УДК 535.376

КРИСТАЛЛОГРАФИЧЕСКИЕ И ЛЮМИНЕСЦЕНТНЫЕ ХАРАКТЕРИСТИКИ ЧЕТВЕРНОГО СОЕДИНЕНИЯ $Cu_2MgSnSe_4$ И МЕДЬДЕФИЦИТНЫХ ТВЕРДЫХ РАСТВОРОВ $Cu_2 = {}_xMgSnSe_4$ (0 < $x \le 0.15$)

© 2021 г. И. Н. Один^{1,} *, М. В. Гапанович², О. Ю. Урханов², М. В. Чукичев¹, Г. Ф. Новиков^{1, 2}

¹Московский государственный университет им. М.В. Ломоносова, Ленинские горы, 1, Москва, 119991 Россия

²Институт проблем химической физики Российской академии наук,

пр. Академика Семенова, 1, Черноголовка, Московская обл., 142432 Россия

*e-mail: i.n.odin@mail.ru Поступила в редакцию 28.07.2020 г. После доработки 03.09.2020 г. Принята к публикации 04.09.2020 г.

Впервые определены кристаллографические характеристики четверного соединения Cu₂MgSnSe₄ и медьдефицитных твердых растворов на его основе Cu_{2 – x}MgSnSe₄ (0 < $x \le 0.15$). Установлено, что в спектрах катодолюминесценции при 78 K Cu₂MgSnSe₄ полоса с максимумом 1.39 эВ, по всей вероятности, обусловлена антиструктурными дефектами Cu_{Mg} и Mg_{Cu}, образующимися при замещении атомов между медной и магниевой подрешетками в кестеритной структуре, а в спектре Cu_{2 – x}MgSnSe₄ кроме полосы 1.39 эВ имеется полоса с максимумом 1.34 эВ, обусловленная ассоциатами дефектов Cu²⁺ · V_{Cu}.

Ключевые слова: кестерит, кристаллографические характеристики, медьдефицитные твердые растворы, катодолюминесценция, ассоциаты дефектов

DOI: 10.31857/S0002337X21010115

введение

В последние годы в мире интенсивно развивается альтернативная энергетика, в частности создание солнечных батарей [1]. Одним из многообещающих неорганических материалов для солнечных батарей являются твердые растворы на основе соединений Cu₂ZnSnS₄ (CZTS) и $Cu_2ZnSnSe_4$ (CZTSe) со структурой кестерита [1]. Однако эффективность солнечных батарей на их основе составляет всего 12% при теоретически возможном значении 30% [2]. Низкий КПД этих батарей обусловлен, по всей вероятности, фундаментальными особенностями кристаллических структур CZTS и CZTSe. Из-за одинакового электронного строения ионов Zn²⁺ и Cu⁺ (18-электронная оболочка), близости атомных номеров меди и цинка (29 и 30 соответственно) и равенства радиусов ионов Zn²⁺ и Cu⁺ [3] в кристаллической решетке Cu₂ZnSnS₄ типа кестерита образуется большое количество антиструктурных дефектов Cu_{Zn} и Zn_{Cu} [1, 4], являющихся ловушками для фотогенерированных носителей тока [5]. Поэтому существенный научный и практический интерес представляет замена цинка на магний в структуре Cu₂ZnSnSe₄. Электронное строение ионов Cu⁺ и Mg²⁺ различно (18-электронная внешняя оболочка Cu⁺ и 8-электронная оболочка благородного газа для Mg²⁺). Атомные номера меди и магния существенно различаются: 29 и 12 соответственно. Кроме того, соединения магния отличаются более высокой ионностью по сравнению с аналогичными соединениями цинка. Так, соединение Cu₂MgSnSe₄ имеет ширину запрещенной зоны 1.7 эВ [6], что значительно выше, чем 1.0 эВ у Cu₂ZnSnSe₄. Безусловно, соединение Cu₂MgSnSe₄ (CMTSe) перспективно в качестве материала для солнечных элементов. Отметим, что магний, как и цинк, является широко распространенным элементом, при этом нетоксичным.

