УЛК 536.63

ТЕПЛОЕМКОСТЬ ГЕРМАНАТОВ RBiGeO₅ (R = Sm-Yb, Y) И $(R_{1-x}^1R_x^2)$ BiGeO₅ (R¹ = Y, R² = Pr, Nd)

© 2020 г. Л. Т. Денисова^{1, *}, Ю. Ф. Каргин², Н. В. Белоусова¹, Л. А. Иртюго¹, В. М. Денисов¹, В. В. Белецкий¹

¹ Институт цветных металлов и материаловедения Сибирского федерального университета, Свободный пр., 79, Красноярск, 660041 Россия

²Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук, Ленинский пр., 49, Москва, 119991 Россия

*e-mail: antluba@mail.ru
Поступила в редакцию 16.05.2019 г.
После доработки 23.02.2020 г.
Принята к публикации 04.03.2020 г.

Последовательным обжигом на воздухе в интервале температур $1003-1223~{\rm K}$ твердофазным методом из исходных оксидов получены германаты ${\rm R_xBi_2}_{-x}{\rm GeO_5}$ (R = Sm–Yb, Y) и $\left({\rm R_{1-x}^1R_x^2}\right){\rm BiGeO_5}$ (R¹ = Y, R² = Pr, Nd). Методом дифференциальной сканирующей калориметрии измерена их высокотемпературная теплоемкость. Установлено, что в области $350-1000~{\rm K}$ зависимости $C_p=f(T)$ хорошо описываются классическим уравнением Майера—Келли.

Ключевые слова: твердофазный синтез, редкоземельные германаты, высокотемпературная теплоемкость

DOI: 10.31857/S0002337X20090043

введение

Уникальные свойства германатов редкоземельных элементов (РЗЭ) привлекают внимание как исследователей, так и практиков [1-5]. Вызвано это разнообразием важных в практическом отношении физико-химических характеристик, позволяющих использовать их в качестве лазерных материалов, люминофоров (перекрывающих весь диапазон оптического излучения), рентгеновских люминесцентных экранов, термолюминесцентных дозиметров и т.д. [5]. Перспективно исследовать сложные оксидные соединения, состоящие из различных металлов (Al, Ga, In, Bi, Fe) и редкоземельных элементов с ковалентным германием [5–7]. Авторы [8, 9] получили новое семейство германатов с общей формулой R_x Bi_{2−x}GeO₅ (R − P3Э, 0 ≤ x ≤ 2). При x = 2 образуются германаты R_2 GeO₅, а при x = 0 – германат висмута Bi_2GeO_5 . Следует отметить, что соединение подобного вида GdBiGeO5 упоминается гораздо ранее [2]. Заметим, что образование фаз $R_x Bi_{2-x} GeO_5$, фигуративная точка составов которых в системах $R_2O_3-Bi_2O_3-GeO_2$ находится на сечениях R_2GeO_5 — Bi_2GeO_5 , сопровождается изменением структуры [10]. Кроме того, образуется из стабильных германатов R₂GeO₅ и метастабильного оксида Bi₂GeO₅, который на равновесной диаграмме состояния системы GeO_2 — Bi_2O_3 отсутствует [11—13]. По данным [14], получить соединение Bi_2GeO_5 твердофазным синтезом невозможно. Стабилизировать фазу Bi_2GeO_5 удается только при значительном перегреве расплава с последующим медленным охлаждением [11, 15, 16].

Для фаз $R_x Bi_{2-x} GeO_5$ имеются сведения о структуре [8–10, 17], оптических свойствах [7, 8, 17] и магнитной восприимчивости (YbBiGeO₅) [8]. В то же время данных о фазовых равновесиях в системах $R_2 GeO_5 - Bi_2 GeO_5$ в литературе нет.

