УДК 621.315.592

ТЕПЛОПРОВОДНОСТЬ СПЛАВОВ Sn C SnTe

© 2020 г. Г. З. Багиева^{1, *}, Г. Д. Абдинова¹, Н. Б. Мустафаев¹, Д. Ш. Абдинов¹

¹Институт физики им. Г.М. Абдуллаева Национальной академии наук Азербайджана, пр. Г. Джавида, 131, Баку, AZ-1143 Азербайджан

> *e-mail: bagieva-gjulandam@mail.ru Поступила в редакцию 07.02.2019 г. После доработки 24.01.2020 г. Принята к публикации 19.02.2020 г.

Получены сплавы олова с теллуридом олова и исследована их теплопроводность в интервале ~90– 300 К. Определены решеточная χ_p и электронная χ_3 составляющие теплопроводности, тепловое сопротивление, созданное структурными дефектами (вакансиями в подрешетке олова и дефектами). Сделано предположение, что атомы Sn при малых концентрациях создают электронейтральные комплексы с вакансиями в подрешетке олова, что приводит к уменьшению χ_p и χ_3 , а при больших концентрациях, заполняя эти вакансии, приводят к росту χ_p .

Ключевые слова: теллурид олова, теплопроводность, вакансии, структурные дефекты, электронейтральные комплексы

DOI: 10.31857/S0002337X20070027

введение

Исследованию электрических свойств теллурида олова и его твердых растворов посвящен ряд работ [1-6]. Это обусловлено перспективностью этих материалов для термо- и фотоэлектрических преобразователей, а также особенностями их кристаллизации и строением валентной зоны.

В системе Sn–Te найдено [7] одно соединение SnTe, плавящееся конгруэнтно при 790°С. В [8, 9] изучалась протяженность области гомогенности на основе теллурида олова методами металлографического и рентгеновского анализов. Выяснено, что после отжига при 700°С сплав стехиометрического состава содержал эвтектику SnTe + Sn, а однофазными были сплавы, содержащие 0.3 и 0.5 ат. % избытка теллура. В сплаве с 0.8 ат. % избытка теллура была заметна эвтектика SnTe + Te. После отжига при 600, 500, 400°С этот сплав был однофазным, а эвтектика SnTe + Te была обнаружена в сплаве, содержащем 51 ат. % Те. Также выяснено, что преобладающими дефектами в теллуриде олова являются вакансии олова. В [10] предложена качественная модель, объясняющая высокую концентрацию вакансий олова в теллуриде одова.

Выяснено [8, 9], что область гомогенности при 400°С лежит в пределах от 50.1 \pm 0.1 до 50.9 \pm \pm 0.1 ат. % Те. При этом постоянная решетки уменьшается с увеличением содержания теллура в пределах 6.324–6.302 Å, что хорошо согласуется с данными [11]. Положение границ области гомо-

генности на основе теллурида олова было исследовано также в [12] в интервале температур 550-797°С. По данным [12], границы области гомогенности при 600°С отвечают 50.1 и 51.1 ат. % Те. Впоследствии область гомогенности монотеллурида олова исследована в [13]. Показано, что теллурид олова имеет одностороннюю область гомогенности, смещенную в сторону избытка теллура, и характеризуется высокой концентрацией собственных дефектов (в основном катионных вакансий). Из концентрационной зависимости постоянной решетки в области гомогенности в системе Sn-Te [8, 9, 13] был оценен [14] эффективный радиус катионной вакансии. Установлено, что введение катионных вакансий за счет отклонения от стехиометрии в SnTe приводит к существенно большей деформации решетки, чем любое катионное замещение [15].

Вакансии олова в сплаве Sn с SnTe должны влиять и на рассеяние фононов, а также на концентрацию и подвижность носителей тока, т.е. на решеточную и электронную составляющие теплопроводности соответственно. Однако в литературе работы, посвященные изучению влияния структурных вакансий на теплопроводность сплава олова с теллуридом олова, отсутствуют. Такие исследования интересны и тем, что материалы на основе сплава Sn с SnTe являются среднетемпературными термоэлектриками, эффективность которых определяется их теплопроводностью, а также тем, что могут давать сведения о рассеянии фононов и электронов на структурных вакансиях.

