УДК 546.221.48+535.37

ЭЛЕКТРОХИМИЧЕСКОЕ ВЫРАЩИВАНИЕ, СПЕКТРЫ ОПТИЧЕСКОГО ПОГЛОЩЕНИЯ И ЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА ПЛЕНОК ТВЕРДЫХ РАСТВОРОВ Cd_{1 – x}Zn_xS (0 < x ≤ 0.042)

© 2021 г. И. В. Демиденко¹, В. М. Ишимов¹, И. Н. Один^{2, *}, В. Г. Суринов¹, М. В. Чукичев²

¹Приднестровский государственный университет им. Т.Г. Шевченко, ул. 25 Октября, 127, Тирасполь, MD-3300 Приднестровская Молдавская республика

² Московский государственный университет им. М.В. Ломоносова, Ленинские горы, 1, Москва, 119991 Россия *e-mail: i.n.odin@mail.ru

> Поступила в редакцию 14.05.2021 г. После доработки 11.06.2021 г. Принята к публикации 15.06.2021 г.

Методом электрохимического осаждения из водного раствора Na₂SO₃ + ZnSO₄ + CdSO₄ выращены поликристаллические пленки с вюртцитной структурой Cd_{1 – x}Zn_xS ($0 < x \le 0.042$) на диоксиде олова. Исследованы спектры оптического поглощения и катодолюминесценции выращенных пленок; определены значения оптической ширины запрещенной зоны пленок Cd_{1 – x}Zn_xS для разных значений *x* при 298 K.

Ключевые слова: электрохимическое выращивание, пленки, твердые растворы, параметры кристаллической решетки, оптическое поглощение, катодолюминесценция, ширина запрещенной зоны **DOI:** 10.31857/S0002337X2110002X

введение

Твердые растворы $Cd_{1-x}Zn_xS$ применяются в преобразователях солнечной энергии в электрическую, оптоэлектронных устройствах, акустоэлектрических приборах. Дальнейшее практическое применение пленок $Cd_{1-x}Zn_xS$ в качестве покрытий в фотоэлектрических преобразователях солнечной энергии требует разработки новых методов получения тонких слоев с широким диапазоном электрофизических, оптических и фотоэлектрических свойств.

Электрохимический метод получения сульфида кадмия подробно изложен в работах [1–7], данных же по получению пленок твердых растворов $Cd_{1-x}Zn_xS$ в литературе немного. Нами были получены пленки $Cd_{1-x}Zn_xS$ ($x \le 0.017$) на подложке проводящего диоксида олова (катод) электрохимическим методом при использовании цинкового анода; электролитом служил водный раствор сульфата кадмия [7]. В кислой среде (pH электролита был равен 2) цинковый анод растворялся и образующиеся ионы Zn^{2+} встраивались в кристаллическую решетку $Cd_{1-x}Zn_xS$. В работе [7] изучены спектры оптического поглощения и катодолюминесценции пленок $Cd_{1-x}Zn_xS$.

Электрохимическим методом (ячейка вначале заполнялась водным раствором нитрата цинка и затем постепенно добавлялся раствор нитрата кадмия) были получены пленки сульфида кадмия, содержащие цинк [8]. Фазовый состав таких пленок не определялся, однако авторы отмечают, что, судя по результатам рентгеноспектрального анализа, пленки легированы цинком. Такие пленки авторы использовали для целей химического анализа (определение Cu²⁺ и Cd²⁺).

Целью настоящей работы является исследование электрохимического осаждения пленок $Cd_{1-x}Zn_xS$ на поверхности проводящих слоев SnO_2 с использованием в качестве электролита водных растворов сульфатов кадмия и цинка и сульфита натрия, а также исследование спектров оптического поглощения и катодолюминесценции выращенных пленок.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Методика электрохимического выращивания пленок твердых растворов $Cd_{1-x}Zn_xS$. Исследуемые пленки были получены катодным осаждением на подложки SnO_2 (катод), слои диоксида олова предварительно наносились на стекло. В качестве электролита использовали водный раствор, содержащий сульфит Na_2SO_3 и сульфаты цинка и кадмия. Использовали реактивы квалификации "х. ч.": $ZnSO_4 \cdot 7H_2O$, $CdSO_4 \cdot 8/3H_2O$, $Na_2SO_3 \cdot H_2O$,

Рис. 1. Схема электрохимической ячейки: 1 – анод, 2 -катод, 3 -электрод сравнения, 4 -термометр.

а также дважды дистиллированную воду. В целях исключения выпадения осадков Zn(OH)₂ и $Cd(OH)_2$ раствор Na₂SO₃ до смешивания подкисляли до слабокислой реакции. После смешивания растворов рН доводили до нужного значения добавлением раствора H₂SO₄. Процесс электроосаждения осуществляли при значениях рН электролита 2.00-2.40.

Технологический процесс электроосаждения проводили в потенциостатическом режиме, при потенциале катода E = -0.7 В относительно хлорсеребряного электрода сравнения. Потенциал осаждения был выбран исходя из предварительно проведенных исследований по осаждению пленок CdS и ZnS в аналогичных условиях. Температура электролита при электроосаждении поддерживалась постоянной $-24 \pm 1^{\circ}$ С. Продолжительность осаждения составляла 5 ч.

Для минимизации влияния конвекционного движения продуктов реакции на процесс роста пленки катод располагался горизонтально, в верхней части реактора, рабочей поверхностью вниз, как показано на рис. 1. В этих условиях минимизируется влияние конвекционных потоков и наблюдается высокая однородность полученных пленок. Электрический ток подводили по герметичному проводу.

