УДК 54.03

ВЛИЯНИЕ ДОБАВОК ZrC И ZrO₂ НА МИКРОСТРУКТУРУ И СВОЙСТВА КЕРАМИКИ ZrB₂-SiC

© 2020 г. А. Ю. Гусев¹, В. Ф. Войцик¹, Е. С. Дедова^{1, 2, *}, С. П. Буякова^{1, 2, 3}

¹Институт физики прочности и материаловедения СО Российской академии наук,

пр. Академический, 2/4, Томск, 634055 Россия

²Национальный исследовательский томский политехнический университет, пр. Ленина, 30, Томск, 634034 Россия ³Национальный исследовательский томский государственный университет, пр. Ленина, 36, Томск, 634034 Россия

**e-mail: lsdedova@yandex.ru* Поступила в редакцию 11.03.2019 г. После доработки 11.10.2019 г. Принята к публикации 26.11.2019 г.

Изучено влияние добавок ZrC и ZrO₂ на микроструктуру и свойства керамических композитов на основе ZrB₂-5% SiC, получаемых спеканием под давлением при температуре 1600°C механически активированных порошков. Показано, что добавка ZrO₂ приводит к увеличению плотности, твердости и трещиностойкости керамических композитов на основе ZrB₂-5% SiC. Так, например, $K_{\rm Ic}$ керамики ZrB₂-5% SiC составил 4.6 ± 0.3 МПа м^{1/2}, а композита с 20% ZrO₂ – 7.3 ± 0.4 МПа м^{1/2}.

Ключевые слова: диборид циркония, уплотнение, модуль упругости, трещиностойкость, твердость **DOI:** 10.31857/S0002337X20050048

введение

Бориды циркония и гафния ZrB2 и HfB2 характеризуются высокой электро- и теплопроводностью, износостойкостью, химической инертностью, в том числе к расплавам металлов, что делает их привлекательными для использования в машинах и аппаратах, эксплуатируемых в условиях высоких температур, фрикционного контакта, контакта с металлическими расплавами [1-7]. Олнако высокая ковалентность химической связи, низкие коэффициенты самодиффузии Zr, Hf и В наряду с высокой температурой плавления затрудняют спекаемость однофазных керамик ZrB₂ и HfB₂. Одним из решений по уплотнению керамик на основе диборидов циркония и гафния является введение других компонентов, т.е. получение композитных структур.

Кроме того, создание композитной структуры в керамиках на основе ZrB_2 и HfB_2 обеспечивает получение новых эксплуатационных характеристик. Так, например, композиты ZrB_2 –SiC существенно превосходят однофазную керамику ZrB_2 по устойчивости в высокотемпературной кислородсодержащей атмосфере. Керамические композиты на основе ZrB_2 и HfB_2 с добавками $MoSi_2$, SiC, TiC, ZrO_2 обладают существенно большей трещиностойкостью в сравнении с однофазными керамиками [8–13]. С позиции практического использования в машиностроительных конструкциях, в па́рах трибосопряжения интерес представляют керамические композиты, содержащие ZrB_2 , ZrC, ZrO_2 , SiC. Исследования, посвященные изучению свойств такого рода керамических композитов, как правило, ограничены узким интервалом концентраций компонентов, что не позволяет провести полный анализ влияния количественного содержания компонентов на структуру и свойства композитов.

Целью данной работы является изучение влияния состава керамических композитов ZrB₂– SiC–(ZrC/ZrO₂) на их микроструктуру и свойства.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исследования проводились на керамических композитах на основе $ZrB_2-5\%$ SiC с добавками ZrO_2 и ZrC от 5 до 20 об. %. В качестве исходных компонентов для получения керамических композитов использованы промышленные порошки ZrB_2 , 6H-SiC, ZrC и ZrO_2 . Диоксид циркония был стабилизирован 3 мол. % Y_2O_3 и находился в тетрагональной модификации (t- ZrO_2). Все порошки состояли из частиц нерегулярной формы. Средний размер частиц в порошке ZrB_2 составил $\langle d \rangle = 1.65$ мкм ($\langle d_{90} \rangle = 4.14$ мкм), в порошке $ZrC - \langle d \rangle = 2.2$ мкм ($\langle d_{90} \rangle = 5.84$ мкм), в порошке ZrC –

Рис. 1. Дифрактограммы композиционных материалов ZrB_2 -SiC-20 об. % $ZrO_2(1)$ и ZrB_2 -SiC-20 об. % ZrC(2).

