036

введение

В настоящее время большое внимание уделяется разработке материалов, предназначенных для использования при реконструкции костных дефектов, образующихся в результате изменений (остеопороз, коксит, деформирующий артроз и т.д.), травм, хирургических вмешательств [1–4]. Наиболее перспективны в данном случае материалы на основе фосфатов кальция, так как они характеризуются высокой биосовместимостью по отношению к костной ткани человека [5–8]. Это свойство используют при создании костных имплантатов, которые могут быть либо полностью изготовлены из фосфатов кальция, либо иметь поверхность, покрытую данными соединениями [9–12].

Важным принципом при создании материалов для имплантации является воспроизведение характеристик натуральной костной ткани [1, 2]. Известно, что гидроксиапатит (ГА) является основным неорганическим компонентом костной ткани и несет основную механическую нагрузку, а коллаген придает эластичность и гибкость [13—15]. Последний представляет собой полипептидную цепь, состоящую из повторяющихся триплетов аминокислот. Главными аминокислотами, входящими в состав коллагена, являются глицин, пролин (рис. 1), гидроксипролин и гид-

роксилизин [12, 15]. Обладая конформационно жесткой структурой, пролин сильно изгибает пептидную цепь. Участки белков с высоким содержанием пролина часто формируют вторичную структуру полипролиновой спирали II типа.

Чередующиеся остатки молекулы пролина и гидроксипролина способствуют созданию стабильной трехспиральной структуры коллагена, придающей молекуле прочность. Кроме того, пролин предупреждает старение, сохраняя прочность костей, гибкость суставов, эластичность связок, поддерживает упругость сосудистой стенки, придает гладкость коже.

С другой стороны, пролин обладает наибольшей цитопротекторной активностью в условиях повышенных концентраций неорганических ионов в среде (солевой стресс) и пониженных температур (температурный стресс) [16]. В условиях стресса пролин проявляет также осмопротекторное действие, регулируя водный баланс клетки. Однако имеющиеся на сегодняшний день данные о взаимо-

Рис. 1. Структурная формула пролина.

Компонент	Ca ²⁺	Na ⁺	Mg ²⁺	K ⁺	Cl-	HCO_3^{2-}	HPO ₄ ³⁻	SO_4^{2-}
С, ммоль/л	2.53	140	1.1	4.6	103	27	4.38	11.4

Таблица 1. Средние молярные концентрации неорганических ионов синовиальной жидкости человека (pH 7.40 \pm 0.05, ионная сила раствора — 0.172 ммоль/л) [14]

действии пролина с фосфатами кальция немногочисленны и противоречивы [16—19]. С практической точки зрения, подобные сведения требуются для совершенствования существующих материалов с использованием пролина, востребованных в фармакологии, медицине, косметологии, а также для создания новых композитов на основе пролина и фосфатов кальция [13], что и определяет актуальность настоящего исследования.

Целью работы является установление влияния пролина на морфологию, кристалличность и резорбционные свойства карбонатгидроксиапатита (КГА), синтезированного из модельных растворов суставной синовиальной жидкости (синовии) человека.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез КГА осуществлен из модельной среды. приближенной по ионно-электролитному составу, рН и ионной силе к синовиальной жидкости человека, по методике [14]. Эксперименты проведены из раствора при 50-кратном пересыщении по осадкообразующим ионам Ca²⁺ и HPO₄³⁻ относительно физиологического значения данного параметра для синовии (табл. 1). Для приготовления модельных растворов использовали соли (CaCl₂ \cdot 2H₂O, Na₂HPO₄ \cdot 12H₂O, MgCl₂ \cdot 6H₂O, NaHCO₃, KCl, Na₂SO₄, NaCl) квалификации "ч. д. а." Содержание пролина (pro, NH(CH₂)₃CHCOOH, пирролидин-α-карбоновая кислота) (рис. 1) в модельном растворе варьировали от 0.013 до 0.052 моль/л с шагом 0.013 моль/л, при этом приняты обозначения: 0 (образец 1), 0.013 (2), 0.026 (3), 0.039 (4) и 0.052 моль/л (5). Раствор, содержащий катионы, приливали к раствору с анионами и аминокислотой со скоростью 5 мл/мин. Корректировку кислотности модельной системы проводили 10%-ным раствором HCl до значения pH 7.40 \pm ± 0.05. Время кристаллизации осадков составляло 7 суток и было установлено в ходе предыдущих экспериментов. По истечении указанного времени полученные осадки отделяли от раствора фильтрованием, промывали водой, сушили при 80°С до постоянной массы для полного удаления химически не связанной воды, взвешивали и далее исследовали с помощью группы химических и физико-химических методов.

