УДК 536.631

ТЕПЛОЕМКОСТЬ И ТЕРМОДИНАМИЧЕСКИЕ ФУНКЦИИ PdS

© 2020 г. Н. А. Полотнянко^{1, *}, А. В. Тюрин², Д. А. Чареев^{1, 3}, А. В. Хорошилов²

¹Государственный университет "Дубна", Университетская ул., 19, Дубна, Московская обл., 141982 Россия ²Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук, Ленинский пр., 31, Москва, 119991 Россия

³Институт экспериментальной минералогии им. Д.С. Коржинского Российской академии наук, ул. Академика Осипьяна, 4, Черноголовка, Московская обл., 142432 Россия

> *e-mail: polot.nat@gmail.com Поступила в редакцию 03.10.2019 г. После доработки 02.12.2019 г. Принята к публикации 23.01.2020 г.

Впервые методами адиабатической, релаксационной и дифференциальной сканирующей калориметрии измерена температурная зависимость теплоемкости и рассчитаны стандартные термодинамические функции высоцкита PdS в широком интервале температур. При температуре 298.15 К по-

лучены значения $C_p^{\circ} = 43.65 \pm 0.09 \,\text{Дж/(моль K)}, S^{\circ} = 51.98 \pm 0.10 \,\text{Дж/(моль K)}, H^{\circ}(298.15 \text{ K}) - H^{\circ}(0) = 8.03 \pm 0.02 \,\text{к}\text{Дж/моль}, \Phi^{\circ} = 25.03 \pm 0.05 \,\text{Дж/(моль K)}.$ С использованием литературных данных и результатов настоящего исследования рассчитаны $\Delta_f H^{\circ}(\text{PdS}, 298.15 \text{ K}) = -74.0 \pm 1.0 \,\text{к}\text{Дж/моль}, \Delta_f G^{\circ}(\text{PdS}, 298.15 \text{ K}) = -68.7 \pm 1.0 \,\text{к}\text{Дж/моль}.$

Ключевые слова: теплоемкость, сульфид палладия, высоцкит, адиабатическая калориметрия, релаксационная калориметрия, дифференциальная сканирующая калориметрия, термодинамические функции

DOI: 10.31857/S0002337X20070131

введение

Синтезированный моносульфид палладия является аналогом природного минерала высоцкита. Результаты рентгеноструктурного анализа PdS показали, что это соединение имеет тетрагональную элементарную ячейку, пр. гр. $P4_2(C_{4h}^2)$ [1–3]. На фазовой диаграмме системы Pd–S [4] высоцкит является строго стехиометрической фазой, которая плавится конгруэнтно при температуре 1000°С.

В литературе отсутствуют надежные данные о термодинамических свойствах моносульфида палладия, в частности, авторы фундаментального справочника [5] не рекомендуют никаких значений термодинамических функций для PdS. В работе [6] приведены измерения электрических, тепловых и структурных свойств сульфида палладия с целью исследования его термоэлектрических характеристик. Приведенные в этой работе измерения C_p выполнены методом релаксационной калориметрии до 300 К и представлены только в графическом виде. Нахождение достоверных термодинамических функций для сульфида палладия представляется важной задачей, поскольку эти данные необходимы, например, для определения механизмов образования гидротермальных месторождений палладия в растворах, одним из компонентов которых является сульфидная сера.

Целью настоящей работы явилось определение стандартных термодинамических функций для PdS на основе низко- и высокотемпературных измерений изобарной теплоемкости сульфида палладия.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез и характеристика образца. Порошкообразный сульфид палладия получали методом сухого синтеза в вакуумированных (10 Па) ампулах из кварцевого стекла [7] при температуре 550°С в горизонтальных печах сопротивления в течение 10 суток. В качестве реактивов, взятых в стехиометрическом соотношении, для синтеза PdS использовались палладиевая проволока (чистота 99.95%, диаметр 0.3 мм) и кристаллическая сера ЛАБТЕХ. После первого этапа сульфид палладия перетирался и повторно отжигался 15—20 суток при температуре 500°С с последующим охлаждением ампулы на воздухе.

Отсутствие примесей было доказано методом рентгеновской порошковой дифрактометрии (Bruker, Cu $K_{\alpha 1}$ -излучение, графитовый монохроматор) и методом рентгеноспектрального микроанализа (CAMECA SX100, 15 кВ).