Рис. 1. Микроструктура сплава 50 ат. % Sn + 50 ат. % Te; × 1000.

Можно полагать, что концентрацию вакансии олова в сплавах олова с теллуридом олова можно варьировать введением в расплав 50 ат. % Sn-50 ат. % Те избыточных атомов олова.

Учитывая это, с целью получения информации о влиянии вакансий олова на теплопроволность сплава Sn с SnTe синтезированы образцы из расплава 50 ат. % Sn-50 ат. % Те, содержащие до 1.0 ат. % добавок олова, и исследована их теплопроводность в интервале температур 90-300 К.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Сплавы олова с добавками 0.01, 0.05, 0.10, 0.50 и 1.0 ат. % Sn получали прямым сплавлением соответствующих количеств исходных компонентов в вакуумированных до ~10⁻² Па кварцевых ампулах при температуре ~1135 К в течение 6 ч. Были использованы олово марки ОВЧ-000, теллур марки Т-сЧ (99.999). В процессе синтеза применялось вибрационное перемешивание расплава. Внутренняя поверхность кварцевых ампул предварительно графитизировалась. Длина синтезированных слитков диаметром 13-14 мм составляла ~25 мм.

Исследования проводились на образцах, не прошедших отжиг и отожженных при 773 К. Отжиг образцов проводился в среде спектрально чистого аргона в течение 120 ч. При таком отжиге получались образцы со стабильными электрическими параметрами [4].

Дифрактограммы, получены на дифрактометре XRD Bruker D8 ADVANCE. Однородность слитков проверялась и измерениями электрического сопротивления на различных участках вдоль слитка. Длина участка слитков, однородного по электрическим свойствам, достигала 20–22 мм. Из однородной части слитков на электроискровой

установке были вырезаны образцы в виде цилиндра диаметром 13-14 и высотой ~10 мм. Нарушенный слой, образующийся на торцах образцов при резке, удаляли электрохимическим травлением.

Теплопроводность образцов измеряли абсолютным стационарным методом, описанным в [16], в направлении длины слитков. Погрешность измерения теплопроводности во всем интервале температур не превышала 5%.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На дифрактограммах не обнаружены линии второй фазы (фазы на основе олова) из-за недостаточной чувствительности использованного метода рентгенофазового анализа. Уточненный параметр элементарной ячейки для сплава олова с теллуридом олова a = 6.318 (1) Å (пр. гр. $Fm\overline{3}m$) соответствует значению а для теллурида олова в двухфазных сплавах с оловом.

На рис. 1 представлена микрофотография сплава 50 ат. % Sn + 50 ат. % Те. Видно, что сплав содержит вторую фазу.

На рис. 2 представлены температурные зависимости общей теплопроводности (χ) исследованных образцов, не прошедших отжиг (а), и тех же образцов, отожженных при 773 К в течение 120 ч (б). Видно, что во всех случаях значения χ с ростом температуры уменьшаются. После отжига значения х образцов при данной температуре несколько меняются.

Для выяснения механизма влияния добавок олова на теплопроводность сплава изучены составляющие общей теплопроводности в интервале температур 90-300 К.

В общем случае теплопроводность полупроводника может осуществляться колебаниями решетки (χ_p), электронами проводимости (χ_э), биполярной диффузией электронов и дырок в области собственной и смешанной проводимости (χ_c) , а также при низких температурах в магнитных полупроводниках магнонами (χ_м) и при средних температурах в достаточно чистых полупроводниках фотонами (χ_φ) [17, 18]. Однако в области примесной проводимости, в случае, когда полупроводник непрозрачен в инфракрасной области, его теплопроводность можно выразить в виде

$$\chi = \chi_{\rm p} + \chi_{\rm s}. \tag{1}$$

Для металлов

$$\chi_{\mathfrak{H}} = L \sigma T, \tag{2}$$

где *L* – число Лоренца, **σ** – удельная электропроводность исследуемого металла. Для полупроводников с параболической зоной в случае произ-

Рис. 2. Температурные зависимости общей теплопроводности сплавов олова с теллуридом олова до (а) и после (б) отжига: сплав 50 ат. % Sn + 50 ат. % Те без добавки (I), с добавкой 0.01 (2), 0.05 (3), 0.1 (4), 0.5 (5) и 1.0 ат. % Sn сверх стехиометрии (6).