Количественное определение содержания пролина в твердой фазе осуществлялось по разности начальных и конечных концентраций аминокислоты и осадкообразующих ионов в модельном растворе. Остаточные концентрации аминокислоты в жидкой фазе исследовались спектрофотометрическим методом (фотоколориметр КФК-2, $\lambda = 670$ нм, ГОСТ 18309-72) [14].

Фазовый состав полученных порошков исследовали с помощью рентгенофазового анализа (дифрактометр D8 Advance Bruker). Съемку проводили с использованием Си K_{α} -излучения ($\lambda =$ = 0.15406 нм) с позиционно-чувствительным детектором Lynxeye при следующих режимах измерения: шаг сканирования 0.05°, время накопления сигнала 4 с в точке, щель расходимости 0.5, напряжение и ток накала 40 кВ и 40 мА соответственно, область сканирования 20 5°–80°. Для идентификации фаз использовали базу данных ICDD PDF для порошковой дифракции. Расчет размеров кристаллитов (областей когерентного рассеяния (**OKP**)) проводили с использованием программы TOPAS 3.0 (Bruker) [14].

ИК-спектры осадков регистрировали на спектрофотометре ФСМ-2202. Пробы готовили прессованием в таблетки с КВг. Микроструктуру и микротекстуру порошков исследовали с помощью сканирующей электронной микроскопии (СЭМ, микроскоп JSM-6610LV, JEOL) с применением детектора вторичных электронов при ускоряющем напряжении 10 кВ.

Термический анализ проводили на синхронном термическом анализаторе STA-449C NETZSCH. Пробы прокаливали в платиновых тиглях на воздухе от 25 до 1000°C со скоростью 10°C/мин. Количественные данные массовых потерь при отжиге получены с помощью программного обеспечения Proteus 7.10.

Удельная поверхность образцов исследована по методике одноточечной адсорбции азота при 77.4 К на адсорбционном приборе "Сорбтометр" производства ООО "Катакон" (Россия). Расчет полученных величин *S*_{va} выполнен по методу БЭТ.

Для моделирования активной и пассивной фаз резорбции проведено растворение образцов при постоянном перемешивании в ацетатном буфере (pH 5.5) и в 0.9%-ном растворе хлорида натрия (pH \approx 7). По методу прямой потенциометрии фиксировали значения pCa в растворе с помощью иономера И-160М. Полученные зависимости обрабатывали с помощью регрессионного анализа (программный пакет SigmaPlot 12.5) [8, 20].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В основе синтеза ГА из прототипа синовиальной жидкости лежит следующая реакция:

$$10\text{CaCl}_{2} + 6\text{M}_{2}\text{HPO}_{4} + 8\text{MOH} \Rightarrow$$

$$\Rightarrow \text{Ca}_{10}(\text{PO}_{4})_{6}(\text{OH})_{2}\downarrow + 20\text{MCl} + 6\text{H}_{2}\text{O}, \qquad (1)$$

где $M = Na^+, K^+$.

Анализ дифрактограмм синтезированных порошков показал, что в случае введения в модельный раствор пролина, как и при его отсутствии, происходит формирование кристаллической фазы ГА (рис. 2, табл. 2). Однако на рентгенограммах ГА-пролин в отличие от порошка, полученного без аминокислоты, присутствуют более интенсивные фоновые сигналы (в интервале $5^{\circ}-20^{\circ}$ 20), а интенсивности основных максимумов 002, 121 и 112 ГА снижены в три раза, что указывает на низкую степень кристалличности полученных образцов и увеличение в них содержания аморфной фазы.

В кристаллической решетки порошков ГА– пролин по сравнению с беспримесной фазой наблюдается уменьшение параметра *a*, а величина *c* практически не изменяется (табл. 2). В связи с этим для образцов, синтезированных в присутствии пролина, характерны большее соотношение параметров *c/a* и меньший объем элементарной ячейки, что приводит к образованию кристаллов пластинчатой формы. По структурным характеристикам и размерам кристаллитов порошки ГА—пролин близки к нестехиометрическим карбонатапатитам костной ткани человека [21].