Аппаратура и методика измерений. Температурную зависимость теплоемкости кристаллического моносульфида палладия исследовали методами релаксационной, вакуумной адиабатической и дифференциальной сканирующей калориметрии в интервале 4.14—954 К.

Для изучения низкотемпературной теплоем-

кости $C_p^{\circ} = f(T)$ образца PdS использовали полностью автоматизированный адиабатический вакуумный калориметр БКТ-3, сконструированный и изготовленный в AO3T "Термис" (пос. Менделеево, Московская обл.). В качестве хладагентов применяли жидкие гелий и азот. Масса образца, помещенного в контейнер, составляла 453.79 мг. После вакуумирования калориметрический контейнер заполняли сухим гелием в качестве теплообменного газа до давления 33 кПа и герметизировали. Молекулярная масса PdS принята равной 138.485 г/моль [8]. Конструкция калориметра и методика работы описаны в [9]. Предел допускаемого значения относительной погрешности измерения теплоемкости вещества до 40 К составлял 2%, в интервале 40–350 К снижался до 0.5%.

Измерения низкотемпературной теплоемкости также были проведены с помощью автоматизированной установки PPMS-9 фирмы Quantum Design релаксационным методом в режиме нагревания платформы с образцом. Конструкция установки и методика работы детально описаны в [10]. Образец закреплялся на измерительной ячейке при помощи смазки Apiezon N. Масса образца составляла 105.98 мг. Одна точка измерялась в течение 10–15 мин, шаг изменения температуры при переходе от точки к точке – 1 К. Относительная ошибка измерений составляет менее 2%, и величина ее зависит от диапазона температур, в которых проводятся измерения [10].

Высокотемпературная теплоемкость PdS была определена на дифференциальном сканирующем калориметре (ДСК) STA 449 F1 Jupiter® (Netzsch-Geratebau GmbH, Германия). Эксперименты проводились в атмосфере газообразного гелия марки "6.0" (99.9999%). Расход газа составлял 30 мл/мин (продувочный) и 20 мл/мин (защитный). Для измерений использовали платиновые тигли с крышкой (диаметр тиглей 6.8 мм, объем 85 мм³). В качестве эталона использовали синтетический сапфир α -Al₂O₃ в виде диска диаметром 6 и толщиной 0.5 мм, а при проведении экспериментов пустой тигель, аналогичный по массе тиглю для образца. Масса образца составила 52.53 мг. После четырех циклов откачки—заполнения гелием внутреннего объема проводили дополнительное термостатирование в течение 20 мин. Скорость нагревания составила 20 К/мин.

Для обработки полученных на ДСК экспериментальных данных использовали программное обеспечение Netzsch Proteus. Предел относительной погрешности измерения теплоемкости вещества на ДСК составил 2.0%.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Теплоемкость кристаллического моносульфида палладия была измерена методом адиабатической калориметрии с помощью БКТ-3 в интервале температур 94.45—347.27 К (83 экспериментальные точки) и методом релаксационной калориметрии на приборе PPMS-9 при 4.14—105.79 К (113 экспери-

ментальных точек), полученные значения C_p° представлены в табл. 1, 2 и на рис. 1. На температурной зависимости теплоемкости в области 310 К (рис. 1) наблюдается небольшая пологая аномалия, природа которой неизвестна.

Сглаживание 196 экспериментальных точек низкотемпературной теплоемкости (табл. 1, 2) было проведено с помощью полиномов вида [11]

$$C_p = \sum_{0}^{m} A_j U^j, \qquad (1)$$

где *А* – коэффициенты полинома,

$$U = [1 - \exp(-0.001T)].$$
(2)

Коэффициенты использованного полинома представлены в табл. 3. Сглаженные полиномом (1) значения теплоемкости и термодинамических функций PdS в низкотемпературной области приведены в табл. 4. При сглаживании и интегрировании экспериментальных значений теплоемкости аномалия при 310 К не учитывалась ввиду небольшого вклада в значения стандартной энтропии и энтальпии, а также отсутствия на настоящий момент ее подтверждения другими методами в литературе.