Соединение Cu₂MgSnSe₄ мало изучено. В работе [6] для Cu₂MgSnSe₄ определены параметры тетрагональной решетки: a = 5.7 Å, c = 11.4 Å, при этом индицирование рентгенограммы не проводилось и вследствие низкой точности — до первого знака после точки — такие данные не могут приниматься во внимание. Таким образом, для соединения Cu₂MgSnSe₄ экспериментальные структурные данные отсутствуют. Кристаллографические характеристики Cu₂MgSnSe₄ необходимы, поскольку это полупроводниковое соединение применяется для получения термоэлектрических материалов [6, 7].

Далее, медьдефицитные твердые растворы $Cu_{2-x}MgSnSe_4$ могут представить интерес для получения поглощающего слоя тонкопленочных солнечных батарей, поскольку, если судить по аналогии с материалами CIGS [8] и CZTS [9], недостаток меди может обуславливать нужные свойства — необходимый *р*-тип проводимости, а также повышать электропроводность материала.

Целью настоящей работы являются синтез, установление фазового состава, определение кристаллографических и люминесцентных характеристик четверного соединения $Cu_2MgSnSe_4$ и медьдефицитных твердых растворов на его основе $(Cu_{2-x}MgSnSe_4)$.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

поликристаллических образцов Синтез Cu₂MgSnSe₄ и Cu_{2 _x}MgSnSe₄ проводили в два этапа. На первом этапе требуемые количества меди, магния, олова, селена отжигали в вакуумированных ($p_{oct} = 2 \times 10^{-3}$ мм рт. ст.) графитизированных кварцевых ампулах при температуре 750°С в течение 48 ч. Использовали Cu, Sn, Se марки 5N и магний с содержанием 99.9%. Для предотвращения взрыва в процессе синтеза нагрев до указанной температуры проводили со скоростью 1°С/мин. После вскрытия ампул их содержимое растирали в агатовой ступке, вновь запаивали под вакуумом и проводили гомогенизирующий отжиг при температуре 650°С в течение 600 ч.

Фазовый состав полученных образцов исследовали методом рентгенофазового анализа, съемку проводили на дифрактометре ДРОН-4 (излучение CuK_{α_i}). При обработке дифрактограмм использовали комплекс программного обеспечения WinX^{POW}.

Плотность определяли пикнометрически в бромоформе квалификации "х.ч.", дважды перегнанном.

Спектры катодолюминесценции (**КЛ**) записывали при 78 К. Возбуждение люминесценции проводили импульсным электронным пучком с энергией 40 кэВ. Спектры КЛ регистрировали монохроматором ДФС-13. Погрешность в определении длины волны в спектре составила ± 1 нм, а погрешность в расчете энергии фотонов – 0.01 эВ.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Образцы $Cu_2MgSnSe_4$ и $Cu_{2-x}MgSnSe_4$ – кристаллические вещества черного цвета, устойчивые по отношению к воде и воздуху при комнатной температуре.

Кристаллографические характеристики соединения Cu₂MgSnSe₄ и твердых растворов Cu_{2-x}MgSnSe₄

Соединение $Cu_2MgSnSe_4$. На рентгенограмме четверного соединения Cu₂MgSnSe₄ все линии проинлицированы (с использованием 26 линий на рентгенограмме) в тетрагональной сингонии (табл. 1). На рентгенограмме не обнаружены линии примесных фаз. Впервые определены с достаточно высокой точностью параметры тетрагональной элементарной ячейки соединения Cu₂MgSnSe₄: $a = 5.721 (3), c = 11.435 (5) \text{ Å}, V = 374.31 (6) \text{ Å}^3$. CBepxструктурные линии на дифрактограммах не обнаружены. Пикнометрическая плотность Cu₂MgSnSe₄ составила 5.188 ± 0.007 г/см³. Из полученных данных рассчитано число формульных единиц $Cu_2MgSnSe_4$ в элементарной ячейке *Z* = 1.9993 ≈ 2, что соответствует структуре как кестерита, так и станнита. Рентгеновская плотность равна 5.197 г/см³.

