УЛК 536.63

ВЫСОКОТЕМПЕРАТУРНАЯ ТЕПЛОЕМКОСТЬ ГЕРМАНАТОВ PrFeGe₂O₇ И NdFeGe₂O₇ В ОБЛАСТИ 350-1000 К

© 2020 г. Л. Т. Денисова^{1, *}, Ю. Ф. Каргин², Л. А. Иртюго¹, В. В. Белецкий¹, Н. В. Белоусова¹, В. М. Денисов¹

 1 Институт цветных металлов и материаловедения Сибирского федерального университета, Свободный пр., 79, Красноярск, 660041 Россия

 2 Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук, Ленинский пр., 49, Москва, 119991 Россия

*e-mail: antluba@mail.ru

Поступила в редакцию 24.10.2019 г.

После доработки 22.01.2020 г. Принята к публикации 23.01.2020 г.

Методом твердофазного синтеза из стехиометрических смесей исходных оксидов Pr₂O₃ (Nd₂O₃), Fe₂O₃ и GeO₂ последовательным обжигом на воздухе при 1273–1473 К получены германаты PrFeGe₂O₇ и NdFeGe₂O₇. Методом ДСК измерена их высокотемпературная теплоемкость. На основании экспериментальных данных $C_p = f(T)$ рассчитаны их термодинамические свойства.

Ключевые слова: германаты редкоземельных элементов, твердофазный синтез, высокотемпературная теплоемкость, термодинамические свойства

DOI: 10.31857/S0002337X20070040

ВВЕДЕНИЕ

В течение длительного времени внимание исследователей привлекают германаты редкоземельных элементов (РЗЭ) как аналоги силикатов, так и в качестве самостоятельного класса оксидных соединений [1, 2]. Интересными физическими свойствами с возможностью практического применения обладают соединения с общей формулой $RMGe_2O_7$ (R = P3Э; M = Al, Ga, Fe) [3, 4]. Большое количество работ посвящено изучению магнитных $(RFeGe_2O_7 [5-9])$ и оптических $(RFeGe_2O_7 (R = La,$ Pr, Nd, Gd [9], Tb [10])) свойств, а также исследованиям структуры методом мессбауэровской спектроскопии [5, 10]. Отмечено, что пространственная группа симметрии соединений RFeGe₂O₇ зависит от радиуса редкоземельного иона: для цериевой подгруппы от La до $Gd - P2_1/c$, а для иттриевой подгруппы от Tb до Lu – $P2_1/m$ [3, 7]. Несмотря на такое внимание к соединениям RFeGe₂O₇, многие их свойства к настоящему времени еще не исследованы. Так, например, отсутствуют сведения о диаграммах состояния тройных систем Pr₂O₃-Fe₂O₃-Ge₂O₃ и Nd₂O₃- Fe_2O_3 -GeO₂. Для их построения, а также определения оптимальных условий синтеза оксидных соединений, образующихся в этих системах, методами компьютерного моделирования необходимы сведения об их термодинамических свойствах. Такие данные для германатов RFeGe₂O₇ в литературе отсутствуют.

В настоящей работе приводятся результаты исследования высокотемпературной теплоемкости оксидных соединений PrFeGe₂O₇ и NdFeGe₂O₇ и расчета по этим данным их термодинамических свойств.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Соединения PrFeGe₂O₇ и NdFeGe₂O₇ получали из исходных оксидов Nd₂O₃, Fe₂O₃ ("ос. ч."), GeO₂ (99.999%); Pr₆O₁₁ (Alfa Aesar GmbH KG (99.996 по металлу) был восстановлен до Pr₂O₃ в проточной атмосфере чистого атомарного водорода при 1173 К по методике, описанной в работе [11]. Стехиометрические смеси предварительно прокаленных при 1173 К оксидов гомогенизировали в агатовой ступке и прессовали в таблетки. Затем их последовательно обжигали на воздухе при температурах 1273 К (40 ч), 1373 К (100 ч) и 1473 К (60 ч) с промежуточными перетираниями через каждые 20 ч.

