УДК 538.91538.935

ПРЫЖКОВЫЙ ХАРАКТЕР ПРОВОДИМОСТИ В AgSbSe₂ И (AgSbSe₂)_{0.9}(PbTe)_{0.1}

© 2020 г. С. С. Рагимов^{1, 2, *, **}, А. А. Саддинова², А. И. Алиева², Р. И. Селим-заде²

¹Институт физических проблем Бакинского государственного университета, ул. 3. Халилова, 23, Баку, AZ1148 Азербайджан

²Институт физики национальной академии наук Азербайджана, пр. Г. Джавида, 131, Баку, AZ1143 Азербайджан *e-mail: sadivar.ragimov@bsu.edu.az

**e-mail: sadiyar@mail.ru
Поступила в редакцию 08.02.2019 г.
После доработки 19.03.2020 г.
Принята к публикации 25.03.2020 г.

Проведены рентгенографический анализ, дифференциальная сканирующая калориметрия, а также получены температурные зависимости электропроводности и термо-ЭДС $AgSbSe_2$ и $(AgSbSe_2)_{0.9}(PbTe)_{0.1}$ в области 80-330 К. Показано, что перенос заряда в этих образцах осуществляется посредством прыжковой проводимости носителей по локализованным состояниям. Определены области температур прыжковой проводимости и плотности локализованных состояний на уровне Ферми.

Ключевые слова: термоэлектрический материал, эндотермический эффект, прыжковая проводимость, термо-ЭДС

DOI: 10.31857/S0002337X20080138

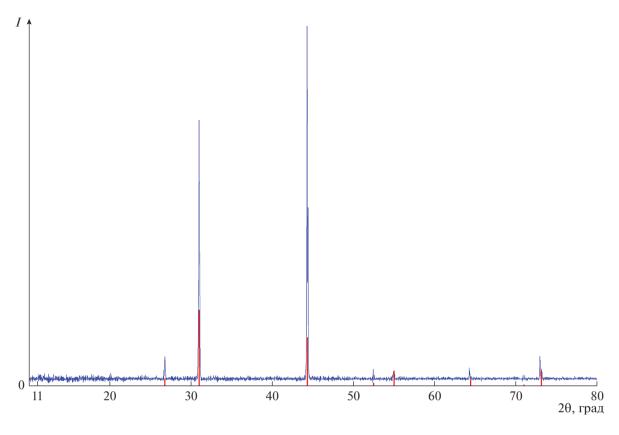
ВВЕДЕНИЕ

Процесс допирования широко применяется при исследовании тройных термоэлектрических материалов типа $A^IB^VC_2^{VI}$, так как это дает возможность найти более подходящие составы для практического применения [1–4]. Другим способом улучшения термоэлектрических характеристик материалов является получение твердых растворов или сплавов на их основе. Например, на базе $AgSbTe_2$ получены твердые растворы типа $(GeTe)_{1-x}(AgSbTe_2)_x$ и $(PbTe)_{1-x}(AgSbTe_2)$ — TAGS и LAST соответственно [1, 4]. С точки зрения практического применения преимущество твердых растворов заключается в более низком значении теплопроводности решетки, что обусловлено рассеянием фононов на дефектах структуры.

Тройное соединение $AgSbSe_2$, получаемое на основе Ag_2Se и Sb_2Se_3 , является перспективным термоэлектрическим материалом с низкой теплопроводностью [5]. РbTе также является одним из лучших термоэлектрических материалов, используемых для термоэлектрических генераторов в диапазоне температур 400-800 K [6]. Поэтому получение и исследование термоэлектрических свойств твердых растворов $(AgSbSe_2)_x(PbTe)_{1-x}$ представляет практический интерес. Важно также изучение механизма электропроводности и

изменения физических свойств в твердом растворе $(AgSbSe_2)_x(PbTe)_{1-x}$ с изменением состава.

С целью выявления механизма проводимости в $AgSbSe_2$ и $(AgSbSe_2)_{0.9}(PbTe)_{0.1}$ в данной работе анализируются температурные зависимости электропроводности и термо-ЭДС в области 80-330 K.


ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исследованные образцы получали методом прямого сплавления исходных компонентов особой чистоты в откачанной (10^{-2} Па) и запаянной кварцевой ампуле в печи с градиентом температуры 3 К/см. Ампула выдерживалась в течение 15 ч выше температуры плавления (при 973 K), затем медленно охлаждалась со скоростью ~1 К/мин до комнатной температуры.

