УДК 536.63

СИНТЕЗ, СТРУКТУРА И ТЕПЛОФИЗИЧЕСКИЕ СВОЙСТВА EuGaGe₂O₇

© 2020 г. Л. Т. Денисова^{1, *}, М. С. Молокеев^{2, 3}, Л. А. Иртюго¹, В. В. Белецкий¹, Ю. Ф. Каргин⁴, В. М. Денисов¹

¹Институт цветных металлов и материаловедения Сибирского федерального университета, Свободный пр., 79, Красноярск, 660041 Россия

²Институт физики им. Л.В. Киренского ФИЦ КНЦ СО Российской академии наук,

Академгородок, 50, стр. 38, Красноярск, 660036 Россия

³Институт инженерной физики и радиоэлектроники Сибирского федерального университета, ул. Киренского, 28, корп. 12 (Б), Красноярск, 660041 Россия

⁴Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук, Ленинский пр., 49, Москва, 119991 Россия

*e-mail: antluba@mail.ru

Поступила в редакцию 16.12.2019 г. После доработки 23.01.2020 г. Принята к публикации 04.02.2020 г.

Твердофазным синтезом на воздухе стехиометрической смеси Eu₂O₃, Ga₂O₃ и GeO₂ в интервале температур 1273–1473 К получен германат европия-галлия EuGaGe₂O₇. Методом рентгеновской дифракции определена его структура (пр. гр. $P2_1/c$, a = 7.1693(7) Å, b = 6.57008(6) Å, c = 12.7699(1) Å, $\beta = 117.4522(5)^\circ$, V = 533.768(8) Å³). Методом дифференциальной сканирующей калориметрии в интервале температур 350–1053 К определена зависимость теплоемкости поликристаллических образцов и по экспериментальным данным рассчитаны термодинамические свойства (изменения энтальпии, энтропии и приведенной энергии Гиббса) EuGaGe₂O₇.

Ключевые слова: германат европия-галлия, твердофазный синтез, дифференциальная сканирующая калориметрия, теплоемкость, структура, термодинамические свойства DOI: 10.31857/S0002337X20080047

введение

Интерес исследователей к сложным оксидным соединениям с общей формулой $RMGe_2O_7$ (R = = P3Э: M = Al, Ga, In, Fe) связан с возможностями их практического применения [1-8]. Германаты $RMGe_2O_7$ (M = Al, Ga) имеют моноклинную структуру (пр. гр. $P2_1/c$), в то время как пространственная группа симметрии соединений RFeGe₂O₇ зависит от радиуса редкоземельного иона: *P*2₁/*c* – для La–Gd, *P*2₁/*m* – для Tb–Lu [7– 9]. К наименее исследованным германатам относятся соединения RGaGe₂O₇. Для них имеются отрывочные сведения о кристаллической структуре [2, 6, 9] и оптическим свойствам [2, 4]. Сведения об их теплоемкости и термодинамическим свойствам в литературе отсутствуют. Можно отметить, что высокотемпературная теплоемкость и термодинамические свойства германатов RMGe₂O₇ измерены только для YInGe₂O₇ и TmInGe₂O₇ [11]. Диаграмма состояния системы Eu₂O₃-Ga₂O₃-GeO₂ не построена. Для термодинамического моделирования требуются данные по термодинамическим свойствам образующихся соединений, которых к настоящему времени нет.

Цель настоящей работы — исследование структуры и теплофизических свойств EuGaGe₂O₇.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Германат европия-галлия получали твердофазным синтезом из Eu_2O_3 ("х. ч."), Ga_2O_3 ("ос. ч.") и GeO₂ (99.999%). Стехиометрическую смесь из предварительно прокаленных при 1173 К оксидов гомогенизировали в агатовой ступке и прессовали в таблетки, обжиг которых проводили на воздухе при 1273 К (40 ч), 1373 К (100 ч) и 1473 К (60 ч). Для достижения полноты твердофазного взаимодействия компонентов через каждые 20 ч проводили перетирание образцов с последующим прессованием. При этом принимали во внимание, что относительно высокие температуры твердофазного синтеза приводят к частичному испарению GeO₂ [12]. Поэтому синтез проводили в тиглях с

Рис. 1. Кристаллическая структура EuGaGe₂O₇.