Целью настоящей работы является получение и обобщение данных по высокотемпературной теплоемкости германатов $R_x Bi_{2-x} GeO_5$ (R = Sm-Yb, Y) и $(R_{1-x}^1 R_x^2) Bi GeO_5$ ($R^1 = Y, R^2 = Pr, Nd$).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Соединения $R_x Bi_{2-x} GeO_5$ и $(R_{1-x}^1 R_x^2) Bi GeO_5$ получали твердофазным синтезом из предварительно прокаленных R_2O_3 ("х. ч.", "ос. ч."), Bi_2O_3 ("ос. ч.") и GeO_2 (99.999%). Стехиометрические смеси тщательно перетирали в агатовой ступке и прессовали в таблетки, которые последователь-

Соелинение a. Å h. Å c. Å V, $Å^3$ Источник d, Γ/cm^3 SmBiGeO₅ 5.4160(5) 15.2961(3) 11.2814(1) 934.60(2) 7.28 [22] EuBiGeO5 5.4125(8) 15.283(2) 11.275(2) 932.7(3) 7.29 [17] 928.72(2) 5.4042(1) 15.2865(2) 11.2420(1) 7.34 GdBiGeO₅ 5.3652(4) 15.262(1) 11.2263(9) 924.4(1) 7.37 [17] 5.3867(1) 15.2736(4) 11.1893(2) 920.59(4) 7.48 TbBiGeO₅ 5.3700(3) 15.2589(7) 11.1499(6) 913.63(8) 7.58 [23] 5.3650(4) 15.241(1) 11.1422(9) 911.1(1) 7.60 [17] 905.52(1) DyBiGeO₅ 5.3526(6) 15.2460(7) 11.0962(6) 7.69 [23] 11.0855(8) 5.3455(4) 15.212(1) 901.4(1) 7.72 [17] HoBiGeO5 5.3380(1) 15.2351(2) 11.0541(1) 898.97(2) 7.78 [24] 5.3267(3) 15.1865(9) 11.0337(7) 892.58(9) 7.83 [17] ErBiGeO₅ 5.3245(2) 15.2258(4) 11.0157(3) 893.04(4) 7.86 [24] 5.3230(8) 15.212(1) 11.017(2) 892.1(2) 7.87 [17] TmBiGeO₅ 5.3070(2) 15.2094(4) 10.9773(4) 886.05(6) 7.95 [25]

10.9680(9)

10.9423(4)

10.9354(6)

11.0556(1)

11.084(3)

11.2014(2)

11.137(1)

11.1852(7)

11.1426(9)

882.3(1)

880.70(5)

877.08(8)

898.53(3)

901.9(3)

921.44(3)

909.1(1)

918.31(8)

909.9(1)

Таблица 1. Параметры элементарных ячеек $R_x Bi_{2-x} GeO_5$ и $(R_{1-x}^1 R_x^2) BiGeO_5$ (пр. гр. *Pbca*)

15.180(1)

15.2014(6)

15.166(8)

15.2293(3)

15.232(2)

15.2679(2)

15.223(1)

15.2640(5)

15.223(1)

YbBiGeO5

YBiGeO5

Y_{0.65}Pr_{0.35}BiGeO₅

Y_{0.65}Nd_{0.35}BiGeO₅

но обжигали на воздухе при 1003, 1073 и 1123 К (по 20 ч), 1143 К (10 ч), 1173 и 1223 К (по 50 ч). В работах [8, 9, 17] синтез этих соединений проводили только при температурах 1073, 1173 и 1223 К. Нами установлено, что в этом случае в синтезированных образцах имеются следы исходных оксидов. Кроме того, выбор температуры синтеза 1003 К связан с тем, что при этой температуре происходит превращение α -Bi₂O₃ $\rightarrow \delta$ -Bi₂O₃ [13] и скорость твердофазной реакции увеличивается (эффект Хэдвала) [18]. С целью достижения полноты протекания твердофазной реакции таблетки перетирали через каждые 10 ч и снова прессовали.

5.2993(4)

5.2946(2)

5.2885(3)

5.3365(1)

5.3411(8)

5.3879(1)

5.3623(4)

5.3787(2)

5.3642(4)

Контроль состава полученных образцов проводили с использованием рентгенофазового анализа на дифрактометре X'Pert Pro MPD (PANalytical, Нидерланды) подобно [19].