В литературе описано различное влияние пролина на процессы кристаллизации из раствора. В зависимости от условий эксперимента и состава твердой фазы аминокислота может выступать в роли ингибитора процессов роста кристаллов [22], катализатора процесса зародышеобразования, в основном за счет хелатообразования [23, 24], также возможно частичное замещение ОН-групп в структуре ГА на анионы аминокислоты (0.2 молекулы) [25]. В нашем случае наличие пролина в модельном растворе практически не влияет на содержание минерального компонента в осадках и на размеры их кристаллитов (табл. 2). Размер ОКР вдоль [002] составляет 21–23 нм. При этом

Рис. 2. Дифрактограммы образцов *1*-5.

масса порошков закономерно увеличивается за счет повышения в их составе доли аминокислоты. Каждый осадок содержит 61–71 мас. % аминокислоты, присутствующей в растворе при синтезе (табл. 3).

Образец	a, Å	c, Å	c/a	<i>V</i> , Å ³	<i>D</i> , нм	$S_{ m yg},{ m m}^2/{ m r}$
1	9.459 ± 0.002	6.874 ± 0.002	0.727	532.6	21.58	130 ± 7
2	9.426 ± 0.004	6.874 ± 0.004	0.729	528.9	22.57	116 ± 6
3	9.420 ± 0.004	6.879 ± 0.004	0.730	528.6	21.07	111 ± 6
4	9.420 ± 0.004	6.882 ± 0.004	0.730	528.7	21.06	114 ± 6
5	9.422 ± 0.004	6.877 ± 0.004	0.730	528.8	22.65	112 ± 6
Костная ткань [14]	9.410	6.891	0.732	528.4	5-10	_

Таблица 2. Параметры решетки, размеры кристаллитов и удельная поверхность образцов КГА

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 56

Образец	Масса осадка, г	<i>С(pro)</i> в осадке, %				
1	2.0394	_				
2	2.1836	61.3				
3	2.3112	65.3				
4	2.4254	61.3				
5	2.5454	71.0				

Таблица 3. Масса твердой фазы и содержание в ней пролина

Полученные результаты можно объяснить специфическим строением пролина. Данная неполярная алифатическая аминокислота существует в рас-

творе в виде цвиттер-иона NH₂⁺(CH₂)₃CHCOO⁻ и содержит гидрофобный радикал – пирролидиновое кольцо, которое придает пролину максимальную конформационную жесткость [26, 27]. За счет наличия пятичленного цикла у пролина в отличие от других аминокислот наименее выражены про-

тонодонорные свойства катиона $-NH_2^+$ и более сильным акцептором протонов является карбоксильная группировка $-COO^-$ (более электроотрицательна) [28, 29]. Вследствие этого наибольшей адсорбционной активностью обладает анион кислоты, и по этой причине на поверхности ГА адсорбируется меньшее ее количество по сравнению с другими неполярными конформационно подвижными аминокислотами [14, 23].

На ИК-спектрах образцов (рис. 3) наблюдаются пики, характерные для карбонатсодержащего ГА, а именно: валентные и деформационные колебания в H₂O–v(H₂O) 3400–3440 см⁻¹ и δ (H–O–H) 1610–1650 см⁻¹; асимметричные валентные и деформационные колебания в PO₄^{3–} – υ_3 (P–O) 1030–1090 см⁻¹, υ_4 (O–P–O) 605–564 см⁻¹ и υ_2 (O– P–O) 470–475 см⁻¹; дублет асимметричных валентных колебаний связи ν_3 (С–O) 1410–1480 см⁻¹ и деформационное колебание ν_2 (O–C–O) 875–879 см⁻¹

в CO_3^{2-} , указывающие на механизм замещения фосфатных тетраэдров карбонат-ионами в структуре полученных КГА по *B*-типу.

На присутствие пролина в составе твердой фазы указывают моды колебаний органических группировок, см⁻¹: 1032–1037 – валентные v(С–О) пиранового цикла; 1422–1440 – симметричные валентные v^s(СОО⁻); 1460 – деформационные метильных δ (СН) и метиленовых δ (СН₂) групп; 1507–1543 – деформационные δ (NH) и δ (СОО⁻), валентные v(С–N) амид II; 2800–3600 – валентные v(С–H); 3420–3600 – v(ОН⁻), ассоциированные внутримолекулярными водородными связями [19]. Видно, что в диапазоне частот 900– 4000 см⁻¹ происходит наложение полос поглощения связей минеральных и органических составляющих. В интервале частот до 900 см⁻¹, где присутствуют только моды неорганического компонента, на спектрах образцов КГА—пролин в отличие от фазы без добавки (рис. 3, спектр I) можно отметить значительное уменьшение интенсивности дублета полосы поглощения связей