По имеющимся на рентгенограмме рефлексам Cu₂MgSnSe₄ определена пр. гр. $I\overline{4}2m$. На рентгенограмме Cu₂MgSnSe₄ имеется линия 00l, где l – четное число, не кратное четырем и равное 2; в случае родственной пр. гр. $I\bar{4}2d$ такая линия запрещена. Далее, в случае пр. гр. $I\overline{4}2d$ из линий *hhl* разрешены только те, для которых сумма 2h + lкратна 4, а для $I\overline{4}2m$ из линий *hhl* разрешены, кроме того, те линии, где сумма 2h + l является четным числом, не кратным 4, а именно – линии 114, 222, 118, 226. Таким образом, на рентгенограмме соединения Cu₂MgSnSe₄ имеются линии с индексами 002, 114, 222, 226, 118, что однозначно свидетельствует о пр. гр. $I\overline{4}2m$ для структуры Cu₂MgSnSe₄. Такую пр. гр. имеют и кестерит, и станнит. Выбор в пользу решетки типа кестерита основывается на следующем.

Известно, что соединение Cu_2ZnSnS_4 имеет структуру кестерита [1]. В кристаллической решетке соединения Cu_2ZnSnS_4 наблюдается разупорядочение: часть атомов меди входит в подрешетку цинка, а часть атомов цинка — в подрешетку меди [1]. Для соединения Cu_2ZnSnS_4 структура кестерита считается более стабильной (по сравнению со структурой станнита) вследствие указанного катионного беспорядка в слое Cu–Zn [1]. Мы

				2 2 4	· · · · · ·
<i>I</i> , %	$d_{_{ m ЭКСП}},$ Å	h k l	$10^4/d_{ m skcm}^2~(Q_{ m skcm})$	$10^4/d_{\rm pacy}^2 (Q_{\rm pacy})$	$\Delta = (Q_{\rm эксп} - Q_{\rm pacq})$
1	5.717	0 0 2	306.09	305.98	+0.11
2.5	5.113	101	382.17	382.29	-0.12
1.5	4.043	110	611.78	611.61	+0.17
100	3.3017	112	917.28	917.42	-0.14
3	3.1721	103	994.03	993.92	+0.11
1	2.5579	202	1529.4	1529.2	+0.2
2.5	2.3332	211	1604.6	1605.0	-0.4
1	2.1268	114	1836.1	1835.5	+0.4
1.5	2.4960	105	2218.4	2217.9	+0.5
86	2.0218	2 2 0; 2 0 4	2446.9	2446.4 2447.2	+0.5 -0.3
1.5	1.9065	2 2 2	2751.9	2752.4	-0.5
0.5	1.8801	301	2828.2	2828.6	-0.4
0.5	1.8078	310	3058.7	3058.1	+0.6
41	1.7246	3 1 2 1 1 6;	3364.3	3363.8 3364.6	+0.5 -0.3
1.5	1.7050	303	3441.4	3440.8	+0.6
4	1.6480	224	3671.4	3670.4	+1.0
1	1.5292	314	4280.9	4282.0	-1.1
0.5	1.4641	323	4662.7	4663.9	-1.2
7.5	1.4303	4 0 0; 0 0 8	4894.4	4892.8 4896.0	+1.6 -1.6
1.5	1.3870	2 2 6	5199.7	5200.6	-0.9
1	1.3439	118	5508.3	5507.6	+0.9
13	1.3121	3 3 2; 3 1 6	5811.2	5810.4 5812.0	$+0.8 \\ -0.8$
1	1.2769	420	6112.7	6111.7	+1.0
1	1.2481	4 2 2	6416.6	6417.6	-0.9
13	1.1676	424	7341.2	7340.1	+1.1
6.5	1.1010	336	8257.4	8258.4	-1.0