Теплоемкость измеряли на приборе STA 449 C Jupiter (NETZSCH, Германия). Методики экспериментов подобны описанным ранее [20, 21]. Ошибка экспериментов не превышала 2%.

7.98

8.06

7.96

6.66

6.64

6.76

6.84

6.80

6.86

[17]

[25]

[17]

[10]

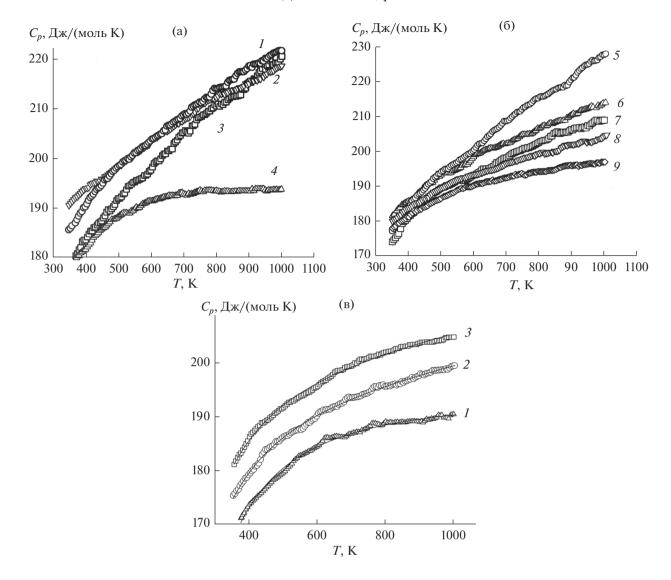
[17]

[26]

[17]

[26]

[17]


РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Параметры элементарных ячеек синтезированных германатов $R_x Bi_{2-x} GeO_5$ и $(R_{1-x}^1 R_x^2)$ BiGeO₅ приведены в табл. 1, там же представлены данные [17]. Можно отметить, что в целом наблюдается их удовлетворительное согласие между собой.

Из табл. 1 следует, что с уменьшением ионного радиуса РЗЭ от Sm до Yb значения a, b, c и Vуменьшаются, а рассчитанной плотности d увеличиваются.

Для оксоортогерманатов РЗЭ состава 1:1 отмечено наличие двух структурных подгрупп с пограничным элементом тербием [2, 3]. Для соединений R₂GeO₅ характерна моноклинная симмет-

^{*} Данные настоящей работы.

Рис. 1. Влияние температуры на молярную теплоемкость германатов RBiGeO₅ (a, б) (R = Tb (*I*), Eu (*2*), Sm (*3*), Gd (*4*), Ho (*5*), Dy (*6*), Er (*7*), Tm (*8*), Yb (*9*) и $\left(R_{1-X}^1R_x^2\right)$ BiGeO₅ (в) (R¹ = Y (*I*), R² = Nd (*2*), Pr (*3*)) (значения теплоемкости для Y_{0.65}Nd_{0.35}BiGeO₅ и Y_{0.65}Pr_{0.35}BiGeO₅ смещены относительно YBiGeO₅ на 5 и 10 Дж/(моль K) соответственно).

рия [3]. В случае R = Pr, Nd, Sm, Eu, Gd, Tb наблюдается пр. гр. $P2_1/c$ [27–29], а для R = Dy, Ho, Er, Tm, Yb, Lu $-I_2/a$ [27, 28]. По данным [22], германат висмута Bi_2GeO_5 может быть охарактеризован пр. гр. Cc и $Cmc2_1$. В то же время у всех соединений $RBiGeO_5$ наблюдается пр. гр. Pbca. Это свидетельствует об изменении структуры при образовании этих соединений из R_2GeO_5 и Bi_2GeO_5 .