υ₂(О-Р-О) в РО₄³⁻ (564-610 см⁻¹), что косвенно указывает на низкую кристалличность полученных осадков. С увеличением содержания пролина в порошках на ИК-спектрах становится меньше полоса 3400-3600 см⁻¹ группировок v(OH⁻) структурной воды КГА и характеризующих наличие межмолекулярных связей "вода-вода", при этом возрастает число мод колебаний связей группировок аминокислоты. Это можно объяснить тем, что пролин относится к иминокислотам, содержащим средний по объему и значению гидрофобности пирролидиновый боковой радикал (объем 113 Å³ – в 3.7 раза больше объема молекул воды, гидрофобность – 0.711), в котором отсутствует N–H-группа, способная служить донором водородной связи. Вследствие этого в растворе пролин связывает ограниченное количество молекул воды за счет акцепторных свойств СОО- [29-31]. Кроме того, в процессе кристаллизации часть карбоксильных групп связана с положительно заряженными участками поверхности КГА. Малоподвижные неполярные (малополярные) гетероциклы могут притягиваться друг к другу за счет межмолекулярных сил, образуя ассоциаты.

Таким образом, с увеличением содержания пролина в составе твердой фазы, с одной стороны, уменьшается количество структурно связанной воды, с другой — отмечается пространственная стабилизация ее молекул. Полученная корреляция хорошо согласуется с данными работы [31], в которой показано применение в качестве количественной меры воды содержания аминокислоты в тканях растений.

Исследование текстуры и морфологии образцов проведено методами БЭТ и СЭМ. Установлено, что присутствие пролина в модельной среде не влияет на размеры ОКР формирующихся кристаллитов и приводит лишь к незначительному изменению площади удельной поверхности порошков (табл. 2). Независимо от содержания аминокислоты в составе твердой фазы площадь удельной поверхности всего лишь на 13-18 м²/г меньше величины для чистого КГА (табл. 2). Возможно, пролин из-за тяжелого гидрофобного бокового радикала имеет максимальные конформационные ограничения и взаимодействует с КГА в основном за счет карбоксильной группы. Несмотря на возможное образование новых центров кристаллизации – хелатных комплексов, ассоциативных цепей пролина, активный рост кристаллов в пространстве ограничен из-за малоподвижных гетероцик-

Рис. 3. ИК-спектры образцов *1*–5 (внизу на спектре – полосы поглощения колебаний связей неорганических групп, вверху – органических групп).

лов и структурной стабилизации воды и происходит в определенном направлении согласно конформационной ориентации пролиновых цепей.

Таким образом, возможные вторичные процессы кристаллизации, с одной стороны, и стерические ограничения в растворах с пролином — с другой, позволяют получить твердую фазу с хорошими поверхностными характеристиками. Увеличение содержания аминокислоты в составе порошков, согласно данным РФА и ИК-спектроскопии, отражается на их кристалличности.

Полученные данные согласуется с анализом морфологии частиц порошков. Установлено, что наличие в модельной среде пролина не оказывает

Рис. 4. Микрофотографии образцов 1 (а) и 2 (б).

значительного влияния на форму и размеры частиц порошков. Частицы КГА–пролин, как и чистой фазы КГА, образуют агрегаты размером до 200 мкм, имеющие чешуйкоподобную форму. Образцы, содержащие аминокислоту, менее пористые, возможно, из-за меньшей кристалличности минерального компонента (рис. 4).

Для исследования закономерностей термопревращений образцов проведен термический анализ в температурном интервале 25–1000°С. Вид кривых ТГ, ДТГ и ДТА для композитов КГА–*pro* близок по форме к таковым для образца, полученного без пролина (рис. 5).

На кривых ДТА можно выделить 4 этапа термопреобразования в температурном интервале 25–1000°С [32–36]. На первом этапе (I, 25-280/ 25-242 (270)°С, образцы 1/2, 3 (4, 5), $\Delta H > 0$) происходит удаление химически не связанной воды, разложение легколетучих примесей.