Рентгенограммы поликристаллических образцов PrFeGe₂O₇ и NdFeGe₂O₇ при комнатной температуре получены на дифрактометре X'Pert Pro MPD, PANalytical (Нидерланды) в Cu K_{α} -излучении. Регистрацию дифрактограмм выполняли

Рис. 1. Экспериментальный (1), расчетный (2) и разностный (3) профили рентгенограмм $PrFeGe_2O_7$ (а) и NdFeGe₂O₇ (б) (штрихи указывают расчетные положения рефлексов).

высокоскоростным детектором PIXcel в угловом интервале $2\theta = 10^{\circ} - 100^{\circ}$ с шагом 0.013°. Дифрактограммы синтезированных образцов показаны на рис. 1. Параметры элементарных ячеек определены подобно [12].

Теплоемкость германатов PrFeGe₂O₇ и NdFeGe₂O₇ измеряли методом дифференциаль-

ной сканирующей калориметрии на термоанализаторе STA 449 C Jupiter (NETZSCH, Германия). Методика экспериментов подобна описанной в работе [13]. Ошибка измерений теплоемкости не превышала 2%.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Параметры элементарных ячеек синтезированных соединений $PrFeGe_2O_7$ и $NdFeGe_2O_7$ в сравнении с данными других авторов приведены в табл. 1. Видно, что лучшее согласие наших результатов наблюдается с данными [9].

Заметим, что замещение части РЗЭ в соединениях $Pr_2Ge_2O_7$ и $Nd_2Ge_2O_7$ на железо приводит к изменению их кристаллической симметрии, описываемой пр. гр. *P*1 [14], на $P2_1/c$.

На рис. 2 показана связь между ионными радиусами РЗЭ и рассчитанной плотностью кристаллов соединений RFeGe₂O₇ (пр. гр. $P2_1/c$). Видно, что значения *d* уменьшаются по мере увеличения ионных радиусов (их заимствовали из работы [15]). При этом учитывали данные [9] о том, что в соединениях RFeGe₂O₇ ионы РЗЭ имеют к. ч. 9.

Влияние температуры на теплоемкость $PrFeGe_2O_7$ и NdFeGe₂O₇ показано на рис. 3. Видно, что теплоемкость этих соединений с ростом температуры от 350 до 1000 К закономерно увеличивается. Эти данные могут быть описаны уравнением Майера-Келли [16]

$$C_{p} = a + bT - cT^{-2}, (1)$$

которое для $PrFeGe_2O_7$ и NdFeGe_2O₇ имеет соответственно следующий вид:

$$C_p = (244.80 \pm 0.86) + (40.67 \pm 0.90) \times 10^{-3}T - (34.84 \pm 0.92) \times 10^5 T^{-2},$$
(2)

$$C_p = (242.40 \pm 0.54) + (40.23 \pm 0.70) \times 10^{-3}T - (32.86 \pm 0.58) \times 10^{5}T^{-2}.$$

Таблина 1	Параметры элементарных queer	z PrFeGe ₂ O- и NdFe	$Ge_0O_{-}(\pi n)$ Fr	$P_{2}/c \cdot Z = 4$
гаолица г.	параметры элементарных ячее	х г п сос ₂ о ₇ и тип с	0007(110.11)	$J, I Z_1/C, Z = 4$

			2 /		,	
Соединение	PrFeGe ₂ O ₇			NdFeGe ₂ O ₇		
<i>a</i> , Å	7.2388(1)	7.27(1)	7.2422(7)	7.2153(1)	7.22(1)	7.2208(8)
b, Å	6.6330(1)	6.62(1)	6.6361(6)	6.6207(1)	6.60(1)	6.6229(7)
<i>c</i> , Å	12.9809(2)	13.03(1)	12.986(1)	12.9485(2)	12.96(1)	12.949(1)
β, град	117.111(1)	117.4(2)	117.13(5)	117.128(1)	117.3(2)	117.11(5)
<i>V</i> , Å ³	554.80(2)		555.44(1)	550.51(1)		551.23(7)
<i>d</i> , г/см ³	5.44	5.41	5.43	5.52	5.53	5.51
Источник	Настоящая работа	[4]	[9]	Настоящая работа	[4]	[9]