При температуре 298.15 К для PdS термодинамические функции при стандартных условиях

равны: $C_p^{\circ}(298.15 \text{ K}) = 43.65 \pm 0.09 \text{ Дж/(моль K)},$ $S^{\circ}(298.15 \text{ K}) = 51.98 \pm 0.10 \text{ Дж/(моль K)},$ $H^{\circ}(298.15 \text{ K}) - H^{\circ}(0) = 8.03 \pm 0.02 \text{ кДж/моль},$ $\Phi^{\circ}(298.15 \text{ K}) = -[G^{\circ}(298.15 \text{ K}) - H^{\circ}(0)]/298.15 =$ $= 25.03 \pm 0.05 \text{ Дж/(моль K)}.$

1 1							
<i>Т</i> , К	C_p°	<i>Т</i> , К	C_p°	<i>Т</i> , К	C_p°	<i>Т</i> , К	C_p°
Cep	ия 1	159.32	32.74	239.29	40.29	257.58	41.54
94.45	21.03	162.63	33.18	243.48	40.61	261.60	41.81
96.51	21.48	165.94	33.64	247.59	40.99	265.60	42.08
98.57	21.88	169.24	34.05	251.63	41.20	269.60	42.26
100.63	22.36	172.55	34.45	255.67	41.44	273.58	42.52
103.30	22.90	175.86	34.88	259.69	41.73	277.55	42.68
106.57	23.60	179.16	35.16	263.70	42.05	281.50	42.81
109.85	24.04	182.47	35.53	267.70	42.25	285.44	42.98
113.14	24.73	185.77	35.83	271.69	42.52	289.36	43.16
116.42	25.39	189.07	36.11	275.66	42.74	293.27	43.30
119.72	25.99	192.38	36.48	279.62	42.87	296.99	43.30
123.01	26.59	195.68	36.72	283.57	43.00	300.86	43.52
126.31	27.19	198.98	36.88	287.50	43.20	305.19	43.89
129.60	27.80	202.69	37.30	291.41	43.36	311.48	44.51
132.90	28.42	206.80	37.57	295.13	43.29	318.77	44.67
136.20	28.96	210.91	37.96	299.01	43.62	325.94	44.48
139.50	29.50	215.01	38.34	Cep	ия 2	333.14	44.41
142.80	30.09	219.11	38.70	237.36	40.14	340.19	44.37
146.10	30.73	223.22	38.98	241.42	40.46	347.27	44.51
149.41	31.23	227.14	39.33	245.48	40.77		
152.71	31.69	231.34	39.63	249.52	41.07		
156.02	32.25	235.58	39.99	253.56	41.33		

2020

Таблица 1. Экспериментальные значения теплоемкости PdS в Дж/(моль K), полученные в адиабатическом калориметре БКТ-3

Отметим, что определенное в настоящей работе значение теплоемкости хорошо согласуется с величиной $C_p^{\circ}(298.15 \text{ K}) = 43.39 \text{ Дж/(моль K)}$ [12] и может быть сопоставлено со значением $C_p^{\circ}(298.15 \text{ K}) = 48.66 \pm 0.09 \text{ Дж/(моль K)}$ [13], полученным методами теоретического прогноза. Значение $C_p^{\circ}(300 \text{ K}) = 43.61 \text{ Дж/(моль K)}$, полученное в настоящей работе методом адиабатической калориметрии, почти на 11% меньше вели-

чины $C_p^{\circ}(300 \text{ K}) = 48.47 \text{ Дж/(моль K)}$ [6], определенной на PPMS, что может быть связано с увеличением погрешности релаксационной калориметрии с ростом температуры, а также с возможным несоблюдением авторами [6] рекомендаций по проведению измерений на приборе [14]. Энтропия $S^{\circ}(298.15 \text{ K}) = 51.98 \pm 0.10 \text{ Дж/(моль K)}$ в пределах погрешности согласуется с величиной $S^{\circ}(298.15 \text{ K}) = 56.5 \pm 8.4 \text{ Дж/(моль K)}$ [15], вычисленной на основании высокотемпературных исследований равновесий в гетерогенных системах

PdS-H₂-Pd₄S-H₂S [16] и реакции диссоциации PdS [17].

Методом ДСК была изучена теплоемкость PdS в интервале температур 304.9–954.9 К, рассчи-

танные сглаженные значения C_p° с шагом 10 К представлены в табл. 5.

