УЛК 666.9.03

ВЛИЯНИЕ МОДИФИКАТОРОВ ВЯЗКОСТИ НА СТРУКТУРООБРАЗОВАНИЕ ЦЕМЕНТНЫХ СИСТЕМ ЛЛЯ СТРОИТЕЛЬНОЙ З*D*-ПЕЧАТИ

© 2021 г. Г. С. Славчева¹, О. В. Артамонова^{1, *}, М. А. Шведова¹, Е. А. Бритвина¹

¹Воронежский государственный технический университет, ул. XX-летия Октября, 84, Воронеж, 394006 Россия *e-mail: ol_artam@rambler.ru

Поступила в редакцию 23.06.2020 г. После доработки 28.08.2020 г. Принята к публикации 02.09.2020 г.

В работе представлены экспериментальные данные о влиянии модификаторов вязкости на структурообразование, реологические и прочностные характеристики цементных систем. Установлено, что родственные по кристаллохимическому строению гидратным новообразованиям нано- и микроразмерные модификаторы вязкости на основе SiO_2 и $Al_2O_3 \cdot SiO_2$ наиболее эффективны, поскольку обеспечивают сокращение сроков схватывания и твердения в 1.3-1.5 раза, повышение пластической прочности в 4-5 раз, а также прочности при сжатии на 30%. Ксантановая камедь и пирофосфат калия являются эффективными модификаторами с точки зрения регулирования реологических характеристик цементных систем, но не позволяют интенсифицировать процессы их структурообразования и твердения.

Ключевые слова: 3D-печать, цементные системы, модификаторы вязкости, структурообразование,

твердение

DOI: 10.31857/S0002337X21010140

ВВЕДЕНИЕ

Одним из важнейших нерешенных вопросов, сдерживающих в настоящее время развитие технологии строительной 3*D*-печати [1—3], является отсутствие эффективных строительных смесей, адаптированных по свойствам к особенностям данной технологии. Их создание связано с решением двух главных проблем. Первая обусловлена необходимостью обеспечения особых реологических характеристик смесей, от которых зависит эффективность процессов транспортирования, экструзии и послойной укладки. Вторая — обеспечением такой скорости структурообразования и твердения, которая определяет устойчивость безопалубочных печатных конструкций.

Систематизация информации [1, 4-6] о компонентном составе цементных систем для 3D-печати (табл. 1) показывает, что в их состав входят наполнители и заполнители различной дисперсности и химико-минералогического состава, модификаторы вязкости, регуляторы структурообразования, пластифицирующие добавки, армирующие волокна. При этом достаточно однозначно установлена роль каждого из компонентов в обеспечении реологических характеристик, необходимых для реализации 3D-печати.

В исследованиях [7, 8] выявлены механизмы и факторы регулирования реологических характеристик цементных систем для 3D-печати. Найдены рациональные границы варьирования компонентов смесей для получения систем, адаптированных к режимам 3D-печати по характеристикам пластичности (предел текучести 1.0-2.5 кПа); формоустойчивости (пластическая прочность 30-40 кПа, относительная деформируемость до начала трещинообразования 0.05 мм/мм); прочности при сжатии (50-70 МПа). Показано, что для каждой конкретной системы концентрации компонентов дисперсной фазы в значительной мере определяются характеристиками дисперсионной среды.

Установлено, что определяющим фактором регулирования пластичности смесей является введение добавок электролитов и пластификаторов, изменяющих ионный состав дисперсионной среды и состояние поверхности частиц дисперсной фазы. Необходимая для безопалубочной печати формоустойчивость смесей достигается при введении добавок-модификаторов вязкости и оптимальной плотности дисперсионной среды. Применительно к указанной совокупности добавок-регуляторов свойств дисперсионной среды механизм влияния добавок электролитов и пла-