вольного вырождения и упругого рассеяния носителей тока

$$L = A(k/e)^2, \chi_{\mathfrak{I}} = A(k/e)^2 \sigma T,$$

где k — постоянная Больцмана, e — заряд электрона, A — параметр, зависящий от параметра рассеяния. Значение A определяли из измеренных значений коэффициента термо-ЭДС (α) образцов по кривой $A = f(\alpha)$ [17, 18].

Измеренные значения χ , а также χ_p и χ_3 , определенные с помощью вышеприведенных выражений при 90 и 300 K, приведены в табл. 1. Там же приведены значения σ и α образцов при 90 и 300 K. Видно, что тепло в изученных образцах переносится в основном колебаниями решетки. Электронная составляющая теплопроводности образцов не превышает ~30% от общей теплопроводности.

Из данных табл. 1 также следует, что после отжига тепловые и электрические параметры образцов при данной температуре претерпевают определен-

Рис. 3. Температурные зависимости теплового сопротивления образцов до (а) и после (б) отжига: 1-6 см. в подписи к рис. 2.

ные изменения. Во всех случаях отжиг сопровождается ростом решеточной части теплопроводности.

В неотожженных и отожженных образцах с ростом концентрации добавки олова до 0.05 ат. % решеточная теплопроводность как при ~ 90, так и при 300 К уменьшается, а выше 0.05 ат. % растет.

На рис. 3 представлены температурные зависимости теплового сопротивления решетки ($W_p = 1/\chi_p$) образцов. Прямолинейный характер зависимостей $W_p(T)$ показывает, что тепловое сопротивление создается в основном за счет фононфононного рассеяния.

Вакансии олова в образцах создают дефекты, рассеивающие фононы. Тепловое сопротивление материала с точечными дефектами можно представить в виде [17]

$$W_{\rm p} = W_{\rm o} + D/c^2,$$

Содержание добавки олова, ат. %	σ	α	$\chi \times 10^2$	$\chi_p imes 10^2$	$\chi_{\scriptscriptstyle \Im} \times 10^2$	σ	α	$\chi \times 10^2$	$\chi_p imes 10^2$	$\chi_{ m s} imes 10^2$	
	90 K					300 K					ΔW_0
	До отжига										
_	22816	24.2	12.20	8.61	3.59	8337	29.8	10.18	5.80	4.38	9.1
0.01	21107	23.0	11.75	8.43	3.80	8119	37.7	10.04	5.70	4.31	9.4
0.05	14572	22.6	10.10	7.80	2.30	6662	35.7	9.02	5.51	3.51	10.2
0.1	24573	23.5	11.88	8.01	3.87	8027	33.5	10.28	6.07	4.21	10.4
0.5	19235	33.0	11.31	8.28	3.03	7278	34.8	10.38	6.34	4.04	10.3
1.0	21874	19.1	12.23	3.78	3.45	7812	20.4	10.39	6.22	4.17	9.4
После отжига при 773 К											
—	21875	8.7	14.58	10.35	4.23	7086	5.6	10.89	5.77	5.12	6.3
0.01	20951	22.8	12.53	9.23	3.30	7649	22.3	9.64	5.62	4.02	7.7
0.05	12861	20.8	10.83	8.80	2.03	5112	19.7	8.23	5.55	2.68	8.7
0.1	19282	21.3	13.84	10.80	3.04	7249	20.0	10.04	6.23	3.81	8.5
0.5	23392	23.7	14.29	10.61	3.68	8187	35.5	10.50	6.33	4.17	8.2
1.0	25557	8.5	14.01	9.41	4.60	8519	6.5	10.77	5.66	5.11	8.0

Таблица 1. Электропроводность (σ , См/см), коэффициент термо-ЭДС (α , мкВ/К), общая (χ), решеточная (χ_p), электронная (χ_3) составляющие теплопроводности (Вт/(смК)) и добавочное тепловое сопротивление W_p (см К/Вт) сплавов олова с теллуридом олова (50 ат. % Sn + 50 ат. % Те)