Второй этап (II, 280-470/240-410 (464)°С, образцы 1/3-5 (2), $\Delta H < 0$) сопровождается удалением пролина ($t_{пл} = 205-221$ °С) и дегидратацией адсорбированной воды по схеме:

$$[K\Gamma A \cdot nH_2O] \cdot mH_2O_{TB} \rightarrow$$

$$\rightarrow K\Gamma A \cdot nH_2O_{TB} + mH_2O_{T} + Q.$$
(2)

На третьем этапе (III, 470-750/410(464)– 750(784)°С, образцы 1/3-5 (2), $\Delta H < 0$) происходит десорбция кристаллизационной и химически связанной воды. Схематично процессы удаления воды можно представить в виде

$$K\Gamma A \cdot nH_2O_{TB} \to K\Gamma A_{TB} + mH_2O_{\Gamma} + Q.$$
(3)

На четвертом этапе (IV, 750-1000/750(784)-1000°C, образцы 1/3-5 (2), $\Delta H > 0$) происходит преобразование КГА в стехиометричную фазу ГА (4) или β-Ca₃(PO₄)₂ (5):

$$Ca_{10}(PO_4, CO_3)_6(OH)_2 \rightarrow \rightarrow Ca_{10}(PO_4)_6(OH)_2 + 6CO_2\uparrow - Q,$$
(4)

$$Ca_{9} (PO_{4})_{6-x-y} (HPO_{4})_{y} \times \\ \times (CO_{3})_{x} (OH)_{2-y \text{ TB}} \xrightarrow{800^{\circ}\text{C}} \qquad (5)$$

$$\rightarrow 3\beta - Ca_{3} (PO_{4})_{2\text{ TB}} + xCO_{2\text{ }r} + 2H_{2}O_{r} - Q.$$

Выявлено, что вид термических кривых композитов КГА—*pro* близок к образцу чистого КГА (рис. 5). При их разложении на этапах II—IV вы-

Рис. 5. Кривые ДТА (а) и ДТГ (б) образцов 1–5.

деляется в три раза больше теплоты. Это может быть связано как с бо́льшим содержанием удаляемых компонентов в составе проб, так и с наиболее прочной их связью с твердой поверхностью. Кривые ДТА композитов более пологие (рис. 5а).

Интервалы температур деструкции составляющих примерно одинаковы у порошков КГА и КГА—*pro*. Однако удаление химически связанной воды на третьем этапе из образцов, содержащих аминокислоту, происходит в два этапа (пики при 510 и 710°C).

В целом, присутствие аминокислоты мало влияет на термическую устойчивость образцов и значения экстремумов близки. Термическое преобразование образцов, синтезированных в при-

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 56 № 5 2020

Этэн	<i>t</i> *, °C	$\Delta m, \%$								
Jian	1		2		3		4		5	
Ι	25	7.10	25	6.94	25	8.53	25	8.49	25	6.52
II	280	2.34	242	4.85	242	3.31	270	2.43	272	2.28
III.1	470	2.50	464	1.22	410	1.68	410	1.52	408	1.54
III.2			476	1.69	554	1.80	556	2.12	556	1.72
IV	750	1.24	784	0.36	750	0.47	750	0.66	756	0.49
I + IV	25-950	13.18	25-950	15.06	25-950	15.79	25-950	15.22	25-950	12.55

Таблица 4. Потеря массы (Δm) на четырех этапах термопреобразований твердых образцов *1*–*5* при варьировании исходной концентрации пролина

* Температура, соответствующая началу перехода.

сутствии пролина, сопровождается наибольшими термическими эффектами на II и III этапах термопреобразований. Это может быть связано со стабилизацией воды в составе композитов, полученных в присутствии *pro*, и согласуется с данными ИК-спектроскопии. Также наблюдается увеличение общей потери массы за счет удаления пролина и кристаллизационной воды (табл. 4) [37].

Для характеристики биоактивности образцов проведено их растворение в растворителях, подобранных с учетом условий резорбции *in vivo*. Исследование растворения образцов в ацетатном буферном растворе (pH 5.5) проведено для моделирования активной фазы резорбции остеокластами (рис. 6).

Для определения скорости растворения осадков все кинетические кривые проанализированы с помощью регрессионного анализа [8, 20]. Установлено, что процесс растворения порошков стадийный. На начальном участке кривых зависимость концентрации ионов кальция в растворе от времени $C(\tau) = -\lg C_{Ca^{2+}}$ описывается линейной функцией. Истинная скорость для линейной зависимости определяется как тангенс угла наклона прямой [38].

Следующая стадия процесса растворения порошков в ацетатном буфере характеризуется экспоненциальной зависимостью

$$C(\tau) = C_0 + C_m e^{b\tau}$$

где C_0 — условная начальная концентрация, C_m — концентрация насыщения, b — коэффициент, τ — время.

Данная зависимость соответствует кинетике первого порядка [38]. В качестве количественной меры скорости растворения на данном этапе можно рассматривать условную начальную концентрацию.