Таблица 1. Индицирование рентгенограммы четверного соединения Cu₂MgSnSe₄

$Cu_{2-x}MgSnSe_4 cx = 0.15$							
	Относительные интенсивности линий						
h k l	Cu ₂ ZnSnS ₄	Cu ₂ MgSnSe ₄	$Cu_{2-x}MgSnSe_4$ (x = 0.15)				
002	1	1	1				
101	3.5	2.5	2.5				
110	2	1.5	2				
103	3	3	2.5				
202	1	1	1				
211	3.5	2.5	2.5				
114	1	1	1				
105	2	1.5	1.5				
222	1	1.5	1				
301	0.5	0.5	0.5				
310	0.5	0.5	0.5				
303	2	1.5	1.5				
314	1	1	1				
323	0.5	0.5	0.5				
226	1	1.5	1				
118	0.5	1	1				

Таблица 2. Сравнение относительных интенсивностей слабых линий на дифрактограммах соединений Cu₂ZnSnS₄, Cu₂MgSnSe₄ и твердого раствора Cu_{2 _ x}MgSnSe₄ c x = 0.15

Таблица 3. Содержание Cu^+ , Cu^{2+} и V_{Cu} в кристаллической решетке твердых растворов Cu_{2-x} MgSnSe₄

Y	Содержание, доли				
λ	Cu ⁺	Cu ²⁺	V _{Cu}		
0	2	0	0		
0.05	1.90	0.05	0.05		
0.10	1.80	0.10	0.10		
0.15	1.70	0.15	0.15		

сравнили интенсивности слабых линий на рентгенограммах соединений Cu₂ZnSnS₄ и Cu₂MgSnSe₄. Обнаружено, что интенсивность слабых линий, которые и характеризуют структуру кестерита, приблизительно равны для этих двух соединений (табл. 2): можно полагать, что соединение Cu₂MgSnSe₄ также имеет структуру кестерита. Доказательством принадлежности структуры Cu₂MgSnSe₄ к типу кестерита служит сравнение отношения интенсивностей двух самых ярких линий на рентгенограммах: $Q = I_{220, 204}$: I_{112} . Для Cu₂MgSnSe₄ Q равно 0.85 (табл. 1), для Cu₂ZnSnS₄ (типа кестерита) Q == 0.90, а в случае решетки типа станнита значение Q не превышает 0.4. На рис. 1а представлена кристаллическая структура Cu₂ZnSnS₄ в случае полного упорядочения [1, 4], а на рис. 16 – структура Cu_2ZnSnS_4 с антиструктурными дефектами Cu_{Zn} , $Zn_{Cu}[1, 4]$, которые возникают, когда атомы меди и цинка находятся на кратчайшем расстоянии друг от друга, т.е. в первую очередь в слое Cu-Zn [1, 4]. На рис. 1в представлена возможная структура $Cu_2MgSnSe_4$ — по аналогии со структурой соединения Cu₂ZnSnS₄; здесь изображены дефекты Cu_{Mg}, Mg_{Cu}.

Твердые растворы Си2-хMgSnSe4. Параметры тетрагональной элементарной ячейки Cu_{2-x}MgSnSe₄ уменьшаются при увеличении x. Для $Cu_{2-x}MgSnSe_4$ установлена пр. гр. $I\overline{4}2m$. Обнаружено, что интенсивности слабых линий приблизительно равны для $Cu_{2-x}MgSnSe_4$, $Cu_2MgSnSe_4$, Cu_2ZnSnS_4 (табл. 2): можно полагать, что твердые растворы $Cu_{2-x}MgSnSe_4$ также имеют структуру кестерита. Доказательством принадлежности структуры Cu_{2-x}MgSnSe₄ к типу кестерита также служит сравнение отношения интенсивностей двух самых сильных линий на рентгенограммах: Q = 0.86 для $Cu_{2-x}MgSnSe_4$ с x = 0.15, Q = 0.90 для Cu_2ZnSnS_4 (кестерит) (для решетки типа станнита Q < 0.4). Параметры элементарной ячейки Cu_{2-x}MgSnSe₄ с x = 0.15 составляют a = 5.709 (3) Å, c = 11.415 (5) Å, V = 372.21 (6) Å³. В кристаллической решетке $Cu_{2-x}MgSnSe_4$ образуются вакансии V_{Cu} (□). Для сохранения электронейтральности кристалла на z вакансий в подрешетке меди z атомов меди приобретают степень окисления 2+ (табл. 3). Поэтому формулу твердых растворов Cu_{2-x}MgSnSe₄ следует представить в виде $Cu_{2-\nu}^+ Cu_{\nu/2\Box\nu/2}^{2+} MgSnSe_4$ (0 < y ≤ ≤ 0.10 , y = x/1.5.