крышкой. Время синтеза и дополнительное количество GeO_2 подбирали экспериментально, контролируя состав полученных образцов методом рентгеноструктурного анализа на дифрактометре Bruker D8 ADVANCE (Cu K_{α} -излучение) с линей-

Таблица 1. Основные параметры съемки и уточнения структуры кристалла $EuGaGe_2O_7$ (пр. гр. $P2_1/c$)

<i>a</i> , Å	7.16932(7)
<i>b</i> , Å	6.57008(6)
<i>c</i> , Å	12.7699(1)
β, град	117.4522(5)
$V, Å^3$	533.768(8)
Ζ	4
<i>d</i> , г/см ³	5.96
Интервал углов 20, град	10-120
$R_{wp}, \%$	1.87
$R_p, \%$	1.48
$R_{exp}, \%$	1.56
χ^2	1.20
<i>R</i> _{<i>B</i>} , %	0.43

Примечание. a, b, c, β — параметры ячейки; V — объем ячейки; d — рассчитанная плотность; факторы недостоверности: R_{wp} — весовой профильный, R_p — профильный, R_{exp} — ожидаемый, R_B — интегральный; χ^2 — качество подгонки.

ным детектором VANTEC. Шаг сканирования составлял 0.016°, время экспозиции — 2с на шаг.

Теплоемкость EuGaGe $_2O_7$ измеряли на термоанализаторе STA 449 C Jupiter (NETZSCH, Германия). Методика экспериментов подобна описанной в [13]. Ошибка экспериментов не превышала 2%.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Уточнение методом Ритвельда проведено в программе TOPAS 4.2 [14]. Почти все пики были проиндицированы в рамках моноклинной ячейки ($P2_1/c$) с параметрами, близкими к GdGaGe₂O₇ [2]. Поэтому структура этого кристалла взята в качестве стартовой модели для уточнения. Для преобразования позицию Gd заменяли на ион Eu (рис. 1). Тепловые параметры всех атомов уточнены в изотропном приближении. Уточнение шло стабильно и дало низкие величины *R*-факторов (рис. 2, табл. 1). Координаты атомов и основные длины связей представлены в табл. 2 и 3 соответственно.

Полученные нами значения параметров элементарной ячейки EuGaGe₂O₇ (табл. 1) достаточно хорошо согласуются с данными [2]: a == 7.16(1) Å, b = = 6.56(1) Å, c = 12.77(1) Å, $\beta =$ = 117.4(2)°, d = 5.98 г/см³.

Рис. 2. Экспериментальная, расчетная и разностная рентгенограммы EuGaGe₂O₇.

2020

Влияние температуры на теплоемкость EuGaGe₂O₇ показано на рис. 3. Значения C_p с ростом температуры от 350 до 1053 К закономерно увеличиваются, а на зависимости $C_p = f(T)$ не наблюдается каких-либо экстремумов. Полученные данные могут быть описаны уравнением Майера–Келли [15]

$$C_p = a + bT - cT^{-2},$$
 (1)

которое для EuGaGe₂O₇ имеет следующий вид:

$$C_p = (259.40 \pm 0.81) + (30.94 \pm 0.80) \times 10^{-3}T - (51.51 \pm 0.92) \times 10^{5}T^{-2}.$$
 (2)

Для уравнения (2) коэффициент корреляции равен 0.9987, а максимальное отклонение экспериментальных точек от сглаживающей кривой равно 0.79%.

Сравнить эти данные с результатами других авторов не представлялось возможным вследствие их отсутствия. Можно только отметить, что замена части европия на галлий приводит к меньшим значениям C_p (рис. 3).

Расчет *C_p* для EuGaGe₂O₇ при 298 К по уравнению Неймана–Коппа [17]

$$C_{p,298} (\text{EuGaGe}_{2}\text{O}_{7}) = \frac{1}{2}C_{p,298} (\text{Eu}_{2}\text{O}_{3}) + \frac{1}{2}C_{p,298} (\text{Ga}_{2}\text{O}_{3}) + 2C_{p,298} (\text{GeO}_{2})$$
(3)

дает значение 213.7 Дж/(моль К). Из уравнения (2) следует, что $C_{p,298}$ (EuGaGe₂O₇) = 210.57 Дж/(моль К).

Таблица 2. Координаты атомов и изотропные тепловые параметры (B_{iso}) структуры EuGaGe₂O₇

Атом	x	У	z	B _{iso}
Eu	0.7608(2)	0.14629(18)	0.02552(11)	0.12(15)
Ga1	0.7897(3)	0.3998(4)	0.26951(16)	0.19(15)
Ge1	0.7836(4)	0.6578(4)	0.0437(2)	0.21(16)
Ge2	0.2995(4)	0.4120(4)	0.2216(2)	0.39(16)
O 1	0.5905(17)	0.8253(17)	0.0223(8)	0.51(19)
O2	0.7818(14)	0.1114(18)	0.2136(9)	0.51(19)
O3	0.5697(15)	0.3753(18)	0.3099(9)	0.51(19)
O4	0.0010(16)	0.3372(18)	0.4206(9)	0.51(19)
O5	0.7442(18)	0.0037(14)	0.4164(10)	0.51(19)
O6	0.7919(16)	0.4455(14)	0.1263(10)	0.51(19)
07	0.1502(18)	0.1844(15)	0.1800(11)	0.51(19)

