УДК 66.081:546.36'42:661.365.5:546.821

ИЗВЛЕЧЕНИЕ КАТИОНОВ ЦЕЗИЯ И СТРОНЦИЯ ИЗ РАСТВОРОВ ИОНИТАМИ НА ОСНОВЕ ФОСФАТОВ ТИТАНА(IV)

© 2020 г. Р. И. Корнейков^{1, *}, В. И. Иваненко¹

¹Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева — обособленное подразделение "Кольский научный центр Российской академии наук", Академгородок, 26a, Апатиты, Мурманской обл., 184209 Россия

> *e-mail: korneikov@chemy.kolasc.net.ru Поступила в редакцию 08.04.2019 г. После доработки 22.10.2019 г. Принята к публикации 20.11.2019 г.

Показана возможность эффективного применения сорбционных материалов на основе гидрофосфатов оксотитана(IV) при извлечении радионуклидов цезия и стронция из жидких радиоактивных отходов, близких по химическому составу к морской воде. Определены оптимальные условия совместного извлечения катионов цезия и стронция (значение pH, отношение жидкой и твердой фаз, температура). Двойной фосфат титана(IV) и сорбированного компонента, формирующийся после термической обработки отработанного сорбента, обеспечивает надежную иммобилизацию радионуклидов.

Ключевые слова: радионуклиды, цезий, стронций, сорбенты, гидрофосфат оксотитана(IV) DOI: 10.31857/S0002337X20050085

введение

В процессе эксплуатации атомных энергетических установок гражданских и военных судов образуются высокосолевые жидкие радиоактивные отходы (ЖРО), близкие по химическому составу к морской воде с общим солесодержанием до 30 г/л [1]. Основной вклад в активность ЖРО вносят радионуклиды ^{134, 137}Сs и ⁹⁰Sr [1-4]. Для дезактивации таких растворов перспективны сорбционные методы [5, 6]. Сорбенты должны обладать высокими ионообменными характеристиками и обеспечивать надежную иммобилизацию сорбированных компонентов. Используемые для дезактивации ЖРО иониты на основе феррацианидов переходных металлов и иониты на основе диоксида марганца(III, IV) не способны к коллективному извлечению ^{134, 137}Сѕ и ⁹⁰Sr, поскольку избирательны только к радионуклидам цезия и стронция соответственно [7]. Более того, эти иониты не обеспечивают надежную иммобилизацию радиоактивного материала при хранении, что может способствовать возникновению чрезвычайных ситуаций. Таким образом, используемые в технологических процессах сорбенты не в полной мере отвечают предъявляемым к ним требованиям, что делает актуальным поиск новых высокоэффективных ионообменных материалов.

Среди ионообменников интерес представляют неорганические материалы на основе соедине-

ний титана(IV) [8–12], и прежде всего гидрофосфаты оксотитана(IV) с мольным соотношением P: Ti(IV) \leq 1, которые способны извлекать радионуклиды из высокосолевых растворов, обеспечивать компактность, надежную иммобилизацию и безопасность при длительном хранении. Однако условия эффективного применения этих ионитов изучены недостаточно. Целью данной работы является поиск условий эффективного сорбционного извлечения микроколичеств катионов цезия и стронция из высокосолевых растворов ионообменными матрицами на основе фосфатов титана(IV).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез сорбентов на основе оксогидроксофосфатов титана(IV) осуществляли в соответствии с разработанной авторами методикой [13] из титансодержащих сернокислотных растворов (титановый прекурсор) непосредственным осаждением гидратированной фосфатотитановой матрицы ортофосфорной кислотой. Дальнейшая отмывка осадка водой от маточного электролита и сушка приводили к получению целевого продукта (рис. 1).

Содержание фосфора в синтезированных сорбентах анализировали фотоколориметрически с молибдатом аммония (фотоэлектроколориметр

Рис. 1. Принципиальная схема получения гидратированного гидрофосфата оксотитана(IV) осаждением ортофосфорной кислотой из титанового прекурсора.