Влияние температуры на молярную теплоемкость германатов R_x Ві $_{2-x}$ GеO $_5$ и $(R_{1-x}^1R_x^2)$ ВіGеO $_5$ показано на рис. 1. Видно, что значения C_p закономерно увеличиваются с ростом температуры без каких-либо аномалий. Полученные зависимости $C_p = f(T)$ хорошо описываются классическим уравнением Майера—Келли

$$C_p = a + bT - cT^{-2}. (1)$$

Значения коэффициентов a, b и c для исследованных соединений приведены в табл. 2.

Сравнить полученные значения C_p для исследованных германатов с данными других авторов не представлялось возможным вследствие их отсутствия. Это можно сделать со значениями, полученными при использовании различных модельных представлений [30]. Из табл. 3 видно, что значения C_p , рассчитанные инкрементным методом Кумока (ИМК) [31], лучше согласуются с экспериментальными величинами по сравнению

0.9989

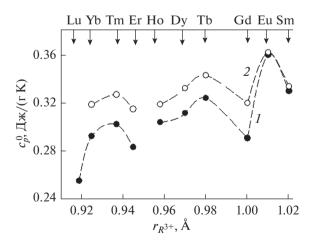
Таолица 2. Коэффиционты уравнения (1) для терманатов Кызесоз и $(K_{1-x}K_x)$ ызесоз									
Соединение	ΔT , K	а	b	c	r				
SmBiGeO ₅	370-1000	173.64 ± 0.40	48.38 ± 0.70	15.25 ± 0.78	0.9989				
EuBiGeO ₅	350-1000	184.00 ± 0.56	35.96 ± 0.60	7.79 ± 0.60	0.9982				
$GdBiGeO_5$	373-1000	204.66 ± 0.31	30.96 ± 0.30	30.96 ± 0.36	0.9979				
$TbBiGeO_5$	350-1000	184.14 ± 0.44	39.60 ± 0.40	15.15 ± 0.48	0.9996				
DyBiGeO ₅	350-1000	183.10 ± 0.44	32.00 ± 0.50	16.39 ± 0.48	0.9991				
HoBiGeO ₅	350-1000	171.79 ± 0.68	51.10 ± 0.70	18.36 ± 0.73	0.9991				
ErBiGeO ₅	350-1000	182.80 ± 0.73	28.30 ± 0.70	21.89 ± 0.78	0.9976				
$TmBiGeO_5$	350-1000	185.22 ± 0.27	20.05 ± 0.30	15.90 ± 0.31	0.9988				
YbBiGeO ₅	350-1000	190.22 ± 0.28	8.26 ± 0.30	19.77 ± 0.31	0.9988				
YBiGeO ₅	373-1000	193.13 ± 0.54	0.37 ± 0.06	31.35 ± 0.61	0.9968				
$Y_{0.65}Pr_{0.35}BiGeO_{5}\\$	350-1000	184.89 ± 0.48	12.80 ± 0.50	22.33 ± 0.52	0.9978				

 12.76 ± 0.40

Таблица 2. Коэффициенты уравнения (1) для германатов RBiGeO $_5$ и $\left(R_{1-x}^1R_x^2\right)$ BiGeO $_5$

Таблица 3. Сравнение экспериментальных и рассчитанных значений C_p (Дж/(моль K)) при 298 K

 183.95 ± 0.34


Соединение	C_p (эксп.)	C_p (HK)	$\Delta C_p,\%$	C_p (ИМК)	ΔC_p , %
SmBiGeO ₅	170.9	165.3	-3.3	169.9	-0.6
EuBiGeO ₅	185.9	170.4	-8.3	168.8	-9.2
GdBiGeO ₅	167.4	160.8	-3.9	163.3	-2.4
TbBiGeO ₅	178.9	167.3	-6.5	168.5	-5.8
DyBiGeO ₅	174.2	166.1	-4.6	166.5	-4.4
HoBiGeO ₅	168.1	165.5	-1.5	166.5	-0.9
ErBiGeO ₅	166.6	162.3	-2.6	165.1	-0.9
TmBiGeO ₅	173.3	166.4	-4.0	168.8	-2.6
YbBiGeO ₅	170.4	165.7	-2.8	168.1	-1.3
YBiGeO ₅	157.8	159.3	+1.0	159.5	+1.1
$Y_{0.65}$ Pr _{0.35} BiGeO ₅	163.6	161.7	-1.2	162.2	-0.9
$Y_{0.65}Nd_{0.35}BiGeO_{5} \\$	162.6	164.4	+1.1	161.0	-1.1

