УЛК 539.21

АКТИВИРУЕМЫЕ БЫСТРОЙ ФОТОННОЙ ОБРАБОТКОЙ СТРУКТУРНЫЕ ПРЕВРАЩЕНИЯ В ФОЛЬГЕ ТВЕРДОГО РАСТВОРА СИСТЕМЫ Pd—Cu

© 2020 г. В. М. Иевлев^{1, 2, *}, А. И. Донцов^{2, 3}, А. С. Прижимов^{2, 3}, О. В. Сербин³, Н. Р. Рошан², С. В. Горбунов², Д. А. Синецкая^{2, 3}, К. А. Солнцев^{1, 2}

¹Московский государственный университет им. М.В. Ломоносова, Ленинские горы, 1, Москва, 119991 Россия ²Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук, Ленинский пр., 49, Москва, 119991 Россия

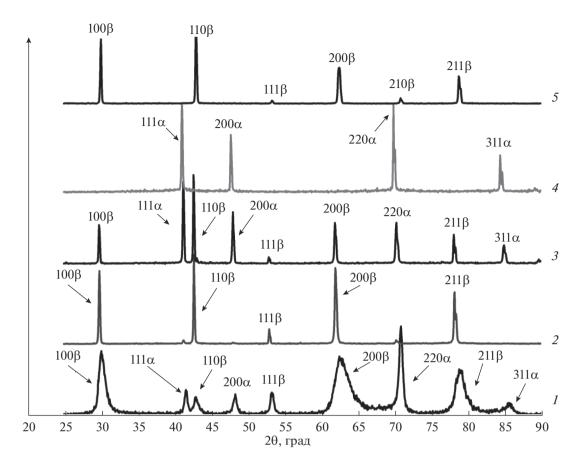
³Воронежский государственный университет, Университетская пл., 1, Воронеж, 394018 Россия *e-mail: rnileme@mail.ru

> Поступила в редакцию 28.09.2019 г. После доработки 25.11.2019 г. Принята к публикации 06.12.2019 г.

Методами рентгеновской дифрактометрии, измерения электросопротивления в циклах термическое нагревание-охлаждение или быстрая фотонная обработка (ФО) излучением мощных импульсных ксеноновых ламп-охлаждение исследованы $\beta \rightleftharpoons \alpha$ -превращения в полученной прокаткой фольге твердого раствора Pd-52 ат. % Си. Установлено, что полное упорядочение исходной (после прокатки) двухфазной ($\alpha + \beta$) фольги происходит в первом цикле нагревание—охлаждение в последовательности $(\alpha + \beta) \to \beta \to \alpha \to \beta$, во втором и последующих $-\beta \to \alpha \to \beta$. При критической для заданной толщины фольги с упорядоченной структурой дозе энергии излучения, поступающей на ее поверхность, происходит необратимое $\beta \to \alpha$ -превращение, скорость которого на три порядка величины может превышать характерную для процесса разупорядочения в варианте резистивного нагревания. После ΦO обратимость $\beta \rightleftharpoons \alpha$ -превращений, свойственная исходной упорядоченной структуре, реализуется во втором цикле: нагревание до 700°C—охлаждение; в первом цикле последовательность $\alpha \to \beta \to \alpha \to \beta$, во втором и последующем циклах $-\beta \to \alpha \to \beta$. Вследствие локализации излучения в скин-слое и конечной величины теплопроводности возможно создание структуры с градиентом фазового состава при длительности излучения меньше критической. Сохранение до 300°C стабилизированной ФО α-фазы дает возможность сопоставления механических свойств фольги одного и того же элементного состава с упорядоченной и неупорядоченной структурами.

Ключевые слова: твердый раствор Pd-52 ат. % Cu, тонкая фольга, фотонная обработка, упорядочение, разупорядочение, рентгеновская дифрактометрия, электросопротивление, наноиндентирование

DOI: 10.31857/S0002337X20060068


ВВЕДЕНИЕ

Особенность быстрой фотонной обработки (ФО) — большая скорость ввода энергии в образец, что проявляется в ускорении твердофазного синтеза и структурных превращений [1]. Особенность ФО металлических материалов — локализация электромагнитного излучения в скин-слое, толщина которого равна длине волны. В частности, в сплошном спектре излучения мощных импульсных ксеноновых ламп (0.2—1.0 мкм) наибольшая энергия приходится на интервал 0.2—0.3 мкм [2]. Эффект фотонов с энергией до 5 эВ проявляется в ускорении процессов твердофазного синтеза простых и сложных оксидов в 200—400 раз [3, 4]. ФО широко используется в процессах создания

устройств твердотельной электроники взамен традиционной термической обработки [5–7].

