УДК 666.1. 535.37

СИНТЕЗ И ИССЛЕДОВАНИЕ СПЕКТРАЛЬНО-ЛЮМИНЕСЦЕНТНЫХ СВОЙСТВ ОКСИФТОРИДНЫХ СТЕКОЛ, ЛЕГИРОВАННЫХ Eu₂O₃

© 2020 г. Н.М.Кожевникова*

Байкальский институт природопользования СО Российской академии наук, ул. Сахьяновой, 6, Улан-Удэ, 670047 Россия *e-mail: nicas@binm.ru Поступила в редакцию 13.08.2019 г.

После доработки 28.11.2019 г. Принята к публикации 23.01.2020 г.

Разработаны и синтезированы оксифторидные стекла в системе $CaF_2-SiO_2-B_2O_3-Bi_2O_3-Y_2O_3-ZnO$ при различном соотношении исходных компонентов. Исследованы спектрально-люминесцентные свойства стекол, легированных Eu_2O_3 . По данным рентгенофазового анализа все образцы стекол рентгеноаморфны, определена температура стеклования (t_g). Изучение локальной структуры методом ИК-спектроскопии показало, что стекла независимо от состава содержат сложные полиборатные анионы, образованные [BO₃]- и [BO₄]-группами, также происходит встраивание висмута в сетку стекла с образованием связей Bi–O–Si и сеткообразователей в виде [BiO₆]-групп.

Ключевые слова: оксифторидные стекла, ИК-спектроскопия, редкоземельные ионы, люминесценция ионов Eu³⁺

DOI: 10.31857/S0002337X20090109

ВВЕДЕНИЕ

В настоящее время большое внимание уделяется развитию физико-химической базы направленного рационального поиска и разработки новых материалов с необходимыми спектрально-люминесцентными свойствами, обладающих термической и механической устойчивостью [1–7]. Значительное место в ряду исследований этого направления занимают системы на основе соединений редкоземельных элементов (РЗЭ), обладающих ярко выраженным свечением при комнатной температуре, длительным временем жизни возбужденных состояний и фиксированным положением полос. В частности, соединения с европием широко используются как красные люминофоры благодаря характерному свечению в красной области спектра [2]. Наиболее подходящими матрицами для РЗЭ являются стекла, содержащие оксиды тяжелых металлов, в частности Ві₂O₃, Y₂O₃ [7]. В стеклах полосы поглощения более широкие за счет неоднородного уширения. Оксифторидные стекла сочетают в себе достоинства оксидных стекол (химическую и термическую стабильность) и фторидных (высокие квантовые выходы и широкие полосы поглощения) [5, 6]. Такие стекла обладают высокими показателями преломления, высокой плотностью, протяженной областью прозрачности в видимом и ИК-диапазонах [7, 8]. Стекла, содержащие B₂O₃ и ZnO, характеризуются значительными областями стеклообразования, что позволяет варьировать состав и свойства в широ-ких пределах [9, 10].

В связи с этим целью данной работы является получение оксифторидных стекол системы CaF_2 — SiO_2 — B_2O_3 — Bi_2O_3 — Y_2O_3 —ZnO с различным соотношением компонетов, легированных Eu_2O_3 , изучение их физико-химических и спектрально-люминесцентных свойств для использования в качестве фотолюминофоров.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для синтеза стекол использовали Bi_2O_3 квалификации "ос. ч.", а также H_3BO_3 , SiO_2 , ZnO и CaF₂ "х. ч." и "ч. д. а.", Y_2O_3 , Eu_2O_3 "ос. ч." с содержанием основного компонента 99.999%. Исходные реактивы, взятые в соответствующих пропорциях, тщательно перемешивали со спиртом в агатовой ступке до получения однородной гомогенной смеси, просушивали при температуре 100-150°C и плавили в керамическом тигле при 850–950°C. Плавление проводили в течение 6–8 ч до полной гомогенизации расплава. Охлаждение осуществляли инерционно вместе с печью. Синтез стекол в системе CaF₂–SiO₂–B₂O₃–Bi₂O₃– Y₂O₃–ZnO проводился для двух составов, представленных в табл. 1.

N⁰	Обозначение	Состав, мас. %	t_g , °C
1	Ст1	$20CaF_{2} - 12SiO_{2} - 16B_{2}O_{3} - 21Bi_{2}O_{3} - 15ZnO - (16 - x)Y_{2}O_{3} - xEu_{2}O_{3} (0 \le x \le 6)$	523.2
2	Ст2	$25\text{CaF}_2 - 10\text{SiO}_2 - 15\text{B}_2\text{O}_3 - 27\text{Bi}_2\text{O}_3 - 10\text{ZnO} - (18 - x)\text{Y}_2\text{O}_3 - x\text{Eu}_2\text{O}_3 \ (0 \le x \le 6)$	538.7

Таблица 1. Состав образцов стекол и температура стеклования

Рентгенофазовый анализ выполняли на дифрактометре D8 ADVANCE фирмы Bruker AXS с использованием Cu K_{α} -излучения в области углов $2\theta = 10^{\circ} - 40^{\circ}$.