Таблица 3. Основные длины связей (Å) в структуре EuGaGe₂O₇

Eu–O1 ^I	2.428(10)	Ga1–O4 ^{VI}	1.869(10)
Eu–O1 ^{II}	2.309(8)	Ga1–O6	1.860(11)
Eu–O2	2.348(9)	Ga1–O7 ^{VII}	1.960(10)
Eu–O3 ^{III}	2.450(10)	Ge1–O1	1.689(9)
Eu–O4 ^{IV}	2.536(10)	Ge1–O4 ^{VII}	1.826(9)
Eu–O4 ^V	2.626(7)	Ge1–O5 ^{III}	1.823(11)
Eu–O5 ^{III}	2.705(10)	Ge1-06	1.733(10)
Eu–O6	2.303(10)	Ge2–O2 ^{VII}	1.785(10)
Eu–O7 ^{VI}	2.583(10)	Ge2–O3	1.751(8)
Ga1–O2	2.017(12)	Ge2–O5 ^{VII}	1.732(11)
Ga1–O3	1.879(6)	Ge2-07	1.772(10)

Примечание. Элементы симметрии: x, y - 1, z (I); -x + 1, -y + 1, -z (II); x, -y + 1/2, z - 1/2 (III); -x + 1/2, y - 1/2, -z + 1/2 (IV); x + 1, -y + 1/2, z - 1/2 (V); x + 1, y, z (VI); -x + 1, y + 1/2, -z + 1/2 (VI).

Рис. 3. Температурные зависимости молярной теплоемкости $Eu_2Ge_2O_7(1)$ [16] и $EuGaGe_2O_7(2)$.

Таким образом, расчет по уравнению Неймана– Коппа дает значение теплоемкости, близкое к экспериментальной величине ($\Delta = +1.2\%$). При расчете по уравнению (3) значения теплоемкостей Eu₂O₃, Ga₂O₃ и GeO₂ заимствованы из работы [17]. Несколько большую разницу в значениях C_p дает инкрементный метод Кумока [18]: $\Delta = +3.1\%$. С использованием уравнения (2) по известным термодинамическим соотношениям рассчитаны термодинамические функции (изменения энтальпии, энтропии и приведенной энергии Гиббса) германата EuGaGe₂O₇. Эти результаты приведены в табл. 4. Видно, что при T > 750 К значения C_p превышают классический предел Дюлонга—

<i>Т</i> , К	<i>С_р,</i> Дж/(моль К)	<i>H</i> °(<i>T</i>) − <i>H</i> °(350 K), кДж/моль	<i>S</i> °(<i>T</i>) − <i>S</i> °(350 K), Дж/(моль K)	Ф°(<i>T</i>), Дж/(моль К)
350	228.1	_	_	_
400	239.5	11.71	31.25	1.98
450	247.8	23.90	59.97	6.85
500	254.2	36.46	86.42	13.50
550	259.3	49.30	110.9	21.26
600	263.6	62.38	133.6	29.69
650	267.3	75.65	154.9	38.51
700	270.5	89.10	174.8	47.54
750	276.1	102.7	193.6	56.66
800	278.5	116.4	211.3	65.78
850	280.8	130.3	228.1	74.84
900	283.0	144.3	244.1	83.80
950	283.0	158.4	259.4	92.65
1000	285.1	172.6	273.9	101.3

Таблица 4. Термодинамические свойства EuGaGe₂O₇

Пти 3*Rs*, где *R* – универсальная газовая постоянная, *s* – число атомов в формульной единице соединения.

ЗАКЛЮЧЕНИЕ

Твердофазным методом получен германат EuGaGe₂O₇. Уточнена его кристаллическая структура. Методом ДСК измерена высокотемпературная теплоемкость в области температур 350–150 К. Показано, что полученные данные хорошо описываются уравнением Майера–Келли. По экспериментальной зависимости $C_p = f(T)$ рассчитаны термодинамические свойства EuGaGe₂O₇.