Большая скорость ввода энергии и ее локализация в скин-слое металлической фольги позволяют предполагать возможность модификации структуры и субструктуры.

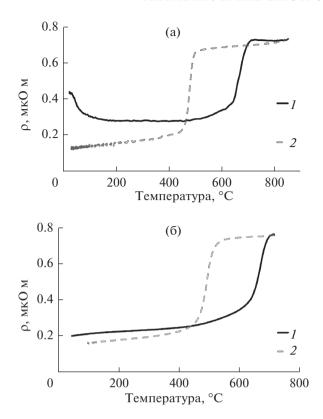
Поскольку в процессе прокатки сплава (основной способ получения тонкой мембранной фольги для глубокой очистки водорода) формируются высокодисперсная субструктура и характерная текстура прокатки, целесообразна оценка эффекта последующей ФО в структурных изменениях фольги из твердых растворов на основе палладия. Обоснование выбора состава следующее. Для фольги твердого раствора системы Pd—Си (с небольшим отклонением от эквиатомного

Рис. 1. Рентгеновские дифрактограммы исходного образца (1), после нагревания *in situ* до 450 (2), 550 (3) и 850° С (4) и после охлаждения до 30° С (5).

состава в сторону увеличения) характерна обратимость процессов разупорядочения (α-фаза, ГЦК-решетка) и упорядочения (β-фаза, кристаллическая решетка типа CsCl) [8] в цикле нагревание—охлаждение. Для β-фазы (область существования до 598°С) характерна меньшая величина энергия активации диффузии водорода в сравнении с α-фазой [9] и другими твердыми растворами на основе Рd для изготовления мембран, в ней не происходит гидридизации и, соответственно, дилатации. Более того, в среде водорода область существования β-фазы расширяется до 850°С [10—12]. В обосновании выбора твердого раствора имеет значение и экономический аспект.

Цель настоящей работы — оценить эффект ΦO в цикле $\beta \rightleftharpoons \alpha$ -превращений в фольге твердого раствора Pd-52 ат. % Cu.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ


Образцы фольги твердого раствора Pd—52 ат. % Си толщиной 20 мкм получены методом холодной прокатки. Для уменьшения наклепа образцы нагревали до 850°С. Структурные изменения в результате ФО исследовали методом рентгенов-

ской дифрактометрии¹ (РД, ARL XTRA с высокотемпературной приставкой Anton Paar HTK-1200 N). В циклах ФО или термическое (резистивное) нагревание—последующее охлаждение регистрировали изменение удельного электросопротивления. Это позволяло выявить стадии и оценить скорость превращения. ФО проводили на установке УОЛП-1: длительность (τ) обработки поверхности фольги — 0.6, 0.7, 0.8 и 1 с, что соответствует интервалу энергии поступающего на образец излучения 20—35 Дж/см².

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Исходная (после прокатки) фольга имеет нанокристаллическую двухфазную ($\alpha + \beta$) структуру. В цикле нагревание со скоростью 10° С/с до температуры выше 700° С—охлаждение до комнатной температуры происходит полное восстановление упорядоченной структуры. Дифрактограммы на рис. 1 характеризуют структурное превращение фольги в полном цикле. На дифрактограмме исходной фольги (I) обращают внимание параллель-