с полученными методом Неймана—Коппа (НК) [30]. Необходимые значения для расчетов методами ИМК и НК взяты из работ [31] и [32] соответственно.

350-1000

 $Y_{0.65}Nd_{0.35}BiGeO_5$

При анализе свойств РЗЭ и их соединений принимают во внимание существование тетрадэффекта, выделяя при этом четыре группы РЗЭ: La—Nd, Pm—Gd, Gd—Ho, Er—Lu [33, 34]. Ранее было показано, что между значениями удельной теплоемкости c_p^0 и ионными радиусами РЗЭ в пределах соответствующих тетрад имеется корреляция [35]. Отмечено, что зависимости $c_p^0(R_2O_3) = f(r/R^{3+})$ и $c_p^0(R_2CuO_4) = f(r/R^{3+})$ имеют схожий вид. Наличие подобных корреляций установлено и для других соединений на основе РЗЭ [36]. Из рис. 2 следует, что в целом подобная корреляция

 22.36 ± 0.37

Рис. 2. Зависимости удельной теплоемкости от радиуса иона РЗЭ: $I - R_2O_3$, $2 - RBiGeO_5$.

наблюдается и для исследованных германатов RBiGeO₅. Значения c_p^0 для R₂O₃ взяты из работы [32].

ЗАКЛЮЧЕНИЕ

Твердофазным синтезом получены германаты $R_x Bi_{2-x} GeO_5$ (R=Sm-Yb, Y) и $(R_{1-x}^1 R_x^2) Bi GeO_5$ ($R^1=Y, R^2=Pr, Nd$). Установлены особенности образования структуры исследованных оксидных соединений. Показано, что высокотемпературная теплоемкость этих германатов хорошо описывается классическим уравнением Майера—Келли.

БЛАГОДАРНОСТЬ

Работа выполнена при финансовой поддержке работ, выполняемых в рамках Государственного задания Министерства науки и высшего образования Российской Федерации Сибирскому федеральному университету на 2017—2019 годы (проект 4.8083.2017/8.9 "Формирование банка данных термодинамических характеристик сложнооксидных полифункциональных материалов, содержащих редкие и рассеянные элементы").

СПИСОК ЛИТЕРАТУРЫ

- 1. Демьянец Л.Н., Лобачев А.Н., Емельченко Г.А. Германаты редкоземельных элементов. М.: Наука, 1980. 152 с.
- 2. Бондарь И.А., Виноградова Н.В., Демьянец Л.Н. и др. Соединения редкоземельных элементов. Силикаты, германаты, фосфаты, арсенаты, ванадаты. М.: Наука, 1983. 288 с.
- 3. *Портной К.И., Тимофеева Н.И.* Кислородные соединения редкоземельных элементов. М.: Металлургия, 1986. 480 с.
- Kaminskii A.A., Mill B.V., Butashin A.V. et al. Germanates with NdAlGe₂O₇ Type Structure // Phys. Status Solidi A. 1987. V. 103. P. 575–592.
- 5. Juarez-Arellano E.A., Campa-Molina J., Ulloa-Godinez S. et al. Crystallochemistry of Thortveitite-Like and Thortveitite-Type Compounds // Mater. Res. Soc. Symp. Proc. 2005. V. 848. P. FF6.15.1–FF6.15.8.
- Cascales C., Fernandez-Diaz M.T., Monge M.A. et al. Crystal Structure and Low-Temperature Magnetic Ordering in Rare Earth Iron Germanates RFeGe₂O₇, R = Y, Pr, Dy, Tm, and Yb // Chem. Mater. 2002. V. 14. P. 1995–2003.
- Baran E.J., Cascales C. Vibrational Spectra of YbBiGeO₅// J. Raman Spectrosc. 2002. V. 33. P. 838–840. https://doi.org/10.1002/jrs.925
- 8. Cascales C., Campa J.A., Puebla E.G. et al. New Rare-Earth (Y, Yb) Bismuth (III) Germinates. An Initial Study of a Promising Series // J. Mater. Chem. 2002. V. 12. P. 3626–3630.
- Cascales C., Zaldo C. Crystal-Field Analysis of Eu³⁺ Energy Levels in the New Rare-Earth R BiY_{1-x}R_xGeO₅ Ox-