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 56 № 5 2020

На линейном и экспоненциальном участках полученной зависимости (табл. 5) скорость растворения образцов, синтезированных в присутствии пролина, выше, чем у образца без добавки. Но при этом скорость растворения образцов практически не зависит от варьирования концентрации аминокислоты в исходном растворе. Изоэлектрическая точка пролина, при которой аминокислота в растворе существует в виде нейтрально заряженного цвиттер-иона, составляет 6.3 [39]. При подкислении раствора происходит разрушение связей между Ca²⁺ и COO⁻ и образование катионной формы аминокислоты, как следствие – повышение растворимости осадков [14].

Изучение растворения образцов в изотоническом 0.9%-ном растворе NaCl (pH \approx 7.4) проведено для моделирования пассивной фазы резорбции имплантата в организме человека (рис. 7).

Регрессионный анализ показал, что в растворе 0.9%-ного NaCl скорость резорбции образцов, содержащих пролин, выше, чем у КГА без добавок (табл. 6). На начальном этапе с большей скоростью за более короткий промежуток времени

Рис. 6. Кинетические кривые растворения образцов 1-5 в ацетатном буферном растворе.

ГОЛОВАНОВА, ГЕРК

Образец	τ, мин	υ, 10 ⁻⁷ мин ⁻¹	τ, мин	υ, 10 ⁻⁶ мин ⁻¹	
ооризец	на н	ачальном участке	на конечном участке		
1	1-15	0.091 ± 0.008	16-26	0.91 ± 0.3	
2	1-16	1.9 ± 0.2	17—24	8.1 ± 3.1	
3	1-18	1.7 ± 0.2	19-31	7.8 ± 3.9	
4	1-18	1.1 ± 0.1	19-31	7.1 ± 2.4	
5	1-17	1.5 ± 0.2	18-32	7.1 ± 1.6	

Таблица 5. Кинетические характеристики растворения образцов в ацетатном буфере

Таблица 6. Кинетические характеристики растворения образцов в 0.9%-ном NaCl

Образец	τ, мин	υ, 10 ⁻⁷ мин ⁻¹	τ, мин	υ, 10 ⁻⁸ мин ⁻¹	
e opnord	на начальн	ом участке	на конечном участке		
1	1-8	2.5 ± 0.4	9-28	2.7 ± 4.3	
2	1-7	8.0 ± 1.6	8-20	3.6 ± 3.8	
3	1-12	7.2 ± 1.2	13-23	3.6 ± 7.7	
4	1-6	12.0 ± 2.5	7-13	3.5 ± 1.4	
5	1-6	11.0 ± 2.0	7-13	3.8 ± 6.8	

растворяются образцы с концентрацией пролина выше 0.039 моль/л. На экспоненциальном участке скорости растворения не зависят от концентрации аминокислоты. Эти данные можно объяснить тем, что связи Ca²⁺–COO⁻ могут ослабляться за счет уменьшения акцепторных свойств карбоксильной группы. При увеличении pH раствора до 7.4 (pH > pI) происходят понижение электронной плотности на атоме углерода карбоксильной группы и ослабление электростатического притяжения между ионами Ca²⁺ и COO⁻ [24]. В результате скорость растворения образцов, полученных в присутствии аминокислоты, возрастает.

Рис. 7. Кинетические кривые растворения образцов I-5 в 0.9%-ном растворе NaCl.

ЗАКЛЮЧЕНИЕ

В работе синтезирован КГА из прототипа синовиальной жидкости в присутствии пролина. Полученные порошки содержат от 61 до 71 мас. % аминокислоты. Показано, что наличие пролина в модельном растворе не оказывает влияния на размеры формирующихся кристаллов КГА, а приводит к изменению степени кристалличности и незначительному изменению площади удельной поверхности образцов.

По структурным характеристикам и размерам кристаллитов порошки КГА-пролин близки к нестехиометрическим карбонатапатитам костной ткани человека. С увеличением содержания пролина в составе твердой фазы, с одной стороны, уменьшается количество структурно связанной воды, с другой — отмечается пространственная стабилизация ее молекул. Образцы, содержащие аминокислоту, менее пористые и более термически устойчивы.

Выявлено, что растворение образцов в 0.9%-ном растворе NaCl и ацетатном буферном растворе является двухстадийным процессом. Образцы, синтезированные из среды, содержащей пролин, растворяются быстрее и за более короткий промежуток времени. Содержание аминокислоты в образцах влияет только на начальный этап их растворения в растворе 0.9%-ного NaCl.