Рентгенофазовый анализ исследованных образцов $AgSbSe_2$ и $(AgSbSe_2)_{0.9}(PbTe)_{0.1}$ проведен на дифрактометре D8-XRD ADVANCE фирмы Bruker с использованием программ EVA и TOPAS.

ДСК-анализ исследованных образцов проведен в температурном интервале от 173 до 573 K на установке DSC 204F1 Phoenix фирмы NETZSCH-GeratebauGmbH (Germany).

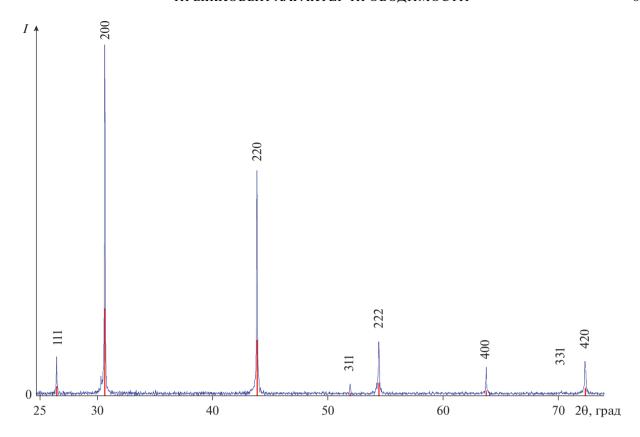
Исследования электропроводности и термо-ЭДС $AgSbSe_2$ и $(AgSbSe_2)_{0.9}(PbTe)_{0.1}$ проведены в температурной области 80-320 K. Образцы для

Рис. 1. Рентгенограмма AgSbSe₂.

измерения были изготовлены в виде прямоугольных брусков с размерами $2.5 \times 5 \times 12$ мм. Измерения проводились на постоянном токе 0.5 мА 6-точечным методом. Измерительные контакты наносились индием.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1 и 2 представлены рентгенограммы исследованных образцов $AgSbSe_2$ и $(AgSbSe_2)_{0.9}(PbTe)_{0.1}$. Установлено, что образцы имеют гранецентрированную кубическую решетку (пр. гр. Fm3m) с параметрами a=5.78600 Å $(AgSbSe_2)$ и a=5.8322 Å $(AgSbSe_2)_{0.9}(PbTe)_{0.1}$.


В температурном интервале 93—673 К никаких структурных изменений в исследованных образцах не происходит. Следует отметить, что на рентгенограммах (рис. 1 и 2) присутствуют следы включений других фаз. В случае (AgSbSe₂)_{0.9}(PbTe)_{0.1} введение атомов свинца приводит к увеличению размеров элементарной ячейки, что обусловлено разностью ионных радиусов селена и свинца. Отметим, что кристаллическая структура при этом сохраняется.

Результаты ДСК-анализа исследованных образцов представлены на рис. 3 и 4.

Как видно из рис. 3, на ДСК-кривой $AgSbSe_2$ в исследованной области температур наблюдаются три эндотермических эффекта с максимумами при 363.5, 412.8 и 498.6 К. В случае $(AgSbSe_2)_{0.9}(PbTe)_{0.1}$ (рис. 4) наблюдается один объединенный эндоэффект с максимумом при 403 K, а эндоэффект с максимумом при 498.6 K исчезает.

Отметим, что образец стехиометрического состава $AgSbSe_2$ до температуры плавления стабилен и не распадается [7], поэтому обнаруженные эндотермические эффекты не являются результатом фазового перехода или же разложения $AgSbSe_2$.

В халькогенидах Ag_2Se и Ag_2Te в области 380— 430 К имеют место структурные фазовые переходы [8]. В первом приближении можно предположить, что эндоэффекты в этой области обусловлены наличием фазы Ag_2Se . Как было отмечено выше, на рентгенограмме $AgSbSe_2$ обнаруживаются очень слабые линии, соответствующие Ag_2Se . В случае $(AgSbSe_2)_{0.9}(PbTe)_{0.1}$ не исключается также вероятность выделения малого количества фазы Ag_2Te . В работе [2] показано, что в области 420 К происходит переход из α - в β - Ag_2Te , что может также объяснить эндотермический эффект в $(AgSbSe_2)_{0.9}(PbTe)_{0.1}$.