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 56 № 7 2020

Рис. 2. Влияние ионного радиуса РЗЭ на рассчитанную плотность кристаллов соединений $RFeGe_2O_7$ (R = La-Gd).

Коэффициенты корреляции для уравнений (2) и (3) равны 0.9985 и 0.9987, а максимальные отклонения от сглаживающих кривых — 0.77 и 0.67%.

Наличие температурных зависимостей теплоемкости в виде соотношений (2) и (3) позволяет по известным термодинамическим уравнениям рассчитать термодинамические свойства PrFeGe₂O₇ и NdFeGe₂O₇ Из в табл. 2 следует, что значения C_p для обоих германатов при T > 850 К превышают классический предел Дюлонга-Пти 3*Rs*, где *R* – универсальная газовая постоянная, *s* – число атомов в формульной единице соединения (*s* = 11).

Сравнить полученные нами результаты по теплоемкости с данными других авторов не представлялось возможным вследствие их отсутствия. Поэтому на рис. 3 приведены значения C_p для германатов $Pr_2Ge_2O_7$ и $Nd_2Ge_2O_7$ [14]. Видно, что последние и замещенные германаты имеют близкие значения теплоемкости и подобные зависимости $C_p = f(T)$. В то же время для замещенных германатов наблюдаются меньшие по абсолютной величине значения C_p .

Для расчета температурной зависимости теплоемкости твердых тел в виде соотношения (1) используют метод Эрдоса и Черны [17, 18]. Он основан на использовании одного значения теплоемкости исследуемого вещества и зависимости (1) для вещества-эталона, имеющего одинаковую с ним стехиометрию (формульное подобие)

$$C_{p_{\rm o}} = a_{\rm o} + b_{\rm o}T - c_{\rm o}T^{-2}.$$
 (4)

Для исследуемого соединения уравнение (4) имеет следующий вид:

Рис. 3. Влияние температуры на молярную теплоемкость $Pr_2Ge_2O_7$ (*1*), $PrFeGe_2O_7$ (*2*), $Nd_2Ge_2O_7$ (*3*) и NdFeGe_2O_7 (*4*).

$$C_{p_{\rm o}} = a_{\rm o} + b_{\rm o} KT - c_{\rm o} K^{-2} T^{-2}, \qquad (5)$$

где *К* – коэффициент подобия, равный отношению температур эталона и исследуемого вещества, при котором их теплоемкости равны.

Если в качестве эталона для определения температурной зависимости теплоемкости $NdFeGe_2O_7$ использовать $PrFeGe_2O_7$, то уравнение (5) лучше представлять в несколько ином виде:

$$C_{p_{0}} = a_{0}K + b_{0}KT - c_{0}K^{2}T^{-2}.$$
 (6)

При K = 0.99 из уравнений (2) и (6) для NdFeGe₂O₇ имеем

$$C_p = 242.40 + 40.27 \times 10^{-3}T - 34.15 \times 10^{5}T^{-2}.$$
 (7)

Сравнение соотношений (3) и (7) показывает, что они достаточно близки между собой.

Отметим, что у Pr и Nd структура электронных уровней на *f*-орбитали разная, вследствие чего температурная зависимость аномальной теплоемкости Шоттки может иметь различный вид. Согласно [19], этот эффект будет иметь место при низких температурах, а при высоких его можно не учитывать.