Leki-1107), содержание титана определяли атомно-абсорбционным и фотоколориметрическим (с пероксидом водорода) методами. Содержание воды, гидроксо- и гидрофосфатных групп устанавливали сопоставлением результатов химического, дифференциального термического и термогравиметрического анализов. Удельную поверхность воздушно-сухого исходного сорбента, средний диаметр и объем пор определяли методом термической десорбции азота на электронном измерителе удельной поверхности TriStar II 3020 фирмы Micrometritics. Распределение по размерам частиц находили методом лазерной дифракции на анализаторе SALD-201 фирмы Shimadzu. Содержание сорбированных катионов металлов определяли методом пламенной фотометрии и атомно-абсорбционным методом (прибор AAS-30 фирмы Karl Zeiss). При химическом анализе использовали масс-спектрометрическую систему с индуктивно-связанной плазмой (ИСП-МС) с динамической реакционной системой ELAN 9000 DRC-е фирмы Perkin Elmer, а также плазменный эмиссионный спектрометр ICPS-9000 фирмы Shimadzu. Для дифференциального термического анализа твердых фаз использовали низкочастотный термографический регистратор HTP-70 с программным нагревательным устройством ПРТ-1000М. Эталоном служил прокаленный Al₂O₃. Термогравиметрический анализ проводили с помощью тензорных весов BT-1000. Температуру измеряли платина-платинородиевыми термопарами в комплекте с потенциометром ПП-63. Скорость нагрева составляла 10°С/мин.

Процесс гетерогенного катионного замещения на синтезированных сорбентах проводили в статических условиях при различных равновесных значениях pH, температуре, отношении жидкой и твердой фаз (Ж : Т) в соответствии с уравнением

$$RH + 1/zM^{z+} \leftrightarrow H^{+} + 1/zMR_{z}, \qquad (1)$$

где R – гидратированная матрица сорбента, H^+ – протоны функциональных групп, замещаемые катионом сорбируемого металла M^{z+} . В качестве равновесных значений рН принимали стационарные во времени значения, полученные с использованием иономера И-130.2М.1 с точностью ±0.02. Индикаторным электродом служил селективный по отношению к ионам водорода электрод марки ЭСЛ-43-07, вспомогательным – хлорсеребряный электрод Аg/AgCl марки ЭВЛ-1МЗ. Коэффициенты распределения (K_d) рассчитывали по уравнению

$$K_d = A\alpha/(100 - A), \tag{2}$$

где *A* — процентное содержание сорбированного катиона металла, α — отношение объема жидкой фазы к массе сорбента.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Синтезированные сорбенты на основе оксогидроксофосфатов титана(IV) имеют состав $TiO_{2-x-y}(OH)_{2y}(HPO_4)_x \cdot nH_2O$ ($x = 0.3-1.0, y = 0-0.5, n = 1.3-6.3, P: Ti(IV) \le 1$) и содержат конституционную воду в виде гидрофосфатных и гидроксогрупп, а также координационную в виде аква-лигандов. Воздушно-сухие сорбенты являются рентгеноаморфными [14].

В работе изучены процессы сорбции катионов Cs^+ и Sr^{2+} при их совместном присутствии на сорбенте состава TiOHPO₄ · 2.72H₂O при различных условиях (температура, отношение жидкой и твердой фаз) (табл. 1). Сорбционный материал предварительно подвергали ситованию через сито с размером ячейки 0.04 мм. Удельная поверхность образца S_{va} составила 65.58 м²/г, средний диаметр *d* и

							. ,
Условия		Остаточное содержание, мг/л		Извлечение, %		<i>K_d</i> , мл/г	
Ж:Т	t, °C	Cs ⁺	Sr ²⁺	Cs ⁺	Sr ²⁺	Cs ⁺	Sr ²⁺
100	20	0.163	7.03	85	54	575	117
100	70	0.134	5.25	88	66	733	194

Таблица 1. Сорбционное извлечение Cs⁺ и Sr²⁺ образцом состава TiOHPO₄ · 2.72H₂O в зависимости от температуры и отношения фаз Ж : Т из раствора состава (г/л): NaCl – 30, Cs⁺ – 1.1×10^{-3} , Sr²⁺ – 15.3×10^{-3} (pH сорбции 4.2)

Таблица 2. Коэффициенты распределения Cs^+ и Sr^{2+} на образце состава TiOHPO₄ · 2.72H₂O в зависимости от pH сорбции ($t = 20^{\circ}C$, K : T = 100) из раствора состава (г/л): NaCl – 30, $Cs^+ – 1.1 \times 10^{-3}$, $Sr^{2+} – 15.3 \times 10^{-3}$

4.22

95

72

Катион	<i>K_d</i> , мл/г							
	2	4	5	6	8			
Cs ⁺	2800	575	530	125	104			
Sr ²⁺	31	118	840	2400	49250			

объем *V* пор – 22.59 нм и 0.44 см³/г соответственно. Диапазон среднего размера частиц сорбента – от 2 до 11 мкм.