Температуру стеклования (t_g) определяли методом дифференциально-сканирующей калориметрии на синхронных термоаналитических комплексах NETZSCH STA 449F1. Навеску (15—20 мг) измельченного образца помещали в специальные платиновые тигли. В качестве эталона использовали пустой платиновый тигель, прокаленный при 1200°С до постоянной массы. Нагрев образцов проводили со скоростью 10°С/мин до температуры 1200°С. Точность определения температуры составляла $\pm 1^{\circ}$ С.

Структурные особенности полученных стекол изучали методом инфракрасной спектроскопии. ИК-спектры регистрировали на спектрометре ALPHA (Bruker, Германия) в диапазоне волновых чисел 4000–600 см⁻¹ на приставке НПВО (кристалл ZnSe); в области 4000–200 см⁻¹ исследования проводили на порошках, спрессованных в таблетки с KBr. Отнесение полос в ИК-спектрах к тем или иным структурным элементам кристаллической решетки и локальной структуры стекол осуществляли в соответствии с известными данными [11–17].

Анализ элементного состава измельченных образцов стекол проведен на сканирующем микроскопе JCM-6000 (JEOL). Ускоряющее напряжение 5 кВ.

Люминесцентные характеристики образцов стекол (спектры возбуждения фотолюминесценции (ФЛ) и спектры ФЛ) исследовали на спектрофлуориметре СМ 2203 (Solar, Беларусь). Исследуемые порошкообразные образцы помещали между оптически прозрачными (кварцевыми) стеклами. Возбуждающий свет источника излучения (ксеноновая дуговая лампа высокого давле-

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 56 № 9 2020

ния ДКсШ 150-1М) падал на образец перпендикулярно его поверхности, а стационарная ФЛ регистрировалась под углом 45°. Спектры возбуждения регистрировали в максимуме ФЛ (620 нм). Для возбуждения ФЛ использовали фиолетовое и синее излучение, так как синтезированные соединения применяются в качестве красных люминофоров в светодиодной технике.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Все образцы стекол рентгеноаморфны, о чем свидетельствуют отсутствие дифракционных пи-ков и наличие широкой линии (гало) с угловой шириной $10^{\circ}-20^{\circ}$ (рис. 1). Температура стеклования стекол указана в табл. 1, с увеличением содержания Bi_2O_3 и CaF₂ t_g возрастает.

Очевидно, что химический состав по синтезу не соответствовал конечному составу стекла [11–17], так как в процессе варки осуществлялось частичное улетучивание фтора (до 3%). Рентгеноспектральный микроанализ на примере стекла СТ-1 показал, что алюминий входит в стекло в количестве до 1.5 мас. % (рис. 2).

В ИК-спектрах стекол Ст-1 и Ст-2, снятых в диапазоне 400-2000 см⁻¹ (рис. 3), доминирует интенсивная полоса поглощения в области 800-1100 см⁻¹ с максимумом 896 см⁻¹, относящаяся к валентным колебаниям Bi-O в [BiO₆]-полиэдрах [13]. Кроме того, в спектрах можно выделить еще четыре менее интенсивные полосы с максимумами около 673, 1239, 2353 см⁻¹. Полоса в области 620-720 см⁻¹ соответствует деформационным колебаниям В-О-В в [ВО₃]-треугольниках, присутствие бора в четверной координации подтверждают полосы с максимумами 932 и 976 см⁻¹ [14]. Полоса около 766 см⁻¹ относится к связи =B-O-B=, в которой кислородный мостик находится между тригональным и тетрагональным атомами бора [15]. Полоса в области 1200-1500 см⁻¹ имеет сложную форму и является суперпозицией двух компонентов: полосы поглощения с максимумом 1239 см⁻¹ и линии вблизи 1320 см⁻¹, первая компонента соответствует асимметричным боркислородным колебаниям в [ВО₃]-треугольниках, вторая — Bi-O⁻-валентным колебаниям в BiO₃. Полоса с максимумом 867 см⁻¹ относится к симметричным валентным колебаниям в [BiO₆]-полиэдрах [13]. Деформационные колебания конце-

Рис. 2. Результаты рентгеноспектрального микроанализа стекла Ст-1.

Рис. 3. ИК-спектры стекол: *1* – Ст-1, *2* – Ст-2.

вых группировок Si $-O^-$ связаны с полосой около 818 см⁻¹, колебания связей O-Si-O в островных группах [SiO₄] соответствуют области с максимумом при 932 см⁻¹, к которой также относятся боркислородные колебания в тетраэдрах [BO₄] [14, 16].