где W_{o} — теплосопротивление материала без дефектов, D и c — постоянные. Видно, что точечные дефекты дают не зависящий от температуры вклад в теплосопротивление. Это экспериментально наблюдалось в PbTe с примесью иода [19], а также в кристаллах Pb_{1-x}Mn_xTe [20] и Sn_{1-x}Mn_xTe [21]. В связи с этим значение добавочного теплового сопротивления ΔW_{o} , обусловленного дефектами, можно определить экстраполяцией линейной зависимости решеточной части теплопроводности W_{p} от температуры в области низких температур. В этом случае отрезок, отсекаемый на оси теплового сопротивления при T = 0 K, будет равен ΔW_{o} . Значения ΔW_{o} также показаны в табл. 1.

Совместный анализ полученных данных по тепловым и электрическим параметрам сплава олова с теллуридом олова позволяет выдвинуть следующие предположения. Донорные центры, созданные атомами олова, компенсируя двукратно заряженные вакансии в образцах, создают с ними электронейтральные комплексы. Компенсация двукратно заряженных вакансий приводит к уменьшению концентрации дырок и, соответственно, к уменьшению электропроводности σ и росту коэффициента термо-ЭДС α. Электронейтральные комплексы вакансия-атомы олова, рассеивая фононы, уменьшают решеточную часть теплопроводности. При концентрации 0.05 ат. % Sn этот процесс завершается и σ , χ_p и χ_3 достигают минимума. При дальнейшем увеличении количества добавок олова созданные оловом донорные

центры приводят к росту концентрации электронов в образце, т.е. к росту σ и χ_2 . При больших содержаниях добавки олова часть атомов олова, также располагаясь в вакансиях олова, уменьшают концентрацию структурных дефектов (вакансий), что завершается ростом $\chi_{p.}$ Об этом свидетельствует и тот факт, что при больших концентрациях добавки Sn (больше 0.5 ат. % Sn) значение коэффициента термо-ЭДС сильно падает. Указанное предположение хорошо согласуется с зависимостью добавочного теплового сопротивления $\Delta W_{\rm o}$ от концентрации добавки олова. Так, в неотожженных и отожженных образцах с ростом количества добавки олова ΔW_{0} вначале растет, а затем уменьшается. Из табл. 1 следует, что во всех случаях тепловое сопротивление, обусловленное дефектами, в отожженных образцах меньше, чем в неотожженных. Это связано с устранением отжигом дефектов в кристаллах, возникающих при получении сплавов и изготовлении образцов для измерений. Из сравнения значений ΔW_{0} для неотожженных и отожженных образцов видно, что доля дефектов в общем тепловом сопротивлении, обусловленная структурными дефектами, достигает ~30%.

ЗАКЛЮЧЕНИЕ

Получены сплавы олова с теллуридом олова и исследована их теплопроводность в интервале температур 90–300 К. Рассчитаны электронная и решеточная составляющие теплопроводности, а

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 56 № 7 2020

также тепловое сопротивление, вызванное структурными дефектами. Показано, что тепло в изученных образцах переносится в основном колебаниями решетки, а электронная составляющая теплопроводности в них не превышает ~30% от общей теплопроводности. В тепловом сопротивлении образцов значительную роль играют структурные дефекты, связанные с вакансиями олова. Дополнительно введенные атомы Sn до 0.05 ат. % как донорные центры создают электронейтральные комплексы с вакансиями, рассеивая фононы, и приводят к уменьшению χ_p, а при содержании больше 0.05 ат. %, заполняя эти вакансии, приводят к росту χ_{p} С отжигом залечиваются дефекты, возникающие при получении сплава и изготовлении образцов, что приводит к уменьшению добавочного теплового сопротивления до 25-30%. Температурная зависимость решеточной составляющей теплопроводности определяется фонон-фононным рассеянием.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Brebrik R.F., Strauss A.J.* Anormalous Termoelektrik Power as Evidense for Two-Valence Bands in SnTe // Phys. Rev. 1963. V. 131. № 1. P. 104–110.
- Ефимова Б.А. Кайданов В.И., Мойжес Б.Я., Черник И.А. О зонной модели SnTe // ФТТ. 1965. Т. 7. № 8. С. 2524–2527.
- Кайданов В.И., Черник И.А., Ефимова Б.А. Исследование зонной структуры и механизма рассеяния носителей тока в теллуриде олова // ФТП. 1967. Т. 1. № 6. С. 869–879.
- Багиева Г.З., Абдинова Г.Д., Мустафаев Н.Б., Абдинов Д.Ш. Влияние отжига на электрические свойства кристаллов SnTe // Неорган. материалы. 2017. Т. 53. № 4. С. 351–353. https://doi.org/10.7868/S0002337X17040017
- 5. Охотин А.С., Ефимов А.А., Охотин В.С., Пушкарский А.С. Термоэлектрические генераторы. М.: Атомиздат, 1976. 320 с.
- Ахундова Н.М. Электрическая проводимость и теплопроводность твердого раствора Sn_{1-x}Mn_xTe (0 ≤ ≤ x ≤ 0.04) // Изв. вузов. Физика. 2017. Т. 60. № 9. С. 114–117.
- Хансен М., Андерко Л. Структуры двойных сплавов. М.: Металлургиздат, 1962. 1488 с.
- Шелимова Л.Е., Абрикосов Н.Х. Система Sn-Те в области соединения SnTe // Журн. неорган. химии. 1964. Т. 9. № 8. С. 1979–1882.