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 56 № 7 2020

ВЫСОКОТЕМПЕРАТУРНАЯ ТЕПЛОЕМКОСТЬ ГЕРМАНАТОВ

<i>T</i> , K	<i>С_р</i> , Дж/(моль К)	<i>H</i> °(<i>T</i>) − <i>H</i> °(350 K), кДж/моль	S°(<i>T</i>) — S°(350 К), Дж/(моль К)	Φ°(<i>T</i>) – Φ° (350 К), Дж/(моль К)				
PrFeGe ₂ O ₇								
350	230.6	_	_	_				
400	239.3	11.76	31.39	1.99				
450	245.9	23.90	59.98	6.87				
500	251.2	36.33	86.18	13.51				
550	255.7	49.01	110.3	21.23				
600	259.5	61.89	132.8	29.60				
650	263.0	74.96	153.7	38.35				
700	266.2	88.19	173.3	47.29				
750	269.2	101.6	191.7	56.32				
800	271.9	115.1	209.2	65.33				
850	274.6	128.8	225.8	74.29				
900	277.2	142.6	241.5	83.14				
950	279.6	156.5	256.6	91.88				
1000	282.0	170.5	271.0	100.5				
I		NdFeGe	$_{2}O_{7}$					
350	229.6	_	_	_				
400	237.9	11.70	31.23	1.98				
450	244.2	23.76	59.63	6.83				
500	249.3	36.10	85.64	13.43				
550	253.6	48.68	109.6	21.10				
600	257.4	61.46	131.8	29.41				
650	260.7	74.41	152.6	38.10				
700	263.8	87.52	172.0	46.98				
750	266.7	100.8	190.3	55.93				
800	269.4	114.2	207.6	64.87				
850	272.0	127.7	224.0	73.76				
900	274.5	141.4	239.6	82.54				
950	276.9	155.2	254.5	91.21				
1000	279.3	169.1	268.8	99.73				

Таблица 2. Термодинамические свойства PrFeGe₂O₇ и NdFeGe₂O₇

ЗАКЛЮЧЕНИЕ

Обжигом на воздухе исходных смесей Pr_2O_3 (Nd₂O₃), Fe₂O₃ и GeO₂ при 1273–1473 К получены соединения PrFeGe₂O₇ и NdFeGe₂O₇. Измерена их высокотемпературная теплоемкость и показано, что в области 350–1000 К она хорошо описывается уравнением Майера–Келли. На основании этих данных рассчитаны термодинамические свойства синтезированных германатов.

БЛАГОДАРНОСТЬ

Работа выполнена при частичной финансовой поддержке работ, выполняемых в рамках Государственного задания Министерства науки и высшего образования Российской Федерации Сибирскому федеральному университету на 2017–2019 годы (проект 4.8083.2017/8.9 "Формирование банка данных термодинамических характеристик сложнооксидных полифункциональных материалов, содержащих редкие и рассеянные элементы").