 $\langle d \rangle = 1.6$ мкм ($\langle d_{90} \rangle = 3.3$ мкм). Порошок ZrO₂ имел наименьший средний размер частиц $\langle d \rangle = 0.35$ мкм ($\langle d_{90} \rangle = 0.7$ мкм).

Приготовление порошковых смесей с их одновременной активацией проводилось в планетарной мельнице-активаторе типа АГО в среде этанола в течение 3 мин при частоте вращения барабана 1820 об./мин. Образцы керамических композитов получали спеканием порошковых смесей при температуре 1600°С под давлением 30 МПа в течение 15 мин в атмосфере аргона.

Плотность композитов ZrB_2-6H -SiC $-ZrO_2$ и ZrB_2-6H -SiC-ZrC определяли методом гидростатического взвешивания образцов с предварительным закрытием открытой пористости лаком. Теоретическую плотность композитов рассчитывали по правилу смеси.

Фазовый состав композитов анализировали с использованием рентгеновской дифракции на дифрактометре Shimadzu XRD 7000 с Си K_{α} -излучением ($\lambda = 1.5405$ Å).

Твердость композитов определяли на полированной поверхности образцов индентированием пирамиды Виккерса с нагрузкой 98 Н в течение 10 с.

Трещиностойкость рассчитывали из суммарной длины трещин от индентора Виккерса по формуле

 $K_{\rm Ic} = 0.16 H_{\rm I} a^{1/2} \left(\frac{c}{a}\right)^{-3/2}$, где a – половина диагонали отпечатка, c – длина трещин [14].

Модуль упругости керамических композитов рассчитывали из скорости ультразвука в образцах посредством TDS 220, Tektronix (США) и 5800, Panametrics (Корея).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1 приведены рентгеновские дифрактограммы полученных керамических композитов. Согласно результатам анализа, фазовый состав композитов представлен исходными компонентами композитов: ZrB₂, 6H-SiC, ZrO₂ и ZrC. Диоксид циркония в композитах (об. %) $95ZrB_2 - 5SiC - xZrO_2$ находился в модификации *t*-ZrO₂.

Параметры элементарных ячеек компонентов в исследуемых композитах близки к приведенным в картотеке JCPDS: для $ZrB_2 - a = 3.167 \pm \pm 0.002$ Å, $c = 3.531 \pm 0.001$ Å (a = 3.168 Å, c = 3.530 Å, JCPDS, карта № 34-0423), для $ZrC - a = 4.695 \pm \pm 0.002$ Å (a = 4.694 Å, JCPDS, карта № 65-0332), для *t*-ZrO₂ - $a = 3.625 \pm 0.002$ Å, $c = 5.198 \pm 0.001$ Å (a = 3.629 Å, c = 5.197 Å, JCPDS, карта № 89-7710). По причине малой интенсивности дифракционных максимумов карбида кремния на рентгенограммах композитов расчет параметров его ячейки был проведен только в порошке: 6*H*-SiC - a = = 3.072 Å, c = 15.081 Å (a = 3.073 Å, c = 15.080 Å, JCPDS, карта № 29-1131).