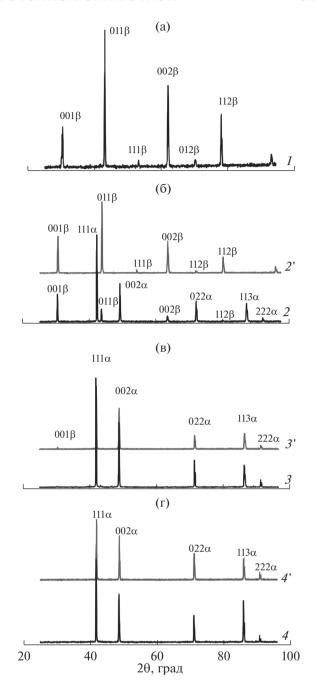
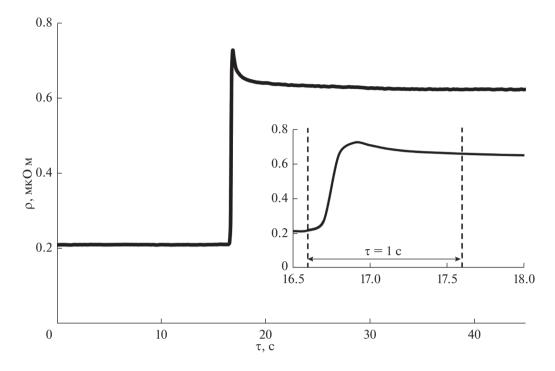

 $^{^{1}}$ ЦКПНО, ФГБОУ ВО "ВГУ".

Рис. 2. Изменение удельного сопротивления исходной (после прокатки) фольги в первом (а) и во втором (б) циклах нагревание (I)—охлаждение (2).


ность текстур $\langle 1\overline{10}\rangle\alpha$ и $\langle 100\rangle\beta$ и уширение отражений от плоскостей (020)В, что в соответствии с ориентационным соотношением Нишиямы и Вассермана (превращение по Бейну) характеризует малый размер β-фазы в направлении, перпендикулярном оси текстур (т.е. в направлении [010] β) при параллельности плоскостей (1 $\overline{10}$) β и (111)а. Из этого следует, что формирующийся слой β -фазы имеет толщину 8.5 нм, т.е. в $\sqrt{2}$ раз меньше рассчитываемого из уширения отражения 020. Из дифрактограммы 5 следует, что восстанавливается β-фаза со средним размером области когерентного рассеяния уже более 1 мкм. Характерное изменение удельного электросопротивления от температуры в первом цикле (рис. 2a) подтверждает обратимость, свойственную фольге заданного состава в последовательности ($\alpha + \beta$) \rightarrow $\rightarrow \beta \rightarrow \alpha \rightarrow \beta$. Во втором цикле процессы происходят в последовательности $\beta \to \alpha \to \beta$ (рис. 26).

В пределах линейных участков $\rho(t)$ определен температурный коэффициент сопротивления (**TKC**): $0.15 \times 10^{-3} ^{\circ} \text{C}^{-1}$ для α -фазы и $1.04 \times 10^{-3} ^{\circ} \text{C}^{-1}$ для β -фазы. На стадиях разупорядочения и упорядочения скорость прироста и уменьшения ρ соответственно характеризует их динамику в условиях термического нагрева.

Рис. 3. Рентгеновские дифрактограммы фольги после Φ О длительностью 0.6 (а), 0.7 (б), 0.8 (в) и 1 с (г) (2'–4 — дифрактограммы фольги с необлученной стороны).

Дифрактограммы на рис. 3 характеризуют структуру предварительно термообработанной нагреванием до 850° С и охлажденной до комнатной температуры фольги после ФО длительностью 0.6(I), 0.7(2 и 2'), 0.8(3 и 3') и 1 c (4 и 4'). Из дифрактограмм следует, что процесс разупорядочения начинается при $\tau > 0.6 \text{ c}$. Из сопоставления дифрактограмм 2 и 2' можно сделать вывод о том, что в анализируемом приповерхностном слое с

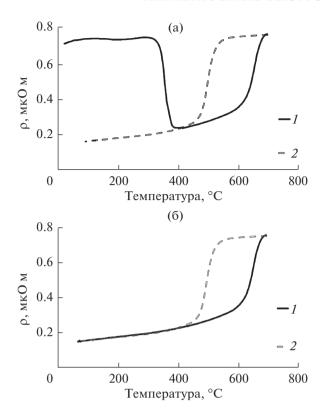
Рис. 4. Изменение удельного сопротивления фольги при Φ O ($\tau = 1$ с) (вставка детализирует изменения ρ).

облучаемой стороны произошло $\beta \to \alpha$ -превращение при сохранении небольшой доли β -фазы. В то же время приповерхностный слой с обратной стороны сохранил полностью упорядоченную структуру (дифрактограмма 2').