0.055

20

При введении сорбентов в раствор (исходное значение pH раствора ~6), содержащий катионы Cs^+ и Sr^{2+} , происходит понижение pH до ~2 вследствие ионного обмена. Равновесное значение pH раствора (4.2) получали введением соды (Na₂CO₃).

Из табл. 1 видно, что повышение температуры при сорбции катионов металлов до 70°С практически не влияет на степень извлечения цезия и стронция. По-видимому, это связано с несущественным изменением эффективного радиуса катионов металлов вследствие их дегидратации. Уменьшение отношения фаз Ж : Т от 100 до 50 также не приводит к существенному повышению эффективности сорбции катионов металлов.

В работе проведены исследования по извлечению катионов металлов в зависимости от pH раствора (рис. 2 и табл. 2).

Видно, что при рН 2 эффективно извлекаются катионы цезия, в то время как катионы стронция практически не сорбируются. По-видимому, это связано с конкуренцией со стороны протонов, которая выше в этой области рН по отношению к более гидратированным катионам металлов (Sr^{2+}). При повышении рН раствора до 8 извлечение цезия понижается, а стронция существенно возрастает. Возможно, это связано, с одной стороны, с отсутствием конкуренции со стороны ионов водорода, с другой – с усилением подвижности протонов ионообменных групп сорбента. В результате повышается степень извлечения более гидратированных катионов металлов. В работе проведены исследования постадийного сорбционного извлечения цезия и стронция при разных равновесных значениях pH (табл. 3).

950

129

Из анализа полученных данных следует, что последовательное извлечение цезия и стронция фосфатом титана(IV) при pH 2 и 8 приводит к практически полному выделению катионов Cs⁺ и Sr²⁺. Однако для более глубокой очистки раствора необходимо проведение трех стадий при $t = 20^{\circ}$ C:

стадия 1 — сорбция катионов Cs⁺ при отношении \mathbb{X} : T = 100, pH 2, $K_d = 2.8 \times 10^3 \text{ мл/г}$;

стадия 2 — дополнительное извлечение катионов Cs⁺ при Ж : T = 300, pH 2, $K_d = 2.5 \times 10^3$ мл/г;

Рис. 2. Зависимости степени извлечения катионов металлов от значения pH сорбции ($X : T = 100, t = 20^{\circ}$ С) на сорбенте состава TiOHPO₄ · 2.72H₂O: *1* – катионы Cs⁺, *2* – катионы Sr²⁺.

50

Столия	рН	Извлеч	ение, %	Содержание в растворе, мг/л		
Стадия		Cs ⁺	Sr^{2+}	Cs ⁺	Sr ²⁺	
1	2	97	24	0.037	11.63	
2	8	57	99	0.016	0.055	
		99*	~100*			

Таблица 3. Постадийное извлечение Cs⁺ и Sr²⁺ образцом состава TiOHPO₄ · 2.72H₂O из раствора состава (г/л): NaCl – 30, Cs⁺ – 1.1×10^{-3} , Sr²⁺ – 15.3×10^{-3}

* Общее извлечение.

Таблица 4. Сорбция Cs⁺ и Sr²⁺ сорбентом состава TiOHPO₄ · 2.72H₂O в зависимости от pH (\mathbb{X} : T = 100, t = 20°C) из раствора состава (г/л): Na⁺ – 10.7, Cl⁻ – 19.35, K⁺ – 0.42, Ca²⁺ – 0.41, Mg²⁺ – 1.35, Cs⁺ – 0.85 × 10⁻³, Sr²⁺ – 10 × 10⁻³

рН сорбции	Остаточное содержание, мг/л		Извлеч	ение, %	K_d , мл/г	
	Cs ⁺	Sr ²⁺	Cs ⁺	Sr ²⁺	Cs ⁺	Sr ²⁺
2	0.10	9.80	88	—	750	—
5	0.21	2.29	75	77	300	340
8	0.41	0.27	52	97.3	107	3600

стадия 3 — извлечение катионов Sr²⁺ при Ж : T = = 100, pH 8, $K_d = 1.9 \times 10^4$ мл/г.