СПИСОК ЛИТЕРАТУРЫ

- 1. Бондарь И.А., Виноградова Н.В., Демьянеи Л.Н. и др. Соединения редкоземельных элементов. Силикаты, германаты, фосфаты, арсенаты, ванадаты. М.: Наука, 1983. 288 с.
- 2. Демьянец Л.Н., Лобачев А.Н., Емельченко Г.А. Германаты редкоземельных элементов. М.: Наука. 1980. 152 c.
- 3. Juarez-Arellano E.A., Campa-Molina J., Ulloa-Godinez S. et al. Crystallochemistry of Thortyeitite-Like and Thortveitite-Type Compounds // Mater. Res. Soc. Symp. 2005. V. 848. P. FF6.15.1-FF6.15.8.
- 4. Kaminskii A.A., Mill B.V., Butashin A.V. et al. Germanates with NdAlGe₂O₇. Type Structure // Phys. Status. Solidi. A. 1987. V. 103. P. 575–592.
- 5. Милль Б.В., Казей З.А., Рейман С.И. и др. Магнитные и мессбауэровские исследования новых антиферромагнитных соелинений RFeGe₂O₇ (R = La-Gd) // Вестн. МГУ. Сер. 3. Физика, астрономия. 1987. T. 28. № 4. C. 95–98.
- 6. Cascales C., Gutierrez Puebla, Klimin S. et al. Magnetic Ordering in the Rare Earth Iron Germanates HoFeGe₂O₇ and ErFeGe₂O₇ // Chem. Mater. 1999. V. 11. P. 2520-2526.
- 7. Cascales C., Fernandez-Diaz M.T., Monge M.A., Bucio L. Crystal Structure and Low-Temperature Magnetic Ordering in Rare Earth Iron Germanates $RFeGe_2O_7$, R = Y, Pr, Dy, Tm, and Yb // Chem. Mater. 2002. V. 14. P. 19995-2003. https://doi.org/10.1021/cm0111332
- 8. Дрокина Т.В., Петраковский Г.А., Великанов Д.А., Молокеев М.С. Особенности магнитного упорядочения в соединении SmFeGe₂O₇ // Физика твердого тела. 2014. Т. 56. № 6. С. 1088-1092.
- 9. Bucio L., Cascales C., Alonso J.A., Rasines I. Neutron diffraction refinement and Characterization of FeRGe₂O₇ (R = La, Pr, Nd, Gd) // J. Phys.: Condens. Matter. 1996. V. 8. P. 2641-2653.
- 10. Baran E.J., Cascales C., Mercader R.C. Vibrational and ⁷Fe-Mössbauer spectra of FeTbGe₂O₇ // Spectrochim. Acta. A. 2000. V. 56. P. 1277-1281.

- 11. Денисова Л.Т., Каргин Ю.Ф., Чумилина Л.Г. и др. Синтез и исследование теплоемкости Pr₂CuO₄ в области 364-1064 К // Неорган. материалы. 2014. T. 50. № 12. C. 1324–1327. https://doi.org/10.7868/S0002337X14120057
- 12. Денисова Л.Т., Чумилина Л.Г., Белоусова Н.В. и др. Высокотемпературная теплоемкость оксидов системы CdO- V_2O_5 // Физика твердого тела. 2017. Т. 59. № 12. С. 2490-2494. https://doi.org/10.21883/FTT.2017.12.45253.145
- 13. Денисова Л.Т., Иртюго Л.А., Каргин Ю.Ф. и др. Высокотемпературная теплоемкость Tb₂Sn₂O₇ // Неорган. материалы. 2017. Т. 53. № 1. С. 71–73. https://doi.org/0.7868/S0002337X17010043
- 14. Денисова Л.Т., Иртюго Л.А., Белецкий В.В. и др. Высокотемпературная теплоемкость германатов Pr₂Ge₂O₇ и Nd₂Ge₂O₇ в области 350-1000 К // Физика твердого тела. 2018. Т. 60. № 3. С. 618-622. https://doi.org/10.21883/FTT.2018.03.45571.285
- 15. Shannon R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides // Acta Crystallogr., Stct. 1976. V. 32. P. 751–767.
- 16. Maier C.G., Kellev K.K. An Equation for the Representation of High Temperature Heat Content Data // J. Am. Chem. Soc. 1932. V. 54. № 8. P. 3243–3246.
- 17. Моисеев Г.К., Ватолин Н.А., Маршук Л.А., Ильиных Н.И. Температурные зависимости приведенной энергии Гиббса некоторых неорганических веществ (альтернативный банк данных АСТРА. OWN). Екатеринбург: УрО РАН, 1977. 230 с.
- 18. Морачевский А.Г., Сладков И.Б., Фирсова Е.Г. Термодинамические расчеты в химии и металлургии. СПб.: Лань. 2018. 208 с.
- 19. Гавричев К.С., Рюмин М.А., Гуревич В.М., Тюрин А.В. Теплоемкость и термодинамические функции DvVO₄ в области низких температур // Неорган. материалы. 2014. Т. 50. № 9. С. 993–999. https://doi.org/10.7868/S0002337X14090036