На рис. 2 представлены зависимости относительной плотности ротн керамических композитов ZrB_2 –SiC–ZrC от объемного содержания ZrC и композитов ZrB2-SiC-ZrO2 от объемного содержания ZrO₂. Согласно полученным данным, относительная плотность образцов композитов ZrB₂-SiC-ZrO₂ возрастала пропорционально увеличению объемной доли диоксида циркония. Для керамики ZrB₂-5 об. % SiC без добавки диоксида циркония $\rho_{\text{отн}}$ составляла 0.85 ± 0.05, а при содержании 20 об. % $ZrO_2 \rho_{oth} = 0.96 \pm 0.2$. Экстраполяция зависимости $\rho_{\text{отн}}$ от объемного содержания ZrO₂ в композитах на беспористое состояние показала, что плотность композита ZrB₂-SiC-ZrO₂, полученного спеканием под давлением 30 МПа при температуре 1600°С в течение 15 мин, будет близка к его теоретической плотности при содержании в нем более 25 об. % ZrO₂. Диоксид циркония - наиболее легкоплавкий компонент композитов ZrB₂-SiC-ZrO₂, увеличение его объемного содержания приводит к уменьшению температуры плавления смеси ZrB2-SiC-ZrO2 (увеличению гомологической температуры $\alpha = 1600^{\circ} C/t_{\text{пл}}$) и, как следствие, увеличению плотности композитов.

Относительная плотность образцов ZrB_2 -SiC-ZrC превышала таковую для образцов ZrB_2 -5% SiC, но весьма незначительно. Относительная плотность композитов с содержанием ZrC более 5% в среднем составляла 0.88 ± 0.05.

На рис. 3 представлена микроструктура композитов на основе ZrB_2 -SiC с разным содержанием ZrC и ZrO₂. Увеличение объемной доли как ZrC, так и ZrO₂ в композитах сопровождалось увеличением размеров зерен. Средний размер зерен измеряли методом случайных секущих по изображениям микроструктуры композитов [15]. Так, средний размер зерен в керамике ZrB₂-SiC-5% ZrO₂ составил 2.5 мкм, в композите с 15% ZrO₂ – 4.2 мкм. В композите ZrB₂-SiC-ZrC с наименьшим содержанием ZrC средний размер зерна составил 2.57 мкм, а при содержании 15% ZrC - 5.2 мкм.

Величина модуля упругости E, рассчитанная из скорости прохождения ультразвука, для керамики ZrB_2 —SiC составила 373 ± 25 ГПа. При этом модуль упругости композита ZrB_2 —SiC, рассчитанный по правилу аддитивности, был равен 458 ГПа. Разница в величинах модуля упругости, фиксируемого экспериментально и рассчитанного, главным образом связана с наличием в керамике ZrB_2 —SiC остаточной пористости.

Введение ZrC в керамическую матрицу из ZrB₂–SiC не оказало значительного влияния на величину модуля упругости композитов (рис. 4). Для композитов ZrB₂–SiC–ZrO₂ величина модуля упругости возрастала с увеличением объемного содержания оксида циркония. Так, для композита с 5% ZrO₂ $E \approx 387 \pm 5$ ГПа. Поскольку модуль упругости ZrO₂ меньше E ZrB₂ и E SiC, то очевидно, что основной причиной наблюдаемого увеличения модуля упругости композитов ZrB₂–SiC–ZrO₂ связано с уменьшением пористости [16–18].

В табл. 1 приведены данные по твердости H_V и трещиностойкости K_{Ic} исследуемых композитов. Согласно полученным данным, увеличение содержания карбида циркония в композитах ZrB_2 – SiC–ZrC не оказало существенного влияния на их твердость. Так, например, H_V керамики ZrB_2 – SiC составила 12.7 \pm 0.2 ГПа, а твердость композита ZrB_2 –SiC–20% ZrC – 13.5 \pm 0.4 ГПа. В целом, твердость полученных композитов ZrB_2 –SiC–ZrC ниже ожидаемых значений, что связано с наличием остаточной пористости.

Твердость композитов ZrB_2 —SiC— ZrO_2 возрастала с увеличением содержания ZrO_2 . Оксид циркония имеет наименьшую твердость в сравнении другими компонентами композитов — карбидом кремния и боридом циркония, поэтому причиной наблюдаемого увеличения твердости является уплотнение композитов.

Рассчитанная из суммарной длины трещин от отпечатка Виккерса трещиностойкость $K_{\rm lc}$ полученной керамики ZrB₂-5% SiC составила 4.6 ± ± 0.3 МПа м^{1/2}, что сопоставимо с трещиностойко-

Рис. 2. Влияние добавки ZrO_2 и ZrC на относительную плотность композитов ZrB_2 -SiC- ZrO_2 (1) и ZrB_2 -SiC-ZrC (2).