Компоненты системы	Содержание, мас. %	Типичные применяемые компоненты			
Портландцемент	40-70	Бездобавочный (CEM I 42.5), быстротвердеющий (CEM I 52.5R) с высокой активностью			
Заполнитель	20-60	Карбонатный песок, кварцевый песок			
Наполнитель	15-60	Зо́лы уноса, тонкодисперсные карбонатные наполнители и шлаки (с размером зерна не более 2.5 мм), микрокремнезем			
Модификаторы вязкости	1-5	Каолин, метакаолин, наноглина, мел, камедь			
Пластифицирующие добавки	1-2	Суперпластификаторы без эффекта воздухововлечения на основе полиарилатов или на основе поликарбоксилатов			
Ускорители твердения	1-2	Электролиты: алюминат натрия, силикат натрия, фторид натрия, карбонат калия, хлорид кальция			
Добавки — компенсаторы усадки на оксидной или сульфатной основе	≤2	Аморфный оксид алюминия, тонкодисперсный аморфный кремнезем, сульфат кальция			
Армирующие волокна	≤1	Фибры: стеклянная, полипропиленовая, базальтовая, стальная			

Таблица 1. Основные компоненты систем на основе портландцемента для строительной 3D-печати

стификаторов на процессы структурообразования и твердения цементных систем хорошо изучен в работах В.Б. Ратинова и Т.И. Розенберга. Однако влияние состава и концентрации используемых модификаторов вязкости на кинетику гидратации и твердения однозначно не установлено.

Целью данной работы являлось установление влияния состава модификаторов вязкости на процессы структурообразования, схватывания и твердения цементных систем для 3D-печати.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для получения цементных систем для 3*D*-печати использовался портландцемент (Ц) ЦЕМ І 42.5 (ГОСТ 3110—2016), техническая вода (В) (ГОСТ 23732-2011), суперпластификатор (СП) на основе поликарбоксилатных эфиров (марки Sika® Visco-Creat® Т100). В качестве наполнителя использовалась известняковая мука (ИМ) производства Воронежского завода минеральных порошков с размером частиц ≤0.2 мм. При получении смесей соотношение по массе Ц: ИМ составляло 1: 1. В качестве армирующего компонента использовали полипропиленовое волокно (ВЛ) марки SikaFi-ber® PPM-12 длиной 12 мм. Его содержание составляло 0.5% от массы цемента.

В качестве модификаторов вязкости использовались следующие добавки: метакаолин (**MKJ**) марки BMK-45, TУ 23.99.19-004-34556001-2017; ксантановая камедь (**KM**) марки FUFENG® и пирофосфат калия (**ПФК**) технический, марки YUCHENG; а также комплексная наноразмерная

добавка (**КНД**) на основе SiO_2 , синтез которой подробно описан в работе [9].

В работе использовались системы (табл. 2), состав которых был оптимизирован в предыдущих исследованиях [7, 8] по перечисленным выше критериям пластичности и формоустойчивости (табл. 3). В качестве эталонной использовалась система I (Ц-В-СП-ИМ-ВЛ) без модификаторов вязкости.

Гранулометрический состав добавок модификаторов вязкости определяли методом лазерной дифракции с помощью лазерного анализатора частиц Analyzette 22.

Сроки начала схватывания вязкопластичных систем определяли на приборе Вика по стандартной методике. Для оценки кинетики схватывания применяли пенетрометрический метод [10], погрешность которого составляет 10%. С помощью универсального пенетрометра (марки Geopocket — S068) находили показатель пластической прочности $P_{\pi\pi}$ погружением стандартного плунжера диаметром 6.4 мм до заданной отметки в 5 мм. Для этого свежеприготовленную смесь укладывали в кольцо диаметром 150 и высотой 55 мм и проводили измерения от момента получения готовой смеси до момента начала ее схватывания, соответствующего времени, определенного по прибору Вика. По результатам испытаний проводили оценку $P_{\scriptscriptstyle \Pi\!\Pi}$ как приведенной величины сопротивления пенетрации:

$$P_{\text{пл}} = \frac{4N}{\pi d^2},\tag{1}$$

Taoani	а 2. Ларактеристика составов цен	VICITITIDI.	A CHCTCN	т дли эр	ile iain		
№ п/п	Состав системы	В/Ц	ω*, %	ω*, %	Химический состав	Дисперсный состав	
				ω, π	лимический состав	ω, %	d, HM
·			СП	модификатор			
1	Ц-В-СП-ИМ-ВЛ	0.44	1.2	_	_	_	_
	Ц–В–СП–ИМ–ВЛ–МКЛ	0.39	1.2	2	МКЛ $Al_2O_3 \cdot SiO_2$ ($SiO_2 - 53\%$, $Al_2O_3 - 47\%$)	24	1000
2 I						65	2000
						7	4900
3 Ц-В-СП-	Ц–В–СП–ИМ–ВЛ–КМ–ПФК	0.40	1.2	0.2	KM (C ₃₅ H ₄₉ O ₂₉) _n (91%)	41	180000
						35	200000
						15	250000
				0.2	ПФК К ₄ Р ₂ О ₇ (98%)	38	150
						41	200
						16	250
4	Ц–В–СП–ИМ–ВЛ–КНД	0.37	0.7	0.01	КНД SiO ₂	28	2
						39.3	5
					5107	27.3	10

Таблица 2. Характеристика составов цементных систем для 3D-печати

где N — сопротивление пенетрации смеси при погружении плунжера стандартного диаметра на глубину 5 мм, кH; d — диаметр плунжера, м².

Кинетику гидратации и фазовый состав цементного камня контролировали рентгенодифрактометрическим методом (CuK_{α} -излучение, $\lambda=1.541788$ Å, дифрактометр ARL X'TRA); обработка дифрактометрических данных осуществлялась автоматически с использованием компьютерной программы PDWin 4.0. Степень гидратации цементных систем рассчитывали по содержанию $3CaO \cdot SiO_2$ (C_3S) путем сравнения их дифрактограмм с дифрактограммой образца из цементного клинкера [11]:

$$C_{\Gamma}(C_3S) = \left(1 - \frac{I_{\text{MOI}}}{I_0}\right) \times 100\%, \tag{2}$$

где $I_{\text{мод}}$ — интенсивность дифракционного максимума при d=2.75~Å фазы $3\text{CaO}\cdot\text{SiO}_2$ образцов, различающихся видом добавки и сроками гидратации цемента; I_0 — интенсивность дифракционного максимума при d=2.75~Å фазы $3\text{CaO}\cdot\text{SiO}_2$ исходного цемента.

Для оценки морфологии структуры цементного камня использовали сканирующий электронный микроскоп JEOL JSM-7001F. Предел прочности при сжатии образцов цементного камня размером $5 \times 5 \times 5$ см определяли через 1, 3, 7, 14, 28 сут твердения в нормальных условиях на испытательной машине INSTRON Sates 1500HDS. Серия состояла из 12 образцов, внутрисерийный ко-

эффициент изменчивости результатов испытаний не превышал 7%.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Фазовый состав и микроструктура исследованных систем. По данным РФА, во всех исследованных цементных системах доминирующей является фаза карбонатного наполнителя $CaCO_3$ (рис. 1). Общим для всех систем является присутствие фаз тоберморита $(CaO)_x \cdot SiO_2 \cdot zH_2O$, низко- и высокоосновных гидросиликатов кальция. Однако содержание и структура гидратных новобразований существенно различаются.