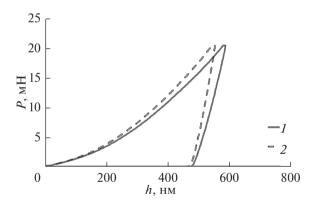
Из изменения удельного сопротивления в процессе Φ O при $\tau = 0.6$ с и величины ТКС следует, что достигаемая температура образца (около 570°С) не превышает достаточную для полного разупорядочения его структуры. Таким образом, вследствие локализации энергии излучения в приповерхностном слое и конечной величины теплопроводности образуется структура с градиентом фазового состава по толщине фольги.

Начиная с $\tau = 0.8$ с завершается $\beta \to \alpha$ -превращение в образце (дифрактограммы β и β), и при $\tau = 1$ с (рис. 4) за время $0.35 \tau \rho$ увеличивается в 3.4 раза, что соответствует увеличению температуры до 850° C, т.е. существенно превышающей характерную для полного разупорядочения фоль-

Таблица 1. Результаты обработки диаграмм наноиндентирования


Фаза	β	α
Н, ГПа	2.8	2.9
<i>E</i> , ГПа	72.8	105.4
η, %	21	16

Примечание. H — твердость, E — модуль Юнга, η — доля упругой деформации в работе индентирования.


ги при термическом нагревании ($\sim 700^{\circ}$ C, рис. 2). Соответствующее достигаемой температуре увеличение концентрации вакансий (от 1.5×10^{-17} до 3.2×10^{-5}) подавляет обратимость $\alpha \to \beta$ -превращения (после прекращения облучения величина р соответствует α -фазе). С учетом линейного увеличения температуры за время τ можно сделать вывод о том, что уменьшение ρ после 0.35 с (вставка на рис. 4) отражает процесс рекристаллизации, практически полностью завершающейся после прекращения облучения.

При линейном увеличении температуры в обоих вариантах нагревания из сопоставления времени выхода на максимальную величину ρ при резистивном нагреве (рис. 2а) и Φ O (рис. 4) следует, что во втором варианте средняя скорость разупорядочения в 5.5×10^3 раз больше, на линейном участке — в 10^3 раз больше. При термическом нагревании образца со стабилизированной Φ O структурой (α -фаза) происходит полное восстановление β -фазы с особенностями процесса, характерными для сильно деформированных образцов (неравновесные структуры): в первом цикле (рис. 5а) процесс восстановления протекает в 2 этапа ($\alpha \to \beta \to \alpha \to \beta$), во втором (рис. 5б) и всех последующих — в один этап ($\beta \to \alpha \to \beta$).

Стабилизация α-фазы и ее сохранение до 300°С (рис. 5а) дает возможность сопоставить механические свойства фольги одинакового элементного состава с упорядоченной и неупорядоченной структурами в пределах этой области тем-

Рис. 5. Изменение удельного сопротивления образцов фольги, подвергнутой Φ О в течение 1 с, в первом (а) и втором (б) циклах нагревание (I)—охлаждение (I).

Рис. 6. P—h-диаграммы наноиндентирования образцов фольги с неупорядоченной (I) и упорядоченной (2) структурами.

ператур. Диаграммы на рис. 6 характеризуют процесс наноиндентирования образцов со структурой β-фазы (1) и α-фазы (2). В обоих случаях деформация фольги имеет упругопластический характер. В табл. 1 приведены результаты обработки диаграмм. Уменьшение модуля Юнга при упорядочении согласуется с данными, обсуждаемыми в [13]. Возможно, это уменьшение связано с легкостью образования антифазных границ

в процессе деформации. В частности, проведенное методом молекулярной динамики исследование [14] механизма сопряжения α - и β -фаз в ориентационном соотношении Нишияма и Вассермана показывает, что сопряжение происходит посредством образования антифазных границ с элементарным сдвигом в плоскостях {111} β -фазы. Линейная плотность таких дефектов составляет 4.5×10^6 см $^{-1}$.

ЗАКЛЮЧЕНИЕ

Полное упорядочение исходной (после прокатки) двухфазной ($\alpha+\beta$) фольги происходит в первом цикле нагревание—охлаждение в последовательности ($\alpha+\beta$) $\to \beta \to \alpha \to \beta$, во втором и последующих $-\beta \to \alpha \to \beta$.