стью композитов с большим содержанием карбида кремния $ZrB_2-20\%$ SiC ($K_{Ic} \approx 4-6$ МПа м^{1/2}) и больше K_{Ic} монолитной керамики ZrB_2 [19–21]. Основным механизмом увеличения трещиностойкости керамических композитов с дисперсными включениями является изменение траектории распространения трещин на межфазных границах [22, 23]. Можно предположить, что высокое значение K_{Ic} для керамики $ZrB_2-5\%$ SiC (с малым содержанием включений карбида кремния) обусловлено присутствием остаточной пористости – поры сдерживают распространение трещин.

Композиты ZrB₂–SiC–ZrC с разным содержанием ZrC весьма слабо отличались величиной K_{lc} . Так, например, трещиностойкость композита с содержанием карбида циркония 5% составила 4.5 ± 0.3 МПа м^{1/2}, а композита с 20% карбида циркония – 4.7 ± 0.3 МПа м^{1/2}.

Композит	<i>Н_И</i> , ГПа	$K_{\mathrm{I}c}$, МПа м ^{1/2}	Композит	<i>Н_И</i> ГПа	$K_{\rm Ic}$, МПа м ^{1/2}
ZrB ₂ –SiC	12.7 ± 0.2	4.6 ± 0.3	ZrB ₂ –SiC	12.7 ± 0.2	4.6 ± 0.3
ZrB ₂ -SiC-5% ZrO ₂	13.4 ± 0.3	3.1 ± 0.3	ZrB ₂ -SiC-5% ZrC	12.5 ± 0.2	4.5 ± 0.3
ZrB ₂ -SiC-10% ZrO ₂	14.2 ± 0.3	4.5 ± 0.4	ZrB ₂ -SiC-10% ZrC	12.8 ± 0.3	4.3 ± 0.3
ZrB ₂ -SiC-15% ZrO ₂	14 ± 0.4	5.8 ± 0.3	ZrB ₂ -SiC-15% ZrC	13 ± 0.4	4.1 ± 0.2
ZrB ₂ -SiC-20% ZrO ₂	14.3 ± 0.4	7.3 ± 0.4	ZrB ₂ -SiC-20% ZrC	13.5 ± 0.4	4.1 ± 0.3

2020

Таблица 1. Твердость H_V и трещиностойкость K_{Lc} композитов ZrB_2 -SiC-ZrO₂ и ZrB_2 -SiC-ZrC

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 56 № 5

Рис. 3. Микроструктура композитов ZrB₂–SiC–5% ZrO₂ (a), ZrB₂–SiC–15% ZrO₂ (б), ZrB₂–SiC–5% ZrC (в), ZrB₂–SiC–15% ZrC (г).

Для композитов ZrB₂–SiC–ZrO₂ увеличение содержания оксида циркония привело к увеличению K_{lc} , так, например, для композита с 20% ZrO₂ трещиностойкость составила 7.3 ± 0.4 МПа м^{1/2}. При меньшей пористости эти композиты имели бо́льшую трещиностойкость. Для композитов с дисперсными включениями диоксида циркония в тетрагональной модификации, испытывающей мартенситное превращение под действием механической нагрузки, увеличение трещиностойкости помимо отклонения трещин на межфазных границах возможно еще и за счет диссипации энергии трещин на тетрагонально-моноклинное превращение в частицах *t*-ZrO₂ [24–26].

ЗАКЛЮЧЕНИЕ

Показано, что добавка ZrC в керамическом композите $ZrB_2-5\%$ SiC, получаемом спеканием под давлением при температуре 1600°C, не привела к заметному увеличению плотности и не оказала значительного влияния на свойства. Добавка ZrO_2 , напротив, способствовала увеличению плотности керамических композитов на основе

Рис. 4. Влияние добавки ZrO_2 и ZrC на *E* композитов ZrB_2 –SiC– ZrO_2 (*1*) и ZrB_2 –SiC–ZrC (*2*).