- ide // J. Solid State Chem. 2003. V. 171. P. 262–267. https://doi.org/10.1016/S0022-4596(02)00173-1
- Денисова Л.Т., Белоусова Н.В., Галиахметова Н.А., Денисов В.М. Высокотемпературная теплоемкость YBiGeO₅ и GdBiGeO₅ в области 373—1000 К // Физика твердого тела. 2017. Т. 59. № 5. С. 1019—1022. https://doi.org/10.21883/FTT.2017.05.44395.380
- 11. *Жереб В.П.* Метастабильные состояния в оксидных висмутсодержащих системах. М.: МАКС Пресс, 2003. 163 с.
- 12. *Corsmit G., Van Driel M.A., Elsenaar R.J. et al.* Thermal Analysis of Bismuth Germanate Compound // J. Cryst. Growth. 1986. V. 75. № 3. P. 551–560.
- 13. *Каргин Ю.Ф., Бурков В.И., Марьин А.А. и др.* Кристаллы $\mathrm{Bi}_{12}\mathrm{M_xO}_{20\pm\delta}$ со структурой силленита. Синтез, строение, свойства. М.: ИОНХ, 2004. 316 с.
- 14. *Харитонова Е.П., Воронкова В.И.* Синтез и электрические свойства твердых растворов $Bi_2V_{1-x}Ge_xO_{5+y}$ // Неорган. материалы. 2007. Т. 43. № 1. С. 60–65.
- 15. Aurivillius B., Lindenblom C.-I., Stenson P. The Crystal Structure of Bi_2GeO_5 // Acta Chem. Scand. 1964. V. 18. No 6. P. 1555–1557.
- 16. *Kaplun A.B.*, *Meshalkin A.B.* Stable and Metastable Phase Equilibrium in System Bi₂O₃–GeO₂ // J. Cryst. Growth. 1999. V. 167. P. 171–178.
- 17. *Cascales C., Zaldo C.* Spectroscopic Characterization and Systematic Crystal-Field Modeling of Optically Active Rare Earth R³⁺ Ions in the Bismuth Germanate BiY_{1-x}R_xGeO₅Host // Chem. Mater. 2006. V. 18. P. 3742–3753. https://doi.org/10.1021/cm060785t
- 18. *Третьяков Ю.Д.* Твердофазные реакции. М.: Химия, 1978. 360 с.
- 19. Денисова Л.Т., Каргин Ю.Ф., Чумилина Л.Г. и др. Синтез и исследование теплоемкости PrVO₄ в области 396—1023 К // Журн. неорган. химии. 2015. Т. 60. № 2. С. 173—175. https://doi.org/10.7868/S0044457X15020038
- Денисов В.М., Денисова Л.Т., Иртюго Л.А., Биронт В.С. Теплофизические свойства монокристаллов Ві₄Ge₃O₁₂ // Физика твердого тела. 2010. Т. 52. № 7. С. 1274—1277.
- 21. Денисова Л.Т., Иртюго Л.А., Каргин Ю.Ф. и др. Высокотемпературная теплоемкость и термодинамические свойства Тb₂Sn₂O₇ // Неорган. материалы. 2017. Т. 53. № 1. С. 71—73. https://doi.org/10.7868/S0002337X17010043
- 22. Денисова Л.Т., Белоусова Н.В., Галиахметова Н.А. и др. Высокотемпературная теплоемкость Bi₂GeO₅ и SmBiGeO₅ // Физика твердого тела. 2017. Т. 59. № 8. С. 1659—1662. https://doi.org/10.21883/FTT.2017.08.44773.41
- 23. Денисова Л.Т., Каргин Ю.Ф., Белоусова Н.В. и др. Высокотемпературная теплоемкость и термодинамические свойства ТbBiGeO₅ и DyBiGeO₅ // Неорган. материалы. 2017. Т. 53. № 10. С. 1110—1114. https://doi.org/10.7868/S0002337X17100141
- 24. Денисова Л.Т., Каргин Ю.Ф., Белоусова Н.В. и др. Высокотемпературная теплоемкость и термодинамические свойства HoBiGeO₅ и ErBiGeO₅ // Неорган. материалы. 2018. Т. 54. № 9. С. 972—976. https://doi.org/10.1134/S0002337X18090026