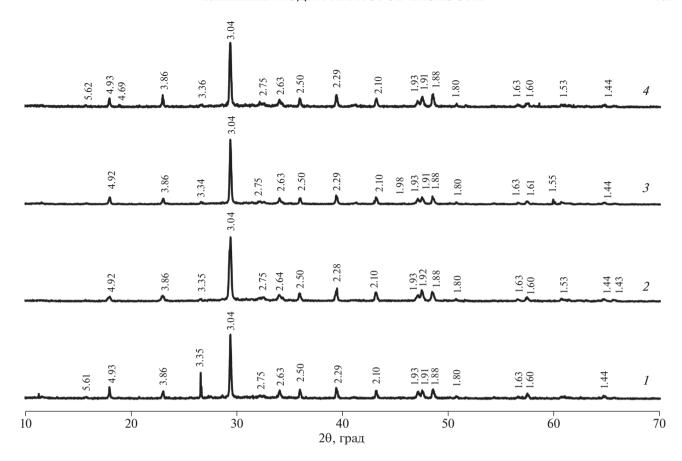
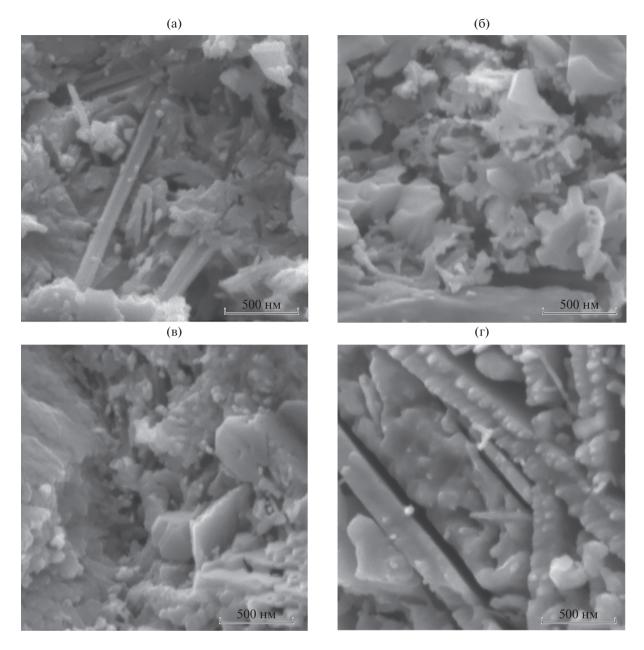

Гидратные фазы эталонной системы через 28 суток представлены преимущественно высо-

Таблица 3. Реологические характеристики цементных систем для 3*D*-печати

Система	$K_i(I)$, кПа	σ_0 , к Π а	σ _{пл} , кПа	$\Delta_{\Pi\Pi}$, MM/MM
1	2.55	1.18	48.20	0.08
2	0.98	4.69	31.31	0.03
3	1.65	3.53	41.65	0.04
4	1.54	3.04	40.75	0.07

Примечание. $K_i(I)$ — предел пластичности, σ_0 — структурная прочность, $\sigma_{\Pi \Pi}$ — пластическая прочность, $\Delta_{\Pi \Pi}$ — относительная пластическая деформация.

^{*} Концентрация от массы цемента.


Рис. 1. Результаты рентгенодифрактометрических исследований цементных систем для 3D-печати: Ц—В—СП—ИМ—ВЛ (I), Ц—В—СП—ИМ—ВЛ—КМ—ПФК (I), Ц—В—СП—ИМ—ВЛ—КНД (I) (CaCO $_{I}$) (3.85, 3.03, 2.09, 1.90, 1.87, 1.60), (CaO) $_{I}$ (CaCO) $_{I}$ (3.95, 2.93, 2.80, 2.31, 1.83), 3CaO · Al $_{I}$ O (3.77, 2.86, 2.46, 2.10, 1.93, 1.43), 2CaO · SiO $_{I}$ · H $_{I}$ O (4.77, 3.01, 2.92, 2.37, 1.96, 1.81), 2CaO · SiO $_{I}$ · 0.5H $_{I}$ O (3.95, 3.10, 2.77, 2.03,1.87, 1.72), Ca(OH) $_{I}$ (4.93, 3.11, 2.63, 1.93, 1.79, 1.69), 3CaO · Al $_{I}$ O $_{I}$ · 3 CaSO $_{I}$ · 26H $_{I}$ O (5.60, 4.98, 3.88, 3.48, 2.56, 2.20)).