В области до плавления сульфида палладия при температуре 902.8 К наблюдали аномалию теплоемкости в виде пика, тепловой эффект которой составил $\Delta_{tr}H = 1713$ Дж/моль, $\Delta_{tr}S = \Delta_{tr}H/T = 1.897$ Дж/(моль К). Начиная с 983 К зафиксировано постепенное снижение массы исследуемого образца, которое сопровождалось эндотермическим эффектом. Согласно фазовой диаграмме системы S-Pd [4], можно предположить, что при температуре выше 983 К началось разложение вещества с образованием Pd₄S и S₂(г.).

По результатам высокотемпературных измерений в интервале 330-845 К в настоящей работе

<i>Т</i> , К	C_p°						
4.14	0.00912	9.42	0.111	21.92	1.440	51.04	9.941
4.25	0.00915	9.70	0.123	22.55	1.571	52.55	10.37
4.37	0.00975	9.99	0.135	23.23	1.716	54.11	10.82
4.49	0.0104	10.29	0.1466	23.92	1.858	55.70	11.27
4.61	0.0112	10.57	0.1582	24.61	2.028	57.36	11.73
4.74	0.0127	10.88	0.1738	25.36	2.195	59.05	12.21
4.87	0.0137	11.20	0.1892	26.09	2.388	60.79	12.68
5.01	0.0155	11.53	0.2074	26.87	2.583	62.60	13.17
5.15	0.0166	11.87	0.2257	27.67	2.784	64.45	13.68
5.30	0.0179	12.22	0.2461	28.48	3.002	66.36	14.20
5.45	0.0200	12.59	0.2703	29.32	3.236	68.32	14.71
5.61	0.0215	12.96	0.2953	30.19	3.489	70.34	15.23
5.77	0.0242	13.34	0.3232	31.08	3.755	72.42	15.74
5.94	0.0260	13.74	0.3520	32.00	4.032	74.57	16.28
6.11	0.0293	14.14	0.3834	32.95	4.327	76.77	16.83
6.29	0.0314	14.56	0.4186	33.92	4.621	79.04	17.39
6.47	0.0350	14.99	0.4577	34.94	4.914	81.37	18.02
6.66	0.0388	15.44	0.5018	35.96	5.227	83.79	18.55
6.85	0.0429	15.89	0.5484	37.03	5.560	86.26	19.18
7.06	0.0460	16.37	0.5993	38.12	5.905	88.81	19.79
7.26	0.0510	16.85	0.6546	39.25	6.274	91.44	20.39
7.48	0.0560	17.35	0.7148	40.41	6.641	94.15	20.98
7.70	0.0602	17.86	0.7811	41.61	7.016	96.93	21.54
7.92	0.0662	18.39	0.8540	42.84	7.403	99.79	22.28
8.16	0.0726	18.94	0.9346	44.11	7.793	102.75	22.87
8.39	0.0798	19.50	1.021	45.41	8.202	105.79	23.44
8.64	0.0868	20.07	1.114	46.76	8.623		
8.90	0.0956	20.67	1.221	48.15	9.055		
9.16	0.100	21.28	1.328	49.57	9.499		

Таблица 2. Экспериментальные значения теплоемкости PdS в Дж/(моль K), полученные методом релаксационной калориметрии с помощью PPMS-9

определены коэффициенты в уравнении Майера-Келли (в Дж/(моль К)):

$$C_{p}^{\circ} = a + bT + cT^{-2} = (47.3 \pm 0.1) + + (3.9 \pm 0.8) \times 10^{-3}T - (4.7 \pm 0.5) \times 10^{5}T^{-2}.$$
(3)

Графическая зависимость $C_p^{\circ} = f(T)$ по уравнениям (1) и (3) представлена на рис. 1.

Используя коэффициенты уравнения (3), фиксируя значение энтропии $S^{\circ}(298.15 \text{ K})$, полученное в настоящей работе, рассчитали значения термодинамических функций в высокотемпературной области:

$$C_{p}^{\circ}(T), S^{\circ}(T), H^{\circ}(T) - H^{\circ}(298.15K), \Phi^{\circ}(T)' = -[G^{\circ}(T) - H^{\circ}(298.15K)]/T,$$

результаты расчетов представлены в табл. 6.