- 25. Денисова Л.Т., Белоусова Н.В., Галиахметова Н.А. и др. Высокотемпературная теплоемкость TmBiGeO₅ и YbBiGeO₅ // Физика твердого тела. 2018. Т. 60. № 2. С. 262–264.
 https://doi.org/10.21883/ETT.2018.02.45378.248
 - https://doi.org/10.21883/FTT.2018.02.45378.248
- 26. Денисова Л.Т., Изотов А.Д., Кареин Ю.Ф. и др. Высокотемпературная теплоемкость $Y_{0.65}$ Pr_{0.35}BiGeO₅ и $Y_{0.65}$ Nd_{0.35}BiGeO₅ // ДАН. 2018. Т. 483. № 5. С. 518—521. https://doi.org/10.318/S086956520003300-3
- Chattopadhyay K.N., Mondal S., Chakrabarti P.K. Measurements of Magnetic Susceptibilities, Their Anisotropies and Crystal Field Investigations of Monoclinic Single Crystals of Ho₂GeO₅ // J. Magn. Magn. Mater. 2008. V. 320. P. 3288–3292. https://doi.org/10.1016/j.jmmm.2008.06.033
- Brixner L., Calabrese J., Chen H.Y. Structure and Luminescence of Gd₂GeO₅ and Dy₂GeO₅ // J. Less-Common. Met. 1985. V. 110. P. 397–410.
- Kato K., Sekita M., Kimura S. Dieuropium (III) Germanate Oxide // Acta Crystallogs., Sect. B. 1979. V. 35. P. 2201–2204.

- Морачевский А.Г., Сладков И.Б., Фирсова Е.Г. Термодинамические расчеты в химии и металлургии. СПб.: Лань, 2018. 208 с.
- 31. *Кумок В.Н.* Проблема согласования методов оценки термодинамических характеристик // Прямые и обратные задачи химической термодинамики. Новосибирск: Наука, 1987. С. 108—123.
- Leitner J., Chuchvalec P., Sedmidubský D. et al. Estimation of Heat Capacities of Solid Mixed Oxides // Thermochim. Acta. 2003. V. 395. P. 27–46.
- Kawabe I. Lanthanide Tetrad Effect in the Ln³⁺ Ionic Radii and Refined Spin Pairing Energy Theory // Geochem. J. 1982. V. 26. P. 309–335.
- Третьяков Ю.Д., Мартыненко Л.И., Григорьев А.Н. и др. Неорганическая химия. Кн. 1. М.: Химия, 2001. 472 с.
- Денисова Л.Т., Чумилина Л.Г., Денисов В.М. Теплоемкость купратов Ln₂CuO₄ (Ln = La–Gd) // Физика твердого тела. 2014. Т. 56. № 9. С. 1867–1870.
- 36. Денисова Л.Т., Белоусова Н.В., Каргин Ю.Ф. и др. Ортованадаты редкоземельных элементов. Красноярск: СФУ, 2016. 128 с.