В ИК-спектрах, снятых в диапазоне 400–2000, образцов стекол Ст-1 и Ст-2 (рис. 3) также регистрируются полосы в области 450–460 см⁻¹ обусловленные деформационными колебаниями Si–O–Si-мостиков и колебаниями Zn–O [13, 17]. Полосы с максимумами 668 и 689 см⁻¹ могут быть отнесены к колебаниям Si–O и Bi–O в BiO₃пирамидах, полосы около 545 см⁻¹ принадлежат колебаниям Ca–F [12].

Анализ ИК-спектров полученных стекол показал, что основное состояние ионов висмута в системах — октаэдрическое с образованием групп [BiO_6], тогда заряд ионов висмута — Bi^{3+} . Это позволяет предположить, что Bi_2O_3 выступает в качестве стеклообразующего оксида с формированием висмутатной структурной сетки из деформированных октаэдрических групп $[BiO_6]$ и происходит образование Bi–O–Si-связей. Также стекла независимо от состава содержат сложные полиборатные анионы, образованные $[BO_3]$ - и $[BO_4]$ -группами.

Для образцов Ст-1 и Ст-2 были измерены спектрально-люминесцентные характеристики. В спектрах возбуждения люминесценции, снятых при $\lambda_{_{\rm ИЗЛ}} = 620$ нм (рис. 4а, 5а), фиксируется набор пиков, соответствующих внутриконфигурационным 4*f*-4*f*-переходам иона европия ⁷*F*₀-⁵*D*₄, ⁷*F*₀-⁵*G*₂, ⁷*F*₀-⁵*L*₆, ⁷*F*₀-⁵*D*₃ и ⁷*F*₀-⁵*D*₂ на длинах волн 362, 382, 396, 412 и 466 нм соответственно [2, 5].

При возбуждении образцов излучением с длиной волны 465 нм в спектрах ФЛ наблюдаются пять полос, которые являются типичными для собственной люминесценции ионов европия и соответствуют переходам с резонансного уровня ${}^{5}D_{0}$ на уровни основного мультиплета иона Eu³⁺: ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ (J = 0, 1, 2, 3, 4) [2, 5, 18]. Причем наи-

Рис. 4. Спектры возбуждения (а) и люминесценции (б) ионов Eu³⁺ в стекле Ст-1.

Рис. 5. Спектры возбуждения (а) и люминесценции (б) ионов Eu³⁺ в стекле Ст-2.

большей интенсивностью обладает электрический дипольный переход ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$, определяющий характерное красное свечение образцов ($\lambda_{\text{max}} \sim 616$ нм) (рис. 46, 56). Менее интенсивная полоса при 594 нм относится к магнитному дипольному переходу ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$.

Известно [2], что относительные интенсивности переходов ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ и ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ сильно зависят от локального окружения ионов европия. Когда ионы европия занимают центросимметричные позиции, магнитный дипольный переход ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ должен быть относительно интенсивным, в то время как электрический дипольный переход ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ запрещен по четности и должен быть слабым.

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 56 № 9 2020

Спектры люминесценции ионов Eu³⁺ во всех образцах проявляют интенсивную красную люминесценцию перехода ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ при 616 нм, что указывает на то, что ионы европия располагаются в низкосимметричных позициях. Спектры люминесценции, снятые при других энергиях ($\lambda_{воз6} = 395$ нм), имеют такой же характер, что и при возбуждении с $\lambda_{воз6} = 465$ нм. Для оценки эффективности преобразования возбуждающего излучения в ФЛ использовали рассчитанные отношения $I_{\phi n}/I_{воз6}$, где $I_{\phi n}$ – интенсивность в максимуме на 616 нм, $I_{воз6}$ – интенсивность полосы возбуждающего излучения в максимуме. Получены значения 1.47 и 1.64 соответственно для стекол Ст-1 и Ст-2.

ЗАКЛЮЧЕНИЕ

Впервые на основе системы $CaF_2-SiO_2-B_2O_3-B_2O_3-V_2O_3-ZnO$ при различных концентрациях исходных компонентов синтезированы оксифторидные стекла, легированные Eu_2O_3 , с низкими температурами синтеза. Исследование методом РФА показало, что стекла рентгеноаморфны, определены их температуры стеклования, с увеличением содержания оксида висмута и фторида кальция наблюдается повышение t_g .

Изучено строение стекол методом ИК-спектроскопии. Показано, что бор присутствует как в тройной координации ([ВО₃]-группы), так и в четверной в виде [ВО₄]-групп, висмут выступает в качестве стеклообразователя и входит в сетку стекла с образованием Bi–O–Si-связей.