- Абрикосов Н.Х., Шелимова Л.Е. Полупроводниковые материалы на основе соединений А^{IV}В^{VI}. М.: Наука, 1975. 195 с.
- Lorenz M.R., Jepsen D.W. An Explanation of High Cation Vacancy Concentration and *p*-type Conductivity in Semiconductors Containing a Multivalent Metal in Its Lowest Valance State // J. Phys. Chem. Solids. 1965. V. 26. P. 1177–1179.
- Mazelsky R., Lubell S. Nonstoichiometry in Some Group IV Tellurides // Advances in Chemistry. Washington: Am. Chem. Soc., 1963. P. 210–217.
- Brebrick R.F. Deviations from Stoichiometry and Electrical Properties in SnTe // J. Phys. Chem. Solids. 1963. V. 24. № 1. P. 27–36. https://doi.org/10.1016/0022-3697(63)90038-6Get
- Рогачева Е.И., Горне Г.В., Жигарева П.К., Иванова А.Б. Область гомогенности монотеллурида олова // Изв. АН СССР. Неорган. материалы. 1991. Т. 27. № 2. С. 267–276.
- 14. Дзюбенко Н.И., Рогачева Е.И., Косевич В.М. Влияние индия, галлия, сурьмы и висмута на свойства теллурида олова // Изв. АН СССР. Неорган. материалы. 1983. Т. 19. № 9. С. 1457–1461.
- Рогачева Е.И., Нащекина О.Н. Упрочнение решетки при катионном замещении в полупроводниковом соединении SnTe // Неорган. материалы. 1995. Т. 31. № 6. С. 723–726.
- Охотин А.С., Пушкарский А.С., Боровикова Р.П., Симонов В.А. Методы измерения характеристик термоэлектрических материалов и преобразователей. М.: Наука, 1974. 168 с.
- 17. Оскотский В.С., Смирнов И.А. Дефекты в кристаллах и теплопроводность. Л.: Наука, 1972. 160 с.
- 18. Смирнов И.А., Тамарченко В.И. Электронная теплопроводность в металлах и полупроводниках. Л.: Наука, 1977. 151 с.
- 19. Девяткова Б.Д., Смирнов И.А. Влияние примесей галогенов на теплопроводность теллуристого свинца // ФТТ. 1961. Т. 3. № 8. С. 2298–2309.
- Багиева Г.З., Абдинова Г.Д., Мустафаев Н.Б., Абдинов Д.Ш. Теплопроводность монокристаллов Pb_{1-x}Mn_xTe с избытком теллура // Неорган. материалы. 2013. Т. 49. № 11. С. 1164–1167. https://doi.org/10.7868/S0002337X13110018
- Багиева Г.З., Абдинова Г.Д., Мустафаев Н.Б., Абдинов Д.Ш. Теплопроводность кристаллов Sn_{1-x}Mn_xTe // Неорган. материалы. 2016. Т. 52. № 12. С. 1290–1294. https://doi.org/10.7868/S0002337X16120010