коосновными гидросиликатами кальция (2СаО - \cdot SiO₂ \cdot 0.5H₂O, 2CaO \cdot SiO₂ \cdot H₂O), портландитом (Са(ОН)₂), высокосульфатной формой гидросульфоалюмината кальция (3CaO · Al₂O₃ · 3CaSO₄ · \cdot 26H₂O). Для системы 3 (Ц-В-СП-ИМ-ВЛ-КМ-ПФК) фазовый состав характеризуется преобладанием высокоосновных гидросиликатов кальция и портландита. В системе 2 (Ц-В-СП-ИМ-ВЛ-МКЛ) дополнительно фиксируется фаза гидроалюмината кальция ($3CaO \cdot Al_2O_3 \cdot xH_2O$). Для системы 4 (Ц-В-СП-ИМ-ВЛ-КНД) доминирующей фазой является низкоосновный гидросиликат кальция $(CaO)_x \cdot SiO_2 \cdot nH_2O$, содержание фазы портландита практически не фиксируется. Таким образом, в системах 2 и 4 обеспечивается формирование низкоосновных гидросиликатов кальция с соотношением $C/S \le 1.0$ и гидроалюминатов кальция вместо первичных кристаллогидратов типа портландита или высокоосновных гидросиликатов кальция.

Согласно данным электронной микроскопии, для эталонной системы *1* без модификаторов вяз-

кости (рис. 2а) характерно формирование микрокристаллической структуры из мелких волокнисто-игольчатых кристаллов гидросиликатов кальция с включениями крупных иглообразных кристаллов гидросульфоалюминатной фазы и пластинчатопризматических кристаллов портландита. Полученные результаты хорошо коррелируют с данными рентгенодифрактометрических исследований.

Следует подчеркнуть, что все системы с модификаторами вязкости отличаются меньшей закристаллизованностью гидратных новообразований. В системе 2 (рис. 2б) доминирует слабо закристаллизованная тоберморитная C-S-H-фаза, при этом фиксируется значительное количество гексагональных пластинчатых кристаллов, что в соответствии с данными РФА подтверждает присутствие в системе гидроалюминатов кальция. В системе 3 (рис. 2в) также доминирует слабо закристаллизованная тоберморитная C-S-H-фаза, наблюдаются отдельные включения пластинчатых кристаллов портландита, что также коррелирует с данными РФА. Для системы 4 (рис. 2г) характерно формирование низкоосновной геле-

Рис. 2. Микрофотографии цементных систем для 3D-печати (время твердения 28 суток): Ц-B-СП-ИМ-ВЛ (а), Ц-B-СП-ИМ-ВЛ-ИМ

видной C—S—H-фазы, закристаллизованные новообразования практически не фиксируются. При этом отмечается выраженное зонирование структуры C—S—H-геля.

Полученные данные позволяют предложить два механизма влияния модификаторов вязкости различного химического состава на структурообразование цементных систем. Оксид кремния и МКЛ имеют родственное кристаллохимическое строение с гидратными фазами твердеющего цемента, облегчающее образование молекулярных кластеров и зародышей на частицах как активных центрах кристаллизации. При этом понижение

основности образующихся гидросиликатных фаз обусловлено способностью к химическому взаимодействию данных частиц с клинкерными минералами цемента. Эффективность модификатора повышается с уменьшением размера частиц, т.е. с увеличением их удельной поверхности. В работе [9] показано снижение эффективной энергии активации процесса гидратации цемента в 3 раза при использовании КНД. Кроме того, их предельная концентрация, обеспечивающая максимальное ускорение твердения цемента, также зависит от размера частиц модификатора: чем он меньше, тем меньше требуется добавки.

Суммарный гетерогенный процесс образования гидросиликатных фаз в данном случае можно разделить на две стадии: 1) конгруэнтное растворение и гидратация C_3S , 2) фазообразование гидратных соединений типа CSH. Стоит отметить, что именно на второй стадии под воздействием активных наноразмерных частиц происходит формирование соответствующих фаз гидросиликата кальция CSH с x=0.8-1.5 в случае КНД и гидроалюмината кальция в случае МКЛ.