Рис. 2. Рентгенограмма (AgSbSe₂)_{0.9}(PbTe)_{0.1}.

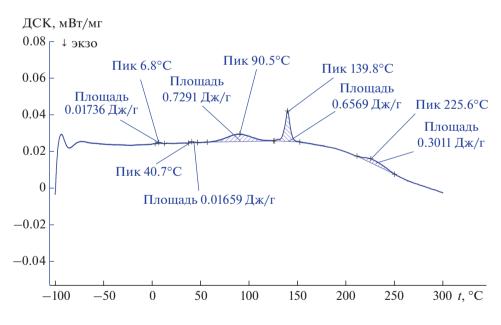
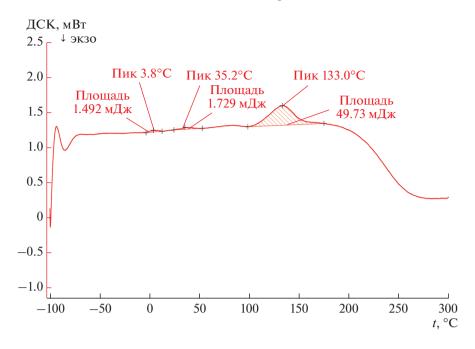



Рис. 3. ДСК-кривая AgSbSe₂.

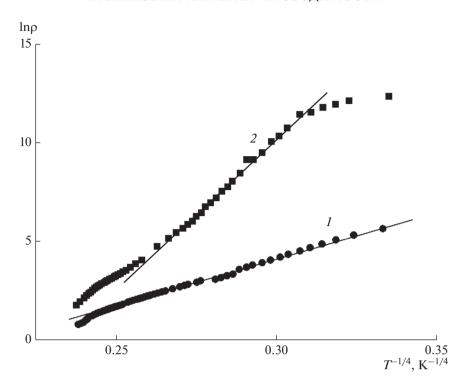
С другой стороны, следует учитывать способность миграции ионов серебра с ростом температуры. Известно, что $AgSbSe_2$ кристаллизуется в гранецентрированной кубической структуре типа

NaCl, где ионы Se^{2-} образуют решетку, подобную хлору, а Ag^+ и Sb^{3+} разупорядоченно расположены на местах Na [5]. Другими словами, Ag^+ и Sb^{3+} случайным образом занимают октаэдрические пусто-

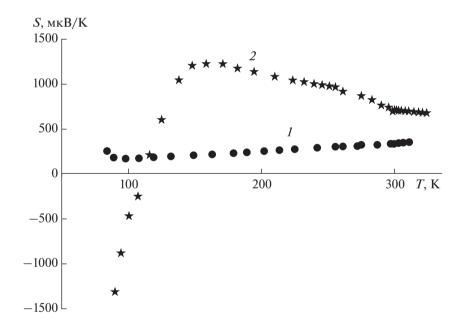
Рис. 4. ДСК-кривая (AgSbSe₂)_{0.9}(PbTe)_{0.1}.

ты, как в твердом растворе. Такое распределение может привести к тому, что как ионы Ag+, так и ионы Sb^{3+} могут располагаться по соседству друг с другом в энергетически невыгодных положениях. Структура Sb-Se-Sb менее устойчива, чем структура Sb-Se-Ag. В идеальном случае каждый Se связан с тремя Ag и тремя Sb, что обеспечивает баланс заряда в октаэдре. В случае разупорядочения некоторые Se-центрированные октаэдры имеют избыток Ag, а другие имеют избыток Sb. Это приводит к нарушению локального баланса заряда и, следовательно, большей когезионной потере энергии [4]. Таким образом, энергетически более выгодным является расположение Ag⁺-Sb³⁺. Поэтому можно полагать, что в AgSbSe₂ имеются области с упорядоченно и неупорядоченно расположенными атомами Ag и Sb.

В случае твердого раствора (AgSbSe₂)_{0.9}(PbTe)_{0.1} кристаллическая структура AgSbSe₂ сохраняется, но увеличиваются размеры элементарной ячей-ки. Поэтому распределение областей упорядоченно и неупорядоченно расположенных атомов серебра и сурьмы в них практически одинаково.