Отмеченное выше уменьшение параметров элементарной ячейки $Cu_{2-x}MgSnSe_4$ объясняется тем, что Cu^{2+} имеет меньший радиус, чем Cu^+ [3].

Рис. 1. Кристаллическая структура Cu_2ZnSnS_4 в случае полного упорядочения [1, 4] (а), структура Cu_2ZnSnS_4 с антиструктурными дефектами Cu_{Zn} , Zn_{Cu} [1, 4] (б) и возможная структура $Cu_2MgSnSe_4$ с антиструктурными дефектами Cu_{Mg} , Mg_{Cu} (в).

Таким образом, в кристаллических решетках $Cu_2MgSnSe_4$ и $Cu_{2-x}MgSnSe_4$ происходит разупорядочение: часть атомов меди входит в подрешетку магния, а часть атомов магния — в подрешетку меди. Это обусловлено тем, что радиусы ионов Cu^+ и Mg^{2+} для координационного числа 4 близки: 0.74 и 0.71 Å соответственно [3] (каждый из ионов меди, магния, олова, селена в структуре кестерита тетраэдрически окружен ионами противоположного знака).

Спектры катодолюминесценции. В спектрах КЛ при 78 К соединения $Cu_2MgSnSe_4$ и твердых растворов $Cu_{2-x}MgSnSe_4$ ($0 \le x \le 0.15$) не обнаружены экситонные линии, которые однозначно свидетельствовали бы о точном значении ширины запрещенной зоны E_g . В спектре КЛ (рис. 2) $Cu_2MgSnSe_4$ имеется полоса 1.39 эВ, отвечающая энергетическим уровням внутри запрещенной зоны, т.е. $E_g \ge 1.39$ эВ: соединение $Cu_2MgSnSe_4$ значительно более широкозонное, чем его цинковый аналог $Cu_2ZnSnSe_4$ ($E_g = 1.0$ эВ). В кристаллической структуре соединения $Cu_2MgSnSe_4$ происходит разупорядочение: часть атомов меди переходит из медной подрешетки в подрешетку магния с образованием дефекта Cu_{Mg} (атомы меди на местах Mg; акцептор), а часть атомов магния переходит в подрешетку меди, образуя дефект Mg_{Cu} (донор). Полоса 1.39 эВ обусловлена

Рис. 2. Спектр КЛ четверного соединения $Cu_2MgSnSe_4$ при 78 К.

тем, что дефекты Cu_{Mg} и Mg_{Cu} создают близко расположенные энергетические уровни в запрещенной зоне, что приводит к образованию широкой полосы 1.39 эВ (рис. 2).

В спектре КЛ (78 К) твердого раствора $Cu_{2-x}MgSnSe_4 cx = 0.15$ (рис. 3) наблюдается полоса с максимумом 1.34 эВ кроме полосы 1.39 эВ, рассмотренной выше. Полоса 1.34 эВ связана с наличием меди в степени окисления 2+: Cu^{2+} на местах Cu^+ создает положительно заряженный дефект, который связывается с отрицательно заряженной вакансией меди V_{Cu} в ассоциат дефектов $Cu^{2+} \cdot V_{Cu}$. Концентрации Cu^{2+} (табл. 3), эти концентрации велики, следовательно, преобладающими дефектами при 78 К являются ассоциаты дефектов $Cu^{2+} \cdot V_{Cu}$.