Термодинамические свойства PdS(κ). В работе [16] изучено равновесие в гетерогенных системах PdS-H₂-Pd₄S-H₂S и Pd₄S-H₂-Pd-H₂S при температурах 612–795 К. На основании полученных констант равновесия, с применением результатов исследования реакций диссоциации PdS и PdS₂ [17],

Рис. 1. Зависимость $C_p^{\circ}(T)$ PdS: *1* – метод релаксационной калориметрии, 4.14–105.79 К; *2* – метод адиабатической калориметрии, 94.45–347.27 К; *3* – метод дифференциальной сканирующей калориметрии, 304.9–954.9 К; линия – сглаженные значения теплоемкости.

j	<i>А_j</i> , Дж/(моль К)
0	-0.28×10^{-1}
1	-0.6476×10^{1}
2	0.602386×10^4
3	-0.9764712×10^{6}
4	0.903836815×10^8
5	$-0.3809806654 \times 10^{10}$
6	$0.93353352185 \times 10^{11}$
7	$-0.148752178262 \times 10^{13}$
8	$0.162930651279 \times 10^{14}$
9	$-0.126101317791 \times 10^{15}$
10	$0.696383225903 \times 10^{15}$
11	$-0.272908984116 \times 10^{16}$
12	$0.741670765311 \times 10^{16}$
13	$-0.132929578809 \times 10^{17}$
14	$0.141329803374 \times 10^{17}$
15	$-0.67518824707 \times 10^{16}$

	Таблица З.	Коэффициенты уравнения	(1))
--	------------	------------------------	-----	---

авторами [16] была определена температурная зависимость стандартной энергии Гиббса (в Дж)

$$\Delta_r G^\circ = -137235 + 97.5T \tag{4}$$

для реакции

$$Pd + 0.5S_2(r.) = PdS.$$
 (5)

Определенная в настоящей работе зависимость

 $C_p^{\circ} = f(T)$ для PdS (уравнение (3)), уравнения температурной зависимости теплоемкости и значения абсолютных энтропий при 298.15 К для Pd [18] и S₂(г.) [19], а также фиксация величины S° (PdS, 298.15 K) позволяют, используя данные [16], рассчитать энтальпии реакции (1) по второму ($\Delta_r H^{\circ} = -138.2 \text{ кДж/моль}$) и третьему ($\Delta_r H^{\circ} = -138.4 \text{ кДж/моль}$) законам термодинамики. На основании величины $\Delta_r H^{\circ}$, вычисленной по третьему закону термодинамики, и значения $\Delta_f H^{\circ}$ (S₂(г.), 298.15 K) [20] можно вычислить энтальпию образования $\Delta_f H^{\circ}$ (PdS, 298.15 K) = $-74.0 \pm 1.0 \text{ кДж/моль}$.

Рекомендованным в настоящей работе значениям *S*°(PdS, 298.15 K) и $\Delta_f H^\circ$ (PdS, 298.15 K) соответствует величина $\Delta_f G^\circ$ (PdS, 298.15 K) = -68.7 ± ± 1.0 кДж/моль.

ПОЛОТНЯНКО и др.

<i>Т</i> , К	$C_p^{\circ}(T),$ Дж/(моль К)	<i>S</i> °(<i>T</i>), Дж/(моль К)	$H^{\circ}(T) - H^{\circ}(0),$ Дж/моль	$\Phi^{\circ}(T)$, Дж/(моль К)
5	0.0143	0.00475	0.0178	0.00119
10	0.1344	0.04524	0.3447	0.01077
15	0.4533	0.1507	1.701	0.03730
20	1.106	0.3618	5.452	0.08920
25	2.121	0.7113	13.38	0.1761
30	3.433	1.210	27.17	0.3043
35	4.931	1.850	48.03	0.4777
40	6.509	2.611	76.62	0.6955
45	8.085	3.469	113.1	0.9557
50	9.612	4.400	157.4	1.252
60	12.47	6.409	268.0	1.942
70	15.13	8.534	406.2	2.731
80	17.66	10.72	570.2	3.593
90	20.03	12.94	758.8	4.509
100	22.22	15.16	970.2	5.458
110	24.22	17.38	1203	6.444
120	26.08	19.57	1454	7.453
130	27.86	21.72	1724	8.458
140	29.61	23.85	2011	9.486
150	31.28	25.95	2316	10.51
160	32.82	28.02	2637	11.54
170	34.16	30.05	2972	12.57
180	35.28	32.04	3319	13.60
190	36.23	33.97	3677	14.62
200	37.08	35.85	4043	15.64
210	37.91	37.68	4418	16.64
220	38.75	39.46	4801	17.64
230	39.59	41.20	5193	18.62
240	40.38	42.91	5593	19.61
250	41.08	44.57	6000	20.57
260	41.72	46.19	6414	21.52
270	42.30	47.78	6834	22.47
280	42.85	49.33	7260	23.40
290	43.30	50.84	7691	24.32
298.15	43.65	51.98	8034	25.03
300	43.69	52.31	8126	25.22
310	43.95	53.75	8563	26.13
320	44.17	55.14	9003	27.01