Механизм влияния комплексной добавки КМ и ПФК связан с взаимодействием этих модификаторов на дисперсионную среду системы. КМ химически инертна, однако способна адсорбировать молекулы воды. ПФК, являясь сильным электролитом, действует сложнее: он не содержит одноименных с вяжущим ионов и его дозировка мала, поэтому он, изменяя ионную силу раствора и повышая его пересыщение, может выступать как ускоритель процесса твердения. С другой стороны, в реакцию с образованием труднорастворимых продуктов вступает только анион добавки, а катион сохраняется в жидкой фазе бетона, при этом повышается рН среды. Очень существенно, что недостающие для образования двойной соли ионы кальция поставляет в раствор Са(ОН)2. Таким образом, кинетика структурообразования зависит от того, с какой интенсивностью идет гидратация алита, обеспечивающего необходимую концентрацию в растворе ионов кальция. Здесь протекает сложный многостадийный процесс, который можно условно описать следующими уравнениями:

$$3CaO \cdot SiO_2 + 3H_2O \rightarrow \rightarrow 2CaO \cdot SiO_2 \cdot 2H_2O + Ca(OH)_2,$$
(3)

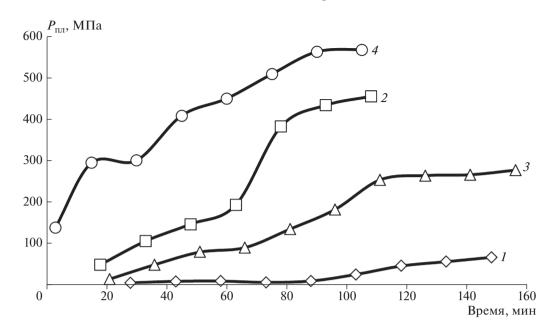
$$2CaO \cdot SiO_2 + 2H_2O \rightarrow$$

$$\rightarrow CaO \cdot SiO_2 \cdot H_2O + Ca(OH)_2.$$
(4)

В результате продукты гидратации системы 3 в основном представлены слабозакристаллизованной волокнистой фазой, характерной для высокоосновных гидросиликатов кальция (2CaO · SiO₂ · 2H₂O, CaO · SiO₂ · H₂O) (см. рис. 2в), и крупными кристаллами портландита (Ca(OH)₂).

Результатом реализации рассмотренных механизмов являются отличия в кинетике схватывания, гидратации и твердения, а также прочности цементных систем для 3D-печати.

Кинетика схватывания цементных систем. Начало процесса схватывания исследованных цементных систем, по данным стандартной оценки на приборе Вика, изменяется в диапазоне 105-157 мин. Минимальное время начала процесса схватывания наблюдается в системе 4 и составляет 105 мин. В системе 2-110 мин, в системе 3-157 мин, в эталонной системе 1-150 мин. При этом значения пластической прочности систем,


соответствующие времени начала схватывания, существенно различаются и лежат в диапазоне $P_{\text{пл}}=68-568$ кПа (рис. 3). Согласно кинетическим кривым схватывания (см. рис. 3), наибольшая скорость схватывания характерна для систем 4 и 2, что обусловлено действием наноразмерных частиц $\operatorname{SiO}_2(d=2-10\text{ hm}, \operatorname{системa} 4)$ и микроразмерных частиц $\operatorname{Al}_2\operatorname{O}_3\cdot\operatorname{SiO}_2(d=1000-5000\text{ hm}, \operatorname{системa} 2)$.

В целом, введение модификаторов вязкости способствует повышению пластической прочности. Наибольшим значением $P_{\Pi\Pi} = 568 \text{ M}\Pi \text{a xa-}$ рактеризуется система 4 (Ц-В-СП-ИМ-ВЛ-КНД). Частицы КНД и МКЛ, размещаясь между цементными зернами, создают более плотную пространственную упаковку, что и способствует увеличению пластической прочности твердой фазы. В системе 3 повышение пластической прочности может быть обусловлено тем, что камедь увеличивает плотность и вязкость дисперсионной среды. Но это одновременно сопровождается снижением активности молекул воды, необходимых для гидратации цементного клинкера, и соответствующим замедлением процессов схватывания системы. В то же время ПФК как добавка-электролит способствует повышению текучести системы. В результате значения $P_{\text{пл}}$ в данной системе приблизительно в 2 раза ниже, чем в системах с добавкой МКЛ и КНД, но выше, чем в эталонной системе.