Если принять во внимание, что халькогениды серебра известны как проводники с большой ионной проводимостью [8], можно полагать, что с ростом температуры ионы серебра покидают свои места, усиливая при этом энергетически более выгодное состояние кристаллической решетки. Следовательно, как процесс миграции атомов серебра, так и незначительное количество фаз Ag_2 Se и Ag_2 Te приводят к возникновению эндоэффектов в области 323-423 K, обнаруженных при ДСК-анали-

зе. Таким образом, можно заключить, что полученные на кривых ДСК эндоэффекты являются результатом сложных процессов, происходящих при нагревании.


На рис. 5 и 6 представлены температурные зависимости удельного сопротивления и термо-ЭДС $AgSbSe_2$ и $(AgSbSe_2)_{0.9}(PbTe)_{0.1}$. Как видно из рис. 5, электропроводность в обоих образцах с температурой увеличивается. Знак термо-ЭДС AgSbSe₂ (рис. 6) указывает на дырочный тип проводимости во всем исследованном интервале температур. Отметим, что знаки термо-ЭДС и коэффициента Холла в этом случае совпадают. Величина коэффициента термо-ЭДС в области 80-320 К слегка растет с температурой. Обращает на себя внимание температурная зависимость термо-ЭДС $(AgSbSe_2)_{0.9}(PbTe)_{0.1}$. С ростом температуры знак термо-ЭДС при $T \sim 120$ K меняется с минуса на плюс. Далее зависимость S(T) проходит через максимум в области 150 К и уменьшается с температурой. Концентрации носителей заряда, определенные по данным эффекта Холла, составляют $p = 8.3 \times 10^{16} \text{ cm}^{-3} \text{ (AgSbSe}_2) \text{ и } p = 3.9 \times 10^{17} \text{ см}^{-3}$ $(AgSbSe_{2})_{0.9}(PbTe)_{0.1}$.

Количественная оценка энергии активации на основе температурной зависимости удельной электропроводности $AgSbSe_2$ в области температур 130—170 К дала значение 120 мэВ. Энергия активации $(AgSbSe_2)_{0.9}(PbTe)_{0.1}$ при этом оказалась 168 мэВ.

Мы считаем, что различие значений энергии активации носителей является следствием изменений в электронной структуре, обусловленных частичными преобразованиями в кристалличе-

Рис. 5. Температурные зависимости удельного сопротивления $AgSbSe_2$ (*I*) и $(AgSbSe_2)_{0.9}$ (PbTe)_{0.1} (*2*) в координатах Мотта.

Рис. 6. Температурные зависимости термо-ЭДС $AgSbSe_2(1)$ и $(AgSbSe_2)_{0.9}(PbTe)_{0.1}(2)$.

ской структуре. Введение атомов свинца и теллура приводит к увеличению размеров элементарной ячейки $AgSbSe_2$. Это влияет на электронную структуру в окрестности уровня Ферми.

Температурные зависимости удельного сопротивления $\rho(T)$ в AgSbSe₂ и твердом растворе

 $(AgSbSe_2)_{0.9}(PbTe)_{0.1}$ в области температур 80-300 К мы анализировали в координатах Мотта [9]:

$$\rho = \rho_0 \exp(T_0/T)^{1/4}, \quad T_0 = \beta/kg(\mu)a^3,$$
 (1)

здесь $g(\mu)$ — плотность локализованных состояний на уровне Ферми, a — радиус близких к уровню

Ферми локализованных состояний, k — постоянная Больцмана, β — число, зависящее от размерности задачи (для трехмерного случая β = 21).

Экспериментальные точки хорошо линеаризуются в приведенных координатах в определенном температурном интервале. Это позволяет предположить, что в указанной области температур перенос заряда в этих соединениях осуществляется посредством прыжковой проводимости носителей заряда по локализованным состояниям, лежащим в узкой полосе энергий вблизи уровня Ферми.

Разупорядочение, примеси внедрения, вакансии и дислокации приводят к нарушению периодичности кристаллической структуры, возникновению локализованных состояний с энергиями, попадающими в интервал значений, запрещенных в идеальном кристалле.

В группе халькогенидов серебра именно халькогены ответственны за создание центров, имеющих акцепторную природу, т.е. обуславливающих дырочный характер проводимости [10]. В случае $AgSbSe_2$ и $(AgSbSe_2)_{0.9}(PbTe)_{0.1}$ можно предположить, что дефекты подрешетки халькогенов ответственны за создание локальных акцепторных состояний, по которым осуществляется прыжковая проводимость.