Таблица 4. Термодинамические функции PdS, полученные методами релаксационной и адиабатической калориметрии

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 56 № 7 2020

ТЕПЛОЕМКОСТЬ И ТЕРМОДИНАМИЧЕСКИЕ ФУНКЦИИ PdS

<i>Т</i> , К	C_p°	<i>Т</i> , К	C_p°	<i>Т</i> , К	C_p°	<i>Т</i> , К	C_p°
304.9	43.43	474.9	47.08	644.9	48.70	804.9	49.74
314.9	43.79	484.9	47.20	654.9	48.78	814.9	49.79
324.9	44.11	494.9	47.32	664.9	48.85	824.9	49.85
334.9	44.42	504.9	47.44	674.9	48.92	834.9	49.91
344.9	44.70	514.9	47.55	684.9	48.99	844.9	49.96
354.9	44.96	524.9	47.65	694.9	49.06	854.9	50.02
364.9	45.20	534.9	47.76	704.9	49.12	864.9	50.07
374.9	45.42	544.9	47.86	714.9	49.19	874.9	50.12
384.9	45.63	554.9	47.95	724.9	49.25	884.9	50.18
394.9	45.83	564.9	48.04	734.9	49.32	894.9	50.23
404.9	46.02	574.9	48.13	744.9	49.38	904.9	50.28
414.9	46.19	584.9	48.22	754.9	49.44	914.9	50.33
424.9	46.36	594.9	48.31	764.9	49.50	924.9	50.38
434.9	46.52	604.9	48.39	774.9	49.56	934.9	50.44
444.9	46.67	614.9	48.47	784.9	49.62	944.9	50.49
454.9	46.81	624.9	48.55	794.9	49.68	954.9	50.54
464.9	46.95	634.9	48.63				

Таблица 5. Сглаженные значения теплоемкости PdS в Дж/(моль K), полученные методом ДСК, с шагом 10 К

Таблица 6. Термодинамические функции PdS для высокотемпературной области

<i>Т</i> , К	$C_p^{\circ}(T),$ Дж/(моль К)	<i>S</i> °(<i>T</i>), Дж/(моль К)	<i>H</i> °(<i>T</i>) − <i>H</i> °(298.15 K), Дж/моль	$\Phi^{\circ}(T)',$ Дж/(моль К)
350	44.84	59.04	2.28	52.51
400	45.93	65.10	4.56	53.72
450	46.75	70.56	6.87	55.29
500	47.38	75.52	9.23	57.07
550	47.91	80.06	11.61	58.96
600	48.35	84.25	14.02	60.89
650	48.74	88.14	16.44	62.84
700	49.09	91.76	18.89	64.78
750	49.41	95.16	21.35	66.69
800	49.71	98.36	23.83	68.57
850	49.99	101.38	26.32	70.41

БЛАГОДАРНОСТЬ

Данное исследование стало возможным благодаря термодинамической базе данных, созданной д.х.н., проф. И.Л. Ходаковским (1941-2012).