Анализ спектров люминесценции показал, что образцы Ст-1 и Ст-2, легированные оксидом европия, обладают высокой лазерной эффективностью перехода ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ иона Eu³⁺, широкой полосой люминесценции. Полученные спектрально-люминесцентные характеристики указывают на перспективность их использования в качестве материалов для красных люминофоров.

БЛАГОДАРНОСТЬ

Работа выполнена в рамках государственного задания БИП СО РАН (проект № 0339-2016-007).

СПИСОК ЛИТЕРАТУРЫ

- Kaewako J., Boonin K., Yasaka P. et al. Optical and Luminescence Characteristics of Eu³⁺ Doped Zinc Bismuth Borate (ZBB) Glasses for Red Emitting Device // Mater. Res. Bull. 2015. V. 71. P. 37–41.
- 2. Егорышева А.В., Володин В.Д., Березовская И.В. и др. Влияние Eu₂O₃ на процесс кристаллизации стекол системы BaO-Bi₂O₃-B₂O₃ // Неорган. материалы. 2012. Т. 48. № 9. С. 1071–1075.
- Mikami M., Watanabe H., Uheda K. et al. New Phosphors for White LEDs: Material Design Concepts // IOP Conf. Ser.: Mater. Sci. Eng. 2009. V. 1. P. 012002.
- 4. *Tsvetkova M.N., Korsakov V.G., Sychev M.M. et al.* Study of Photophosphors for White LEDs // J. Opt. Technol. 2011. V. 78. № 6. P. 403–407.

- Aseev V.A., Kolobkova E.V., Nekrasova Ya.A. et al. Oxyfluoride Glasses for Red Phosphors // Mater. Phys. Mech. 2013. V. 17. P. 135–141.
- 6. Лойко П.А., Рачковская Г.Е., Захаревич Г.Б. и др. Новые люминесцирующие оксифторидные стекла с ионами европия и иттербия // Стекло и керамика. 2014. № 2. С. 3–6.
- Laczka M., Stoch L., Gorecki J. Bismuth-Containing Glasses as Materials for Optoelectronics // J. Alloys Compd. 1992 V. 186. P. 279–291.
- 8. *Oprea I., Hesse H., Betler K.* Optical Properties of Bismuth Borate Glasses // Opt. Mater. 2004. V. 26. P. 235–237.
- 9. Egorysheva A.V., Volodin V.D., Milenov T. et al. Glass Formation in the Systems CaO-Bi₂O₃-B₂O₃ and SrO-Bi₂O₃-B₂O₃// Russ. J. Inorg. Chem. 2010. V. 55. № 11. P. 1920–1927.
- Цыретарова С.Ю. Люминофоры на основе боросиликатных стекол, легированных ионами Tb³⁺ // Вестн. БГУ. 2015. № 3. С. 18–20.
- Накамото К. ИК спектры и спектры КР неорганических и координационных соединений. М.: Мир, 1991. 269 с.
- 12. Власов А.Г., Флоринская В.А., Венедиктов А.А. и др. Инфракрасные спектры неорганических стекол и кристаллов. Л.: Химия, 1972. 304 с.
- Bale S., Rahman S., Awasthi A.M., Sathe V. Role of Bi₂O₃ Content on Physical, Optical and Vibrational Studies in Bi₂O₃-ZnO-B₂O₃ Glasses // J. Alloys Comp. 2008. V. 460. P. 699-703.
- 14. *Еремяшев В.Е., Осипов А.А., Осипова М.Л.* Структура боросиликатных стекол при замещении натрия катионами щелочноземельных металлов // Стекло и керамика. 2011. № 7. С. 3–6.
- Yasaka P., Boonin K., Limsuwan P. et al. Physical, Structural and Luminescence Properties of ZnO– Bi₂O₃-B₂O₃ Glass System // Appl. Mech. Mater. 2013. V. 431. P. 8–13.
- 16. *El-Egil K*. Infrared Studies of $Na_2O-B_2O_3-SiO_2$ and $Al_2O_3-Na_2O-B_2O_3-SiO_2$ Glasses // Physica B. 2003. V. 325. P. 340-348.
- Левицкий И.А., Дяденко М.В., Папко Л.Ф. Получение оптических стекол на основе системы BaO– La₂O₃-B₂O₃-TiO₂-SiO₂ // Стекло и керамика. 2011. № 10. С. 3-6.
- 18. Цыретарова С.Ю., Кожевникова Н.М., Еремина Н.С. и др. Синтез люминофоров красного свечения на основе боросиликатного стекла и фаз переменного состава NaMgSc_{0.5}Lu_{0.5}(MoO₄)₃:Eu³⁺ и Na_{0.5}Mg_{0.5}ScLu_{0.5}(MoO₄)₃:Eu³⁺ со структурой NASICON // Неорган. материалы. 2015. № 12. С. 1374–1379.