Кинетика гидратации и твердения цементных систем. Согласно данным рентгенодифрактометрических исследований, в цементных системах с модификаторами наблюдается увеличение степени гидратации цемента, достигаемое к 28 суткам твердения (табл. 4). Максимальная степень гидратации наблюдается в системах 4 ($C_{\rm r} = 95\%$) и 2 ($C_{\rm r} = 90\%$) по сравнению с $C_{\rm r} = 82\%$ в эталонной системе I и с $C_{\rm r} = 85\%$ в системе 3.

В результате (табл. 4) в модифицированных системах 2 и 4 уже к третьим суткам твердения прочность составляет 43.2—44.9 МПа, что в 1.5 раза выше достигаемой в это время прочности эталонной системы. После 28 суток твердения предел прочности при сжатии эталонной системы составляет 49.5 МПа, а для систем с модификаторами — от 56.6 до 65.6 МПа. При этом максимальные значения прочности при сжатии характерны для систем 2 и 4, а наименьшее — для системы 3.

Зафиксированное ускорение процессов схватывания, гидратации и твердения исследованных систем закономерно связано с интенсификацией гетерогенных процессов фазообразования гидратных соединений. Для систем 2 и 4 это обусловлено влиянием частиц SiO_2 и $\mathrm{Al}_2\mathrm{O}_3$ · SiO_2 , обладающих повышенными значениями удельной поверхностной энергии и родственным кристаллохимическим строением с минералами цементного клин-

Рис. 3. Зависимость пластической прочности цементных систем для 3D-печати от времени: Ц-B-СП-ИМ-ВЛ (I), Ц-B-СП-ИМ-ВЛ-ИМ-ВЛ-ИМ-П-ИМ-ВЛ-ИМ-П-ИМ-ВЛ-ИМ-П-ИМ-ВЛ-ИМ-П-ИМ-ВЛ-ИМ-П-ИМ-ВЛ-ИМ-П-ИМ-ВЛ-ИМ-П-ИМ-ВЛ-ИМ-ВЛ-ИМ-П-ИМ-ВЛ-ИМ-П-ИМ-ВЛ-ИМ

Таблица 4. Экспериментальные данные по степени гидратации и кинетике прочности модифицированных цементных систем для 3D-печати

Система	В/Ц	С _г , % (28 сут)	Предел прочности при сжатии, МПа					
			1 сут	3 сут	7 сут	14 сут	28 сут	
1	0.44	82	17.1	30.8	41.3	47.8	49.5	
2	0.39	90	25.7	44.9	51.1	58.1	62.9	
3	0.40	85	18.2	37.8	51.0	55.4	56.6	
4	0.37	95	26.9	43.2	50.3	59.9	65.6	

кера, а для системы 3 — ролью ПФК как сильного электролита, изменяющего ионную силу раствора и повышающего его пересыщение. Повышение прочности систем с модификаторами обеспечивается за счет повышения степени гидратации и изменения состава гидратных новообразований, прочностные характеристики которых зависят от состава и морфологии отдельных фаз. Высокая прочность систем 3 и 4 обусловлена высокой плотностью структуры гелевидной низкоосновной C—S—H-фазы, системы 2 — наличием прочной кристаллической гидроалюминатной фазы. Подчеркнем, что в системах 2 и 4 отсутствует малопрочная портландитовая фаза, негативно влияющая на прочность систем 1 и 3.

ЗАКЛЮЧЕНИЕ

При введении модификаторов вязкости различного состава пластическая прочность цементных систем повышается в 3–5 раз. При этом ин-

тенсификация процессов структурообразования и твердения, а также повышение прочности на сжатие происходят только при применении силикатных и алюмосиликатных нано- и микроразмерных модификаторов. Это определяется их родственным кристаллохимическим строением с гидратными фазами цементных систем. Введение этих модификаторов ускоряет процессы гидратации цемента, образования высокопрочных низкоосновных гидросиликатов кальция с соотношением $C/S \le 1.0$ и гидроалюминатов кальция, а также повышает плотность C-S-H-геля.