Изучение теплоемкости PdS выполнено в рамках государственного задания ИОНХ РАН в области фундаментальных научных исследований с использованием оборудования ЦКП ИОНХ РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Gaskell T.F.* The Structure of Braggite and Palladium Sulphide // Z. Kristallogr. 1937. V. 96. P. 203–213.
- Gronvold F, Rost E. On the Sulfides, Selenides and Tellurides of Palladium // Acta Chem. Scand. 1956. V. 10. P. 1620–1634.
- Brese N.E., Squattrto P.J., Ibers J.A. Reinvestigation of the Structure of PdS // Acta Crystallogr., Sect. C. 1985. V. 41. P. 1829–1830.
- 4. *Okamoto H*. Pd−S (Palladium-Sulfur) // J. Phase Equilib. 1992. V. 13. № 1. P. 106–107.
- Hummel W., Berner U., Curti E., Pearson F.J., Thoenen T. Nagra/PSI Chemical Thermodynamic Database 01/01 // Nagra Technical Report NTB 02-16, Wettingen, 2002. P. 248–249.
- Liu-Cheng Chen, Bin-Bin Jiang, Hao Yu, Hong-Jie Pang, Lei Su, Xun Shi, Li-Dong Chen, Xiao-Jia Chen. Thermoelectric Properties of Polycrystalline Palladium Sulfide // RSC Adv. 2018. V. 8. P. 13154–13158 https://doi.org/10.1039/c8ra01613e
- Kullerud G. Experimental Techniques in Dry Sulfide Research. Research Techniques for High Temperature and High Pressure / Ed. Ulmer G.C. New York, 1971. P. 288–315.
- NIST. Atomic Weights and Isotopic Compositions [Электронный ресурс] // URL: http://www.physics.nist.gov/PhysRefData/Compositions.
- Малышев В.М., Мильнер Г.А., Соркин Е.Л., Шибакин В.Ф. Автоматический низкотемпературный калориметр // Приборы и техника эксперимента. 1985. Т. 6. С. 195–197.

- Lashley J.C., Hundley M.F., Migliori A., Sarrao J.L., Pagliuso P.G., Darling T.W., Jaime M., Cooley J.C., Hults W.L., Morales L., Thoma D.J., Smith J.L., Boerio-Goates J., Woodfield B.F., Stewart G.R., Fisher R.A., Phillips N.E. Critical Examination of Heat Capacity Measurements Made on a Quantum Design Physical Property Measurement System // Cryogenics. 2003. V. 43. P. 369–378.
- Гуревич В.М., Хлюстов В.Г. Калориметр для определения низкотемпературной теплоемкости минералов. Теплоемкость кварца в интервале 9–300 К // Геохимия. 1979. № 6. С. 829–839.
- Sassani D.C., Shock E.L. Solubility and Transport of Platinum-Group Elements in Supercritical Fluids: Summary and Estimates of Thermodynamic Properties for Ruthenium, Rhodium, Palladium, and Platinum Solids, Aqueous Ions and Complexes to 1000°C and 5 kbar // Geochim. Cosmochim. Acta. 1998. V. 62. P. 2643–2671.
- 13. *Каржавин В.К.* Сульфиды, селениды, теллуриды платины и палладия. Оценка термодинамических свойств // Геохимия. 2007. № 9. С. 1014–1021.
- 14. Quan Shi, Claine L. Snow, Juliana Boerio-Goates, Brian F. Woodfield. Accurate Heat Capacity Measurements on Powdered Samples Using a Quantum Design Physical Property Measurement System // J. Chem. Thermodyn. 2010. V. 42. P. 1107–1115. https://doi.org/10.1016/j.jct.2010.04.008
- Медведев В.А., Бергман Г.А. и др. Термические константы веществ (ред. Глушко В.П.). М.: ВИНИТИ, 1972. Вып. VI. С. 322–323.
- Niwa K., Yokokawa T., Isoya T. Equilibria in the PdS– H₂–Pd₄S–H₂S and Pd₄S–H₂–Pd–H₂S Systems // Bull. Chem. Soc. Jpn. 1962. V. 35. P. 1543–1545.
- Biltz W., Laar J. Tensionsanalyse der hoheren Palladiumsulfide // Z. Anorg. Chem. 1936. V. 228. P. 257–267.
- Pankratz L.B. Thermodynamic Properties of Elements and Oxides. Washington, D.C.: U.S. Dept. Interioz, Bur. Mines, 1982. No 672. 509 p.
- Наумов Г.Б., Рыженко Б.Н., Ходаковский И.Л. Справочник термодинамических величин. М.: Атомиздат, 1971. С. 240.
- Cox J.D., Wagman D.D., Medvedev V.A. CODATA Key Values for Thermodynamics. N.Y.: Hemisphere Publishing Corp., 1989.