579

СПИСОК ЛИТЕРАТУРЫ

- 1. Баринов С.М., Комлев В.С. Биокерамика на основе фосфатов кальция. М.: Наука, 2005. 204 с.
- Barinov S.M., Komlev V.S. Calcium Phosphate Based Bioceramics for Bone Tissue Engineering. Zurich: Trans Tech, 2008. 170 p.
- 3. Карякина Е.В., Персова Е.А. Особенности ремоделирования костной ткани при воспалительных и дегенеративных заболеваниях тазобедренного сустава // Саратовский науч.-мед. журн. 2009. Т. 5. № 2. С. 227–230.
- 4. *Popov V.K., Komlev V.S., Chichkov B.N.* Calcium Phosphate Blossom for Bone Tissue Engineering // Mater. Today. 2014. V. 17. № 2. P. 96–97.
- 5. *Komlev V.S., Barinov S.M., Bozo I.I. et al.* Bioceramics Composed of Octacalcium Phosphate Demonstrate Enhanced Biological Behavior // ACS Appl. Mater. Interfaces. 2014. V. 6. № 19. P. 16610–16620.
- Петракова Н.В. Влияние условий синтеза и спекания нанопорошков гидроксиапатита на формирование микроструктуры и свойств керамики: Дис.... канд. тех. наук. М., 2014. 143 с.
- Epple M., Ganesan K., Heumann R. et al. Application of Calcium Phosphate Nanoparticles in Biomedicine // J. Mater. Chem. 2010. V. 20. № 1. P. 18–23.
- Вересов А.Г., Путляев В.И., Третьяков Ю.Д. Химия неорганических материалов на основе фосфатов кальция // Журн. Рос. хим. общ-ва им. Д.И. Менделеева. 2004. Т. 48. № 4. С. 52–63.
- Izmailov R.R., Golovanova O.A. Adhesive and Morphological Characteristics of Carbonate Hydroxyapatite Prepared from a Model Human Synovial Fluid on Titanium Alloys // Inorg. Mater. 2014. V. 50. № 6. P. 592–598.
- 10. Golovanova O.A., Zaits A.V. Biomimetic Coating of a Titanium Substrate with Silicon-Substituted Hydroxy-apatite // Inorg. Mater. 2018. V. 54. № 11. P. 1124–1130.
- 11. *Gerk S.A., Golovanova O.A., Sharkeev Yu.P.* Synthesis of a Two-Phase Nanopowder from Prototype Human Synovial Fluid and the Use of the Nanopowder for the Preparation of Coatings on Titanium Plates // Inorg. Mater. 2016. V. 52. № 9. P. 1021–1028.
- 12. Баринов С.М. Керамические и композиционные материалы на основе фосфатов кальция для медицины // Успехи химии. 2010. № 1. С. 15.
- 13. *Green D.W., Goto T.K., Kim K.S., Jung H.S.* Calcifying tissue Regeneration via Biomimetic Materials Chemistry // J. R. Soc. Interface. 2014. № 11. P. 1–11.
- Gerk S.A., Golovanova O.A., Odazhiu V.N. Structural, Morphological, and Resorption Properties of Carbonate Hydroxyapatite Prepared in the Presence of Glycine // Inorg. Mater. 2018. V. 54. № 3. P. 305–314.
- Bye J.W. Meliga S., Ferachou D., Cinque G., Zeitler J.A., Falconer R.J. Analysis of the Hydration Water around Bovine Serum Albumin Using Terahertz Coherent Synchrotron Radiation // J. Phys. Chem. A. 2013. V. 118. № 1. P. 83–88.
- Торбенко В.П., Касавина Б.С. Функциональная биохимия костной ткани. М.: Медицина, 1977. 272 с.
- 17. Кухта В.К., Олецкий З.И., Таганович А.Д. Биологическая химия. М.: БИНОМ, 2008. 668 с.