ZrB₂-5% SiC, возрастанию твердости и трещиностойкости. Так, например, $K_{\rm lc}$ керамики ZrB₂-SiC составил 4.6 ± 0.3 МПа м^{1/2}, а для композита с 20% ZrO₂ - 7.3 ± 0.4 МПа м^{1/2}.

БЛАГОДАРНОСТЬ

Работа проводилась в соответствии с Программой фундаментальных научных исследований Государственных академий наук на 2013—2020 годы (программа III.23.2.3) и в рамках проекта ВИУ НОИЦ НМНТ — 223/2018.

СПИСОК ЛИТЕРАТУРЫ

- Rangaraj L. et al. Processing of Refractory Metal Borides, Carbides and Nitrides // Key Eng. Mater. 2009. V. 395. P. 69–88. https://doi.org10.4028/www.scientific.net/KEM.395.69
- Monteverde F. Ultra-High Temperature HfB₂-SiC Ceramics Consolidated by Hot-Pressing and Spark Plasma Sintering // J. Alloys Compd. 2007. V. 428. № 1-2. P. 197-205. https://doi.org/10.1016/j.jallcom.2006.01.107
 - https://doi.org/10.1010/j.jancom.2000.01.10/
- Zimmermann J.W., Hilmas G.E., Fahrenholtz W.G., Monteverde F., Bellosi A. Fabrication and Properties of Reactively Hot Pressed ZrB₂-SiC Ceramics // J. Eur. Ceram. Soc. 2007. V. 27. № 7. P. 2729–2736. https://doi.org/10.1016/j.jeurceramsoc.2006.11.074
- Squire T.H., Marschall J. Material Property Requirements for Analysis and Design of UHTC Components in Hypersonic Applications // J. Eur. Ceram. Soc. 2010. V. 30. P. 2239–2251. https://doi.org/10.1016/j.jeurceramsoc.2010.01.026

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 56 № 5

- Fahrenholtz W.G., Hilmas G.E., Chamberlain A.L., Zimmermann J.W., Fahrenholtz B. Processing and Characterization of ZrB₂ Based Ultra-High Temperature Monolithic and Fibrous Monolithic Ceramics // J. Mater. Sci. 2004. V. 39. P. 5951–5957.
- Melendez J.J., Dominguez-Rodriguez A., Monteverde F., Melandri C., Portu G. Characterisation and High Temperature Mechanical Properties of Zirconium Boride-Based Materials // J. Eur. Ceram. Soc. 2002. V. 22. P. 2543–2549.

https://doi.org/10.1016/S0955-2219(02)00114-0

- Kalish D., Clougherty E.V., Kreder K. Strength, Fracture Mode and Thermal Stress Resistance of HfB₂ and ZrB₂// J. Am. Ceram. Soc. 1969. V. 52. P. 30–36. https://doi.org/10.1111/j.1151-2916.1969.tb12655.x
- Buyakov A.S., Kulkov S.N. Porous Ceramic Composite ZrO₂(MgO)–MgO for Osteoimplantology // IOP Conf. Ser.: Mater. Sci. Eng. 2017. V. 175. P. 012025. https://doi.org/10.1088/1757-899X/175/1/012025
- Fahrenholtz W.G., Hilmas G.E., Talmy I.G., Zaykoski J.A. Refractory Diborides of Zirconium and Hafnium // J. Am. Ceram. Soc. 2007. V. 90. P. 1347–1364. https://doi.org/10.1111/j.1551-2916.2007.01583.x
- Guo S.Q. Densification of ZrB₂-Based Composites and Their Mechanical and Physical Properties: A Review // J. Eur. Ceram. Soc. 2009. V. 29. P. 995–1011. https://doi.org/10.1016/j.jeurceramsoc.2008.11.008
- Zhang S.C., Hilmas G.E., Fahrenholtz W.G. Mechanical Properties of Sintered ZrB₂-SiC Ceramics // J. Eur. Ceram. Soc. 2011. V. 31. P. 893–901. https://doi.org/10.1016/j.jeurceramsoc.2010.11.013
- Guo W.M., Yang Z.G., Zhang G.J. Comparison of ZrB₂-SiC Ceramics with Yb₂O₃ Additive Prepared by Hot Pressing and Spark Plasma Sintering // Int. J. Refract. Met. Hard Mater. 2011. V. 29. P. 452–455. https://doi.org/10.1016/j.ijrmhm.2011.02.001
- Zhou P., Hu P., Zhang X., Han W. Laminated ZrB₂–SiC Ceramic with Improved Strength and Toughness // Scr. Mater. 2011. V. 64. P. 276–279. https://doi.org/10.1016/j.scriptamat.2010.10.005
- Evans A.G., Charles E.A. Fracture Toughness Determination by Indentation // J. Am. Ceram. Soc. 1976. V. 59. P. 371–372. https://doi.org/10.1111/j.1151-2916.1976.tb10991.x
- 15. *Салтыков С.А.* Стереометрическая металлография. М.: Металлургия, 1976. 271 с.
- *Zhang G.-J., Deng Zh.-Y., Kondo N., Yang J.-F., Ohji T.* Reactive Hot Pressing of ZrB₂–SiC Composites // J. Am. Ceram. Soc. 2000. V. 83. № 9. P. 2330–2332. https://doi.org/10.1111/j.1151-2916.2000.tb01558.x
- Zhu T., Li W., Zhang X., Hu P., Hong Ch., Weng L. Damage Tolerance and R-Curve Behavior of ZrB₂-ZrO₂ Composites // Mater. Sci. Eng., A. 2009. V. 516. P. 297-301.