Расчеты показали, что у соединения $AgSbSe_2$ область температур выполнения моттовской зависимости — 105 < T < 230 K, а в случае $(AgSbSe_2)_{0.9}(PbTe)_{0.1} - 118-220$ K. На основе экспериментальных данных также рассчитана плотность локализованных состояний на уровне Ферми: для $AgSbSe_2 g(\mu) = 4.3 \times 10^{16} \, \mathrm{эB^{-1} \, cm^{-3}}$, для $(AgSbSe_2)_{0.9}(PbTe)_{0.1} g(\mu) = 3.4 \times 10^{14} \, \mathrm{эB^{-1} \, cm^{-3}}$.

С понижением температуры наибольшую роль в электропроводности начинают играть прыжки носителей заряда по отдельным примесным состояниям без активации в разрешенную зону. При этом прыжковая проводимость превосходит зонную, так как в прыжковой проводимости могут принимать участие все находящиеся на акцепторах дырки, а в зонной — только экспоненциально малое число дырок валентной зоны.

ЗАКЛЮЧЕНИЕ

Показано, что в AgSbSe₂ и (AgSbSe₂)_{0.9}(PbTe)_{0.1} электропроводность имеет прыжковый характер. На основе экспериментальных данных и проведенных расчетов определены интервалы температур прыжковой проводимости: для AgSbSe₂ 105 < T < 230 K и (AgSbSe₂)_{0.9}(PbTe)_{0.1} 118 < T < 220 K.

СПИСОК ЛИТЕРАТУРЫ

- 1. Дмитриев А.В., Завягин И.П. Современные тенденции развития физики термоэлектрических материалов // Успехи физ. наук. 2010. Т. 180. № 8. С. 821—838. https://doi.org/10.3367/UFNr.0180.201008b.0821
- 2. Рагимов С.С., Алиев С.А. Характер $\alpha \to \beta$ -перехода Ag_2 Те в сплаве системы Ag_- Sb—Te, отвечающем составу Ag_2 У Heopган. материалы. 2007. Т. 43. № 11. С. 1321—1323.
- 3. *Guin S.N.*, *Chatterjee A.*, *Biswas K.* Enhanced Thermoelectric Performance in p-Type AgSbSe₂ by Cd-Doping // Royal Soc. Chem. Adv. 2014. № 4. P. 11811–11815. https://doi.org/10.1039/c4ra00969j
- Ye L., Khang Hoang K., Freeman A.J., Mahanti S.D., He J., Tritt T.M., Kanatzidis M.G. First-Principles Study of the Electronic, Optical, and Lattice Vibrational Properties of AgSbTe₂ // Phys. Rev. B. 2008. V. 77. P. 245203(6). https://doi.org/10.1103/PhysRevB.77.245203
- 5. Дудкин Л.Д., Остраница А.Н. Тройные полупровод-
- никовые соединения $A^{I}B^{V}C_{2}^{VI}$ // Докл. АН СССР. 1959. Т. 124. № 1. С. 94—97.
- Heremans J.P., Jovovic V., Toberer E.S., Saramat A., Kurosaki K., Charoenphakdee A., Yamanaka S., Snyder G.J. Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States // Science. 2008. V. 321. P. 554–557. https://doi.org/10.1126/science.1159725
- 7. Schmidt M., Zybala R., Wojciechowski K.T. Structural and Thermoelectric Properties of AgSbSe₂—AgSbTe₂ System // Mater. Ceram. 2010. V. 62. № 4. P. 465–470.
- 8. *Горбачев В.В.* Полупроводниковые соединения $A^{II}B^{VI}$. М.: Металлургия, 1980. 132 с.
- 9. *Мотт Н.Ф., Девис Э.А.* Электронные процессы в некристаллических веществах. М.: Мир, 1974. 657 с.
- 10. Драбкин И.А., Мойжес Б.Я. О донорных и акцепторных центрах в полупроводниках $A_2^I X^{VI}$ $A^I B^{III} X_2^{VI}$ (где $A^I Cu$, Ag; $B^{III} Al$, In, Ga; $X^{VI} S$, Se, Te) // $\Phi T\Pi$. 1987. T. 21. Вып. 9. С. 1715–1718.