ЗАКЛЮЧЕНИЕ

Впервые определены кристаллографические характеристики четверного соединения $Cu_2MgSnSe_4$ и

Рис. 3. Спектр КЛ твердого раствора $Cu_{2-x}MgSnSe_4 c x = 0.15$ при 78 К.

твердых растворов Cu_{2-x}MgSnSe₄ ($0 < x \le 0.15$). В кристаллических решетках Cu₂MgSnSe₄ и Cu_{2-x}MgSnSe₄ происходит разупорядочение: часть атомов меди входит в подрешетку магния, а часть атомов магния — в подрешетку меди. Различие в электронной структуре ионов Cu⁺ и Mg²⁺ приводит к большей степени ионности и более высокому значению ширины запрещенной зоны соединения Cu₂MgSnSe₄ по сравнению с аналогичным соединением Cu₂ZnSnSe₄.

Впервые установлено, что в спектрах КЛ при 78 К $Cu_2MgSnSe_4$ полоса с максимумом 1.39 эВ, по всей вероятности, обусловлена антиструктурными дефектами Cu_{Mg} и Mg_{Cu} , образующимися при замещении атомов между медной и магниевой подрешетками в кестеритной структуре, а в спектре твердых растворов $Cu_{2-x}MgSnSe_4$ кроме полосы

1.39 эВ имеется полоса с максимумом 1.34 эВ, обусловленная преобладающими дефектами — ассоциатами $Cu^{2+} \cdot V_{Cu}$. Образование указанных дефектов необходимо учитывать при анализе электрофизических и оптических свойств образцов на основе $Cu_2MgSnSe_4$.

БЛАГОДАРНОСТЬ

Работа выполнена в рамках госзадания № АААА-A19-119070790003-7.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Ракитин В.В., Новиков Г.Ф.* Солнечные преобразователи третьего поколения на основе четверных соединений меди со структурой кестерита // Успехи химии. 2017. Т. 86. № 2. С. 99–112.
- 2. *Ito K.* Copper Zinc Tin Sulfide Based Thin Film Solar Cells. West Sussex: John Wiley & Sons, 2014. 413 p.
- 3. Handbook of Chemistry and Physics / Ed Lide D.R. Boca Raton: CRC Press, 2005. 2660 p.

- Schorr S. The Crystal Structure of Kesterite Type Compounds: A Neutron and X-Ray Diffraction Study // Sol. Energy Mater. Sol. Cells. 2011. V. 95. P. 1482– 1488.
- Zhong B., Tse K., Zhang Y.Y. et al. Induced Effects by the Substitution of Zn in Cu₂ZnSnX₄ (X = S and Se) // Thin Solid Films. 2016. V. 603. P. 224–239.
- Kumar V.P., Guilmeau E., Raveau B. et al. A New Wide Band Gap Thermoelectric Quaternary Selenide Cu₂MgSnSe₄ // J. Appl. Phys. 2015. V. 118. P. 155101-1–155101-8.
- Sharma S., Kumar P. Quaternary Semiconductors Cu₂MgSnS₄ and Cu₂MgSnSe₄ as Potential Thermoelectric Materials // J. Phys. Commun. 2017. V. 1. P. 045014-1–P. 045014-8.
- Гапанович М.В., Один И.Н., Рабенок Е.В. и др. Особенности дефектной структуры и процессов гибели фотогенерированных носителей тока в халькопиритных твердых растворах Cu_{1-x}(In_{0.7}Ga_{0.3})Se₂ (0 ≤ x ≤ 0.30) // Неорган. материалы. 2019. Т. 55. № 7. С. 694–698.
- 9. *Гапанович М.В., Один И.Н., Чукичев М.В. и др.* Структурные данные и люминесцентные свойства твердых растворов Cu_{2-x}ZnSnS₄, Cu_{2-x}Zn_{1+0.5x}SnS₄ // Неорган. материалы. 2020. Т. 56. № 9. С. 943–947.