Влияние комплексного модификатора камеди и ПФК определяется его воздействием на дисперсионную среду цементной системы. Роль камеди состоит в увеличении ее плотности и вязкости при одновременном снижении гидратационной активности молекул воды; роль ПФК как сильного электролита заключается в изменении ионной силы раствора и повышении его пересыщения. В результате введение данного модификатора эф-

фективно регулирует только реологические характеристики цементной системы.

БЛАГОДАРНОСТЬ

Экспериментальные данные получены с использованием оборудования Центра коллективного пользования имени профессора Ю.М. Борисова Воронежского государственного технического университета.

СПИСОК ЛИТЕРАТУРЫ

- 1. Paul S.C., Tay Y.W. D., Panda B., Tan M.J. Fresh and Hardened Properties of 3D Printable Cementitious Materials for Building and Construction // J. Arch. Civil Mech Eng. 2018. V. 18. № 1. P. 311–319. https://doi.org/10.1016/j.acme.2017.02.008
- 2. Zhang Y., Zhang Y., She W., Yang L. et al. Rheological and Harden Properties of the High-Thixotropy 3D Printing Concrete // Constr. Build. Mater. 2019. V. 201. P. 278–285. https://doi.org/10.1016/j.conbuildmat.2018.12.061
- 3. *Lu B., Weng Y., Li M., Qian Y.* A Systematical Review of 3D Printable Cementitious Materials // Constr. Build. Mater. 2019. V. 207. P. 477–490. https://doi.org/10.1016/j.conbuildmat.2019.02.144
- Le T.T., Austin S.A., Lim S., Buswell R.A., Gibb A.G.F., Thorpe T. Mix Ddesign and Fresh Properties for High-Performance Printing Concrete // Mater. Struct. 2012. V. 8. № 45. P.1221–1232. https://doi.org/10.1617/s11527-012-9828-z
- 5. Ngo T.D., Kashani A., Imbalzano G., Nguyen K., Hui D. Additive Manufacturing (3D Printing): A Review of

- Materials, Methods, Applications and Challenges // Compos. Part B. 2018. V. 143. P. 172–196. https://doi.org/10.1016/j.compositesb.2018.02.012
- Mechtcherine V., Bos F.P., Perrot A., Leal da Silva W.R., Nerella V. N., Fataei S., Wolfs R.J. M., Sonebi M., Roussel N. Extrusion-Based Additive Manufacturing with Cement-Based Materials – Production Steps, Processes, and Their Underlying Physics: A Review // Cem. Concr. Res. 2020. V. 132. P. 106037. https://doi.org/10.1016/j.cemconres.2020.106037
- 7. *Славчева Г.С., Артамонова О.В.* Критериальная оценка реологических характеристик цементных систем для строительной 3D-печати // Инж.-стр. журнал. 2018. № 8(84). С. 97—108. https://doi.org/10.18720/MCE.84.10
- 8. Slavcheva G.S., Artamonova O.V. Rheological Behavior and Mix Design for 3d Printable Cement Paste // Key Eng. Mater. 2019. V. 799. P. 282–287. https://doi.org/10.4028/www.scientific.net/KEM.799.282
- 9. *Артамонова О.В.* Синтез наномодифицирующих добавок для технологии строительных композитов. Воронеж: Воронежский ГАСУ, 2016. 100 с.
- Lootens D., Joussett O., Matinie L., Roussel N., Flatt R.J. Yield Stress During Setting of Cement Pastes from Penetration Test // Cem. Concr. Res. 2009. V. 39. P. 401–408. https://doi.org/10.1016/j.cemconres.2009.01.012
- 11. Bullard J.W., Jennings H.M., Livingston R.A., Nonat A., Scherer G.W., Schweitzer J.S., Scrivener K.L., Thomas J.J. Mechanisms of Cement Hydration // Cem. Concr. Res. 2011. V. 41. P. 1208–1223. https://doi.org/10.1016/j.cemconres.2010.09.011