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 56 № 5 2020

- Федотова М.В., Дмитриева О.А. Структура гидратных оболочек групп – NH₂⁺ и – СОО⁻ цвиттер-иона L-пролина по данным 1D-RISM-метода интегральных уравнений // ЖФХ. 2014. Т. 88. № 5. С. 801–804.
- 19. Fedotova M.V., Dmitrieva O.A. Characterization of Selective Binding of Biologically Relevant Inorganic Ions with the Proline Zwitterion by 3D-RISM Theory // New J. Chem. 2015. V. 39. № 11. P. 8594–8601.
- 20. Измайлов Р.Р., Голованова О.А. Биорезорбируемость гранулированного композита на основе карбонатгидроксилапатита и желатина в средах с различными значениями рН // Вестн. Омского ун-та. 2015. № 2. С. 61–65.
- 21. Сафронова Т.В., Путляев В.И. Медицинское неорганическое материаловедение в России: кальцийфосфатные материалы // Наносистемы: физика, химия, математика. 2013. Т. 4. № 1. С. 24–47.
- 22. *Golovanova O.A., Korol'kov V.V.* Thermodynamics and Kinetics of Calcium Oxalate Crystallization in the Presence of Amino Acids // Crystallogr. Rep. 2017. V. 62. № 5. P. 787–796.
- 23. Солоненко А.П., Голованова О.А. Изучение адсорбции глутаминовой кислоты на брушите // Химия в интересах устойчивого развития. 2013. Т. 21. № 2. С. 227–233.
- 24. Голованова О.А., Томашевский И.А. Кинетика и термодинамика образования соединений ионов кальция с аминокислотами, их строение и устойчивость // Журн. физ. химии. 2019. Т. 93. № 1. С. 11–22.
- 25. Герк С.А., Голованова О.А. Вариации аминокислотного состава костных тканей человека // Химия в интересах устойчивого развития. 2013. Т. 21. № 3. С. 299–304.
- 26. Кузнецова Е.С., Ульянов А.В., Буряк А.К. Сравнительный анализ адсорбции стереоизомеров гидрокси- и дигидроксипролина на графитированной термической саже // Физикохимия поверхности и защита материалов. 2009. Т. 45. № 3. С. 271–276.
- Иванов А.С. Основные принципы конформационного разнообразия белков для медико-биологов // Биомедицинская химия. 2011. Т. 57. № 1. С. 31–60.
- Fleming D.E., Bronswijk W., Ryall R.L. A Comparative Study of the Adsorption of Amino Acids on to Calcium Minerals Found In Renal Calculi // Clin. Sci. 2001. V. 101. P. 159–168.
- 29. *Рубин М.А.* Влияние пролина на конформационную стабильность полипептидных цепей коллагенов: Автореф. ... канд. физ.-мат. наук. М., 2008. 24 с.
- Давыдова Е.А. Гидратные структуры пролина и гидроксипролина в растворе и сульфокатионообменнике КУ-2Х8: Дис. ... канд. хим. наук. Воронеж, 2006. 151 с.
- Кириллов А.Ф., Козьмик Р.А., Даскалюк А.П., Кузнецова Н.А., Харчук О.А. Оценка содержания пролина в растениях при воздействии засухи и засолении // Докл. по экологическому почвоведению. 2013. № 1(18). С. 194–202.
- Tõnsuaadu K., Peld M., Bender V. Thermal Analysis of Apatite Structure // J. Therm. Anal. Calorim. 2003. V. 72. P. 363–371.

- 33. Старикова В.В., Рудченко С.О. Оптимизация свойств композита на основе гидроксиаптита и хитозана путем вариации состава и режимов термообработки // Вестн. Харьковского ун-та. 2010. Вып. 14. С. 35–39.
- 34. Голощапов Д.Л., Кашкаров В.М., Румянцева Н.А., Середин П.В., Леньшин А.С., Агапов Б.Л., Домашевская Э.П. Получение нанокристаллического гидроксиапатита методом химического осаждения с использованием биогенного источника кальция // Конденс. среды и межф. границы. 2011. Т. 13. № 4. С. 427–441.
- Селифанова Е. И., Чепнова Р.К., Коблова О.Е. Термогравиметрическое изучение L-α-аминокислот // Изв. Саратовского ун-та. Сер. Химия. Биология. Экология. 2008. Т. 8. Вып. 2. С. 23–28.
- 36. Нуркеев С.С., Казова Р.А. Ахметбекова А. Физикохимические исследования термических превращений минералов фосфоритов // Вестн. КазНТУ им. К.И. Сатпаева. 2005. № 3(47). С. 82–87.
- 37. Koloskov O.O., Levina E.O., Mai B.D., Vener M.V. Classical MD Simulations of the IR Spectra of Amino Acids with Neutral Residues in Water. Reassignment of the Band around 2300 cm⁻¹ // Сорбционные и хромато-графические процессы. 2016. Т. 16. С. 556–562.
- 38. *Романовский Б.В.* Основы химической кинетики. М.: Экзамен, 2006. 416 с.
- Tavafoghi J.M., Yao G., Cerruti. M. The Importance of Amino Acid Interactions in the Crystallization of Hydroxyapatite // J. R. Soc. Interface. 2013. № 10. P. 1–14.

580