При критической для заданной толщины фольги с упорядоченной структурой дозе энергии излучения, поступающей на поверхность, происходит необратимое $\beta \to \alpha$ -превращение, скорость которого может на три порядка величины превышать скорость, характерную для процесса разупорядочения в варианте резистивного нагревания.

После Φ О обратимость $\beta \rightleftharpoons \alpha$ -превращений, свойственная исходной упорядоченной структуре, реализуется во втором цикле: нагревание до 700° С—охлаждение; в первом цикле последовательность $\alpha \to \beta \to \alpha \to \beta$, во втором и последующем циклах — $\beta \to \alpha \to \beta$.

Локализация излучения в скин-слое и конечная величина теплопроводности дают возможность создания структуры с градиентом фазового состава при длительности излучения меньше критической.

Сохранение α-фазы при последующем нагревании до 300°С позволяет сопоставить механические свойства фольги одного и того же элементного состава с упорядоченной и неупорядоченной структурами.

БЛАГОДАРНОСТЬ

Исследование выполнено за счет гранта Российского научного фонда (проект № 19-19-00232).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Иевлев В.М.* Активация твердофазных процессов излучением газоразрядных ламп // Успехи химии. 2013. Т. 82. № 9. С. 815—834.
- 2. Справочник по лазерам / Под ред. Прохорова А.М. М.: Сов. радио, 1967.
- 3. Иевлев В.М., Канныкин С.В., Кущев С.Б., Синельников А.А., Солдатенко С.А. Синтез пленок рутила, активируемый фотонной обработкой // Физика и химия обраб. материалов. 2011. № 4. С. 5–9.
- 4. Иевлев В.М., Белоногов Е.К., Дыбов В.А., Канныкин С.В., Сериков Д.В., Ситников А.В., Сумец М.П.

- Синтез ниобата лития в процессе кристаллизации аморфной пленки системы Li–Nb–O // Неорган. материалы. 2019. Т. 55. № 12. С. 1313–1318.
- 5. *Пилипенко В.А.* Быстрые термообработки в технологии СБИС. Минск: Изд. центр БГУ, 2004. 531 с.
- 6. Кущев С.Б. Исследование фазового состава и субструктуры силицидов, образующихся при импульсной фотонной обработке некогерентным излучением пленок металлов на кремнии: Дис. ... докт. физ.-мат. наук. Воронеж: ВГТУ, 2000.
- 7. Иевлев В.М., Шведов Е.В., Солдатенко С.А., Кущев С.Б., Горожанкин Ю.В. Образование силицидов при отжиге тонких пленок твердых растворов систем Ni—Pt, Ni—Pd и двухслойных гетероструктур Pt/Ni на (111)Si // Неорган. материалы. 2006. Т. 42. № 2. С. 187—195.
- Водород в металлах / Под ред. Алефельда Г., Фелькля М.; пер. с англ. под ред. Кагана Ю.М. М.: Мир, 1981. Т. 1. 475 с.

- Goldbach A., Yuan L., Xu H. Impact of the fcc/bcc Phase Transition on the Homogeneity and Behavior of PdCu Membranes // Separat. Purificat. Technol. 2010. V. 73. P. 65–70.
- Иевлев В.М., Донцов А.И., Белоногов Е.К., Канныкин С.В., Солнцев К.А. Превращения α

 β в фольге твердого раствора Pd—57Cu (ат. %), полученной способом прокатки // Неорган. материалы. 2017. Т. 53. № 11. С. 1181—1188.
- 12. *Иевлев В.М., Солнцев К.А., Донцов А.И., Максимен-ко А.А., Канныкин С.В.* Водородопроницаемость тонкой конденсированной фольги Pd-Cu: зависимость от температуры и фазового состава // Журн. техн. физики. 2016. Т. 86. № 3. С. 149—151.
- 13. *Попов Л.Е., Козлов Э.В.* Механические свойства упорядоченных твердых растворов. М.: Металлургия, 1960. 216 с.
- Иевлев В.М., Прижимов А.С., Донцов А.И. Структура межфазной границы α-β в твердом растворе PdCu // Физика твердого тела. 2020. Т. 62. № 1. С. 53–58.