Недостатком такого режима является извлечение катионов металлов при разных условиях – равновесных значениях pH. Оптимальное значение pH раствора, при котором происходит достаточно высокое одновременное извлечение катионов Cs⁺ и Sr²⁺ (~85%), составляет 5 при Ж : T = 100 и t = 20°C (рис. 2). Значения K_d для катионов Cs⁺ и Sr²⁺ при этих условиях равны 530 и 840 мл/г соответственно.

Термическая обработка в интервале от 600 до 650°С насыщенных сорбированными катионами металлов образцов приводит к образованию соединений с кристаллической структурой минералоподобного типа, которые обеспечивают надежную иммобилизацию и безопасность при длительном хранении высокотоксичного сорбата [14].

В работе проведены исследования по сорбционному извлечению катионов Cs^+ и Sr^{2+} из модельного раствора, соответствующего составу

Таблица 5. Состав сорбентов после сорбции из раствора, соответствующего составу морской воды (исходный состав: $TiO_2 - 36.9$, $P_2O_5 - 35.8$, $H_2O - 27.3\%$)

рН сорбшии	Состав отработанных сорбентов, %						
рпсороции	TiO ₂	P_2O_5	H ₂ O	Na ₂ O	M_xO^*		
2	36.6	36.2	22.6	2.1	2.5		
8	33.4	32.7	17.6	7.8	8.5		

* Сумма оксидов K₂O, Cs₂O, CaO, MgO, SrO.

морской воды [15], при различных pH (табл. 4). В табл. 5 представлены результаты анализа химического состава сорбента TiOHPO₄ · 2.72H₂O после сорбции катионов металлов из модельного раствора.

Из табл. 4 видно, что в присутствии катионов металлов с близкими размерами ионного радиуса, способных конкурировать при сорбции, извлечение катионов цезия и стронция снижается по сравнению с результатами исследований по сорбции из трехкомпонентного раствора (рис. 2, табл. 2). В кислой области хорошо извлекается цезий, в слабощелочной — стронций. При рН 8 происходит незначительная деструкция сорбента в результате гидролиза по уравнению

$$TiOHPO_4 + 2H_2O \Leftrightarrow TiO(OH)_2 + H_3PO_4.$$
 (3)

Протоны образованных гидроксильных групп также могут принимать участие в ионообменном процессе при сорбции катионов металлов.

Из табл. 5 видно, что при повышении pH сорбции с 2 до 8 происходит увеличение содержания в твердой фазе более гидратированных катионов металлов. Вероятно, это также связано с отсутствием конкуренции со стороны ионов водорода в растворе и усилением подвижности протонов ионогенных групп сорбента. В результате наблюдается снижение степени селективности матрицы по отношению к менее гидратированным катионам металлов.

Оптимальным значением pH при совместном извлечении Cs^+ и Sr^{2+} из модельного раствора, близкого по химическому составу к морской воде, как и в предыдущих экспериментах, является pH 5 (извлечение составляет ~80%). Проведение последующих двух стадий доочистки обеспечит полное извлечение катионов цезия и стронция из раствора.

Экспериментально полученные результаты свидетельствуют о высокой эффективности применения аморфных фосфатотитановых ионитов при совместном извлечении катионов цезия и стронция из сложных многокомпонентных растворов, в отличие от матриц на основе феррацианидов переходных металлов и на основе диоксида марганца(III, IV), не способных к групповой сорбции указанных катионов металлов.

Использование фосфатотитановых сорбентов, модифицированных цирконием или ниобием, будет способствовать повышению эффективности извлечения катионов высокотоксичных металлов из многокомпонентных систем.

ЗАКЛЮЧЕНИЕ

Таким образом, показана перспективность использования сорбентов на основе оксогидроксофосфатов титана(IV) для извлечения ^{134, 137}Сs и ⁹⁰Sr из высокосолевых растворов, близких по составу к морской воде. Определены оптимальные условия использования фосфатотитановых матриц (pH 5, $X:T = 100, t = 20^{\circ}$ С), которые обеспечивают эффективное совместное извлечение радионуклидов цезия и стронция в присутствии высоких концентраций фоновых компонентов. Термическая обработка насыщенного радионуклидами отработанного оксогидроксофосфата титана(IV) обеспечивает надежную иммобилизацию радиоактивного сорбата и безопасность при хранении в течение длительного времени.

БЛАГОДАРНОСТЬ

Исследования выполнены при финансовой поддержке Российского научного фонда (РНФ) в рамках научного проекта № 17-19-01522.