https://doi.org/10.1016/j.msea.2009.03.023

2020

 Hussainova I., Voltšihhin N., Cura E., Hannula S.-P. Densification and Characterization of Spark Plasma Sintered ZrC–ZrO₂ Composites // Mater. Sci. Eng., A. 2014. V. 597. P. 75–81. https://doi.org/10.1016/j.msea.2013.12.058

- Zamora V, Ortiz A.L., Guiberteau F, Nygren M. In Situ Formation of ZrB₂–ZrO₂ Ultra-High-Temperature Ceramic Composites from High-Energy Ball-Milled ZrB₂ Powders // J. Alloys Compd. 2012. V. 518. P. 38–43. https://doi.org/10.1016/j.jallcom.2011.12.102
- Li W., Zhang X., Hong Ch., Han W., Han J. Preparation, Microstructure and Mechanical Properties of ZrB₂-ZrO₂ ceramics // J. Eur. Ceram. Soc. 2009. V. 29. P. 779–786. https://doi.org/10.1016/j.jeurceramsoc.2008.06.033
- Zhang X., Li W., Hong C., Han W. Microstructure and Mechanical Properties of ZrB₂-Based Composites Reinforced and Toughened by Zirconia // Int. J. Appl. Ceram. Tech. 2008. V. 5. № 5. P. 499–504. https://doi.org/10.1111/j.1744-7402.2008.02199.x

- 22. *Faber K.T., Evans A.G.* Crack Deflection Process-1, Theory // Acta Metall. 1983. V. 31. № 4. P. 565–76. https://doi.org/10.1016/0001-6160(83)90046-9
- 23. *Faber K.T., Evans A.G.* Crack Deflection Process II, Experiment // Acta Metall. 1983. V. 31. № 4. P. 577–584. https://doi.org/10.1016/0001-6160(83)90047-0
- 24. Porter D.L., Evans A.G., Heuer A.H. Transformation-Toughening in Partially-Stabilized Zirconia (PSZ) // Acta Metall. 1979. V. 27. № 10. P. 1649–1654. https://doi.org/10.1016/0001-6160(79)90046-4
- Loganathan A., Gandhi A.S. Effect of Phase Transformations on the Fracture Toughness of Yttria Stabilized Zirconia // Mater. Sci. Eng., A. 2012. V. 556. P. 927–935. https://doi.org/10.1016/j.msea.2012.07.095
- Mamivand M., Zaeem A.M., Kadiri E.H. Phase Field Modeling of Stress-Induced Tetragonal-to-Monoclinic Transformation in Zirconia and Its Effect on Transformation Toughening // Acta Metall. 2014. V. 64. P. 208–219.

https://doi.org/10.1016/j.actamat.2013.10.031