СПИСОК ЛИТЕРАТУРЫ

- Jarchow O., Klaska K.-H., Schenk H. REAlGe₂O₇ New Compounds of Rare Earth Germinates // Naturwissenschaften. 1981. B. 68. S. 475–476.
- Kaminskii A.A., Mill B.V., Butashin A.V. et al. Germanates with NdAlGe₂O₇-Type Structure. Synthesis, Crystal Structure, Absoption-Luminescence Properties, and Stimulated Emission of Their Activator, Nd³⁺ Ions // Phys. Status Solidi A. 1987. V. 103. P. 575–592.
- Cascales C., Puebla G., Klimin S. et al. Magnetic Ordering in the Rare Earth Iron Germanates HoFeGe₂O₇ and ErFeGe₂O₇ // Chem. Mater. 1999. V. 11. P. 2520– 2526.
- 4. Lozano G., Cascales C., Zaldo C., Porcher P. Measurement and Simulation of the Energy Levels of $R = Pr^{3+}$ and Nd³⁺ in GaRGe₂O₇ // J. Alloys Compd. 2000. P. 303–304.
- 5. *Kaminakii A.A., Rhee H., Lux O. et al.* Monoclinic La-GaGe₂O₇:Nd³⁺ a Novel SRS- and SE-Active Crystal with High-Order Stokes and Anti-Stokes Picosecond $\chi^{(3)}$ -Nonlinear Lasing // Laser Phys. Lett. 2013. V. 10. P. 075803(1–5). https://doi.org/10.1088/1612-2011/10/7/075803
- Jarchow O., Klaska K.-H., Schenk-Strauβ H. Die Kristallstrukturen von NdAlGe₂O₇ und NdGaGe₂O₇ // Z. Kristallogr. 1985. B. 172. S. 159–166.
- Cascales C., Fernandez-Diaz M.T., Monge M.A., Bucio L. Crystal Structure and Low-Temperature Magnetic Orderingbin Rare Earth Iron Germanates RFeGe₂O₇, R = Y, Pr, Dy, Tm, and Yb // Chem. Mater. 2002.

V. 14. P. 1995–2003. https://doi.org/10.1021/cm0111332

- Buciot L., Cascales C., Alonso J.A., Rasines I. Neutron Diffraction Refinement Characterization of FeRGe₂O₇ (R = La, Pr, Nd, Gd) // J. Phys.: Condens. Matter. 1996. V. 8. P. 2641–2653.
- Juarez-Arellano E.A., Campa-Molina J., Ulloa-Godinez S. et al. Crystallochemistry of Thortveitite-Like and Thortveitite-Type Compound // Mater. Res. Soc. Symp. 2005. V. 848. P. FF6.15.1–FF6.15.8.
- Денисова Л.Т., Каргин Ю.Ф., Иртюго Л.А. и др. Теплоемкость In₂Ge₂O₇ и YInGe₂O₇ в области температур 320–1000 К // Неорган. материалы. 2018. Т. 54. № 12. С. 1315–1319. https://doi.org/10.1134/S0002337X18120023
- Денисова Л.Т., Иртюго Л.А., Белоусова Н.В. и др. Высокотемпературная теплоемкость и термодинамические свойства Tm₂Ge₂O₇ и TmInGe₂O₇ в области 350-1000 К // Журн. физ. химии. 2019. Т. 93. № 3. С. 476-479. https://doi.org/10.1134/S004445371903004X
- Becker U.W., Felsche J. Phases and Structural Relations of the Earth Germanates RE₂Ge₂O₇, RE = La-Lu // J. Less-Common. Met. 1987. V. 128. P. 269–280.
- 13. Денисова Л.Т., Иртюго Л.А., Каргин Ю.Ф. и др. Высокотемпературная теплоемкость Tb₂Sn₂O₇ // Неорган. материалы. 2017. Т. 53. № 1. С. 71–73. https://doi.org/10.7868/S0002337X17010043
- 14. *Bruker AXS TOPAS V\$:* General Profile and Structure Analysis Software for Powder Diffraction Data. User's Manual. Bruker AXS, Karlsruhe, Germanye. 2008.
- Maier C.G., Kelley K.K. An Equation for the Representation of High Temperature Heat Content Data // J. Am. Chem. Soc. 1932. V. 54. № 8. P. 3243–3246.
- Денисова Л.Т., Иртюго Л.А., Каргин Ю.Ф. и др. Синтез и исследование высокотемпературной теплоемкости Sm₂Ge₂O₇ и Eu₂Ge₂O₇ // Неорган. материалы. 2018. Т. 54. № 2. С. 193–196. https://doi.org/10.7868/S0002337X18020100
- 17. Leitner J., Chuchvalec P., Sedmidybský D. et al. Estimation of Heat Capacities of Solid Mixed // Thermochim Acta. 2003. V. 395. № 1–2. P. 27–46.
- Кумок В.Н. Проблемы согласования методов оценки термодинамических характеристик // Прямые и обратные задачи химической термодинамики. Новосибирск: Наука, 1987. С. 108–123.