СПИСОК ЛИТЕРАТУРЫ

- Вишняков Ю.М., Малышев С.П., Пчелинцев В.М., Хорошев В.Г. Малогабаритная станция комплексной переработки жидких радиоактивных отходов // Судостроение. 1999. № 3. С. 44–48.
- Рябчиков Б.Е. Очистка жидких радиоактивных отходов. М.: ДеЛи принт, 2008. 516 с.
- Abdel-Karima A.M., Zaki A.A., Elwana W., El-Naggar M.R., Gouda M.M. Experimental and Modeling Investigations of Cesium and Strontium Adsorption onto Clay of Radioactive Waste Disposal // Appl. Clay Sci. 2016. № 132–133. P. 391–401. https://doi.org/10.1016/j.clay.2016.07.005

- Mansy M.S., Hassana R.S., Selim Y.T., Kenawy S.H. Evaluation of Synthetic Aluminum Silicate Modified by Magnesia for the Removal of ¹³⁷Cs, ⁶⁰Co and ^{152 + 154}Eu from Low-Level Radioactive Waste // Appl. Radiat. Isot. 2017. № 130. P. 198–205. https://doi.org/10.1016/j.apradiso.2017.09.042
- 5. *Ярославцев А.Б.* Ионный обмен на неорганических сорбентах // Успехи химии. 1997. Т. 66. № 7. С. 641–660.
- 6. Локшин Э.П., Иваненко В.И., Удалова И.А., Калинников В.Т. Физико-химическое обоснование использования TiOHPO₄ для очистки жидких радиоактивных отходов // Радиохимия. 2003. Т. 45. № 4. С. 357–361.
- 7. Милютин В.В., Некрасова Н.А., Коэлитин Е.А. Селективные неорганические сорбенты в современной прикладной радиохимии // Тр. Кольского науч. центра. Спецвыпуск отделения "Химия и материаловедение". 2015. № 5. С. 418–421.
- Elghniji K., Saad M.E.K., Araissi M., Elaloui E., Moussaoui Y. Chemical Modification of TiO₂ by H₂PO₄⁻/HPO₄²⁻ Anions Using the Sol-Gel Route with Controlled Precipitation and Hydrolysis: Enhancing Thermal Stability // Mater. Sci.-Poland. 2014. V. 32. № 4. P. 617–625. https://doi.org/10.2478/s13536-014-0237-6
- Ortiz-Oliveros H.B., Flores-Espinosa R.M., Ordonez-Regil E., Fernandez-Valverde S.M. Synthesis of α-Ti(HPO₄)₂ · H₂O and Sorption of Eu(III) // Chem. Eng. J. 2014. V. 236. P. 398–405. https://doi.org/10.1016/j.cej.2013.09.103
- Garci'a-Glez J., Trobajo C., Khainakov S.A., Amghouz Z. α-Titanium Phosphate Intercalated with Propylamine: an Alternative Pathway for Efficient Europium(III) Uptake into Layered Tetravalent Metal Phosphates // Arabian J. Chem. 2017. № 10. P. 885–894. https://doi.org/10.1016/j.arabjc.2016.07.013
- Baig U., Khan Rao R.A., Khan A.A., Sanagi M.M., Gondal M.A. Removal of Carcinogenic Hexavalent Chromium from Aqueous Solutions Using Newly Synthesized and Characterized Polypyrrole – Titanium(IV) Phosphate Nanocomposite // Chem. Eng. J. 2015. V. 280. P. 494–504. https://doi.org/10.1016/j.cej.2015.06.031
- Trublet M., Maslova M.V., Rusanova D., Antzutkin O.N. Mild Syntheses and Surface Characterization of Amorphous TiO(OH)(H₂PO₄) · H₂O Ion-Exchanger // Mater. Chem. Phys. 2016. V. 183. P. 467–475. https://doi.org/10.1016/j.matchemphys.2016.09.002
- Иваненко В.И., Локшин Э.П., Авсарагов Х.Б., Мельник Н.А., Калинников В.Т. Способ получения сорбента на основе фосфата титана: Патент РФ № 2246985, опубл. 27.02.2005, Бюл. № 6.
- 14. Иваненко В.И., Корнейков Р.И., Локшин Э.П. Иммобилизация катионов металлов титанофосфатными сорбентами // Радиохимия. 2016. Т. 58. № 2 С. 140–146.
- 15. Хорн Р. Морская химия (структура воды и химия гидросферы). М.: Мир, 1972. 400 с.