Исследование фазового состава полученных образцов проводили методом рентгенофазового анализа (РФА), съемку осуществляли на дифрактометре ДРОН-4 (Си K_{α} -излучение). Рентгеносъемку пленок проводили без их разрушения. С целью уточнения параметров элементарной ячейки запись проводили при скорости 0.5 град/мин в обла-

Рис. 2. Зависимость катодной плотности тока от продолжительности процесса осаждения пленки.

сти значений 20 от 20° до 100°. При обработке дифрактограмм использовали комплекс программного обеспечения WinXPOW.

Спектры оптического поглощения полученных пленок снимали при 298 К с помощью спектральной установки на базе монохроматора МДР-23.

Спектры катодолюминесценции (КЛ) снимали при температурах 298 и 78 К. Возбуждение образцов осуществлялось импульсным электронным пучком с энергией 40 кэВ. Для регистрации спектров излучения использовали монохроматор ДФС-12 и фотоэлектронный умножитель ФЭУ-83.

РЕЗУЛЬТАТЫ И ОБСУЖЛЕНИЕ

Электрохимическое выращивание пленок твердых растворов $Cd_{1-x}Zn_xS$. Отметим, что в начале роста на поверхности подложки образуются островковые структуры с неоднородностями, связанными с неоднородностью рельефа поверхности слоя SnO₂. По прошествии определенного времени осаждения островковые структуры срастаются в однородную поверхность. Об этом свидетельствует и катодная плотность тока, значение которой на протяжении всего процесса менялась в широких пределах (рис. 2). Вначале кривая катодной плотности тока убывает резко, поскольку поверхность покрывается островками высокоомной сульфидной фазы и фактически происходит сокращение чистой рабочей поверхности. После образования сплошной пленки катодная плотность тока монотонно уменьшается по мере увеличения толщины полупроводникового слоя.

Проведенные ранее опыты по синтезу пленок сульфида кадмия [6] в рассматриваемом электролите показали, что образование сульфидного слоя обусловлено двухстадийным процессом. В

Рис. 3. Катодные поляризационные кривые, зарегистрированные в водном растворе 20 мМ Na₂SO₃ при 25°С и различных значениях pH: 8.7 (1), 7.6 (*2*), 6.7 (*3*), 3.6 (*4*), 3.2 (*5*), 3.1 (*6*), 2.9 (*7*), 2.7 (*8*), 2.6 (*9*).

кислой среде на первой стадии происходит электрохимическое восстановление сульфит-иона до элементной серы (1) с последующим образованием сероводорода (2). На второй стадии сероводород взаимодействует с ионами металла [9], вследствие чего образуется осадок MS (3):

$$SO_3^{2-} + 4e^- + 6H^+ = S + 3H_2O,$$
 (1)

$$S + 2H^+ + 2e^- = H_2 S(aq),$$
 (2)

$$M^{2+} + H_2 S = MS + 2H^+.$$
 (3)

На рис. 3 представлена динамика поляризационной характеристики, зарегистрированной в водном растворе Na_2SO_3 на SnO_2 -катоде при различных значениях рН. Видно, что при высоком уровне водородного показателя (7.6, 8.7) плотность тока, соответствующая потенциалу осаждения (пунктирная кривая), практически равна нулю — процесс (4) не протекает

$$SO_3^{2-} + 4e^- + 3H_2O = S + 6OH^-.$$
 (4)

В слабокислой среде (pH 6.7) значение плотности тока, соответствующее потенциалу осаждения, также практически равно нулю: процессы (1) и (2) не протекают, сульфиды не образуются. При значениях pH 3.6 и 3.2 электрохимическая стадия

Рис. 4. Зависимости катодной плотности тока при потенциале осаждения от величины водородного показателя при составах электролита: 10 мМ Na_2SO_3 (*1*), 10 мМ ZnSO₄ и 10 мМ Na_2SO_3 (*2*), 10 мМ CdSO₄ и 10 мМ Na_2SO_3 (*3*).

становится более выраженной, что совпадает с аналогичным процессом в рабочем растворе, в котором, помимо сульфит-иона, содержатся ионы металла. Электрохимическое выращивание хорошо происходило в области значений рН 2.00–2.40.

На рис. 4 представлены значения катодной плотности тока, соответствующие потенциалу осаждения (при различных значениях водородного показателя), зарегистрированные в растворе Na₂SO₃ и в электролите, применяемом для осаждения сульфида кадмия и сульфида цинка, соответственно. Сходство кривых указывает на то, что в рамках рабочей области потенциалов протекает электрохимическая реакция. не зависящая от присутствия ионов металла в электролите. Это подтверждает выдвинутые ранее предположения о двухстадийном процессе образования CdS в данном растворе, при этом влияние водородного показателя на электрохимическую стадию обусловлено изменениями скорости восстановления сульфит-иона. Исходя из этого можно предположить, что рост концентрации цинка в твердом растворе $Cd_{1-x}Zn_xS$ с ростом pH обусловлен влиянием уровня водородного показателя раствора на конкуренцию ионов Cd²⁺ и Zn²⁺ в рамках химической стадии (3).

Данные о фазовом составе пленок. На рентгенограммах полученных пленок все линии проиндицированы (с использованием данных для 30 рефлексов для каждой рентгенограммы) в гексагональной решетке вюртцита. Сверхструктурные

pН	<i>a</i> , Å	<i>c</i> , Å	x	E_g , $\Im \mathbf{B}$	
				из спектров оптического поглощения	из данных КЛ
2.11	4.127 (2)	6.702 (2)	0.025	2.42	2.428
2.02	4.124 (2)	6.697 (2)	0.036	2.45	2.445
2.29	4.121 (2)	6.695 (2)	0.042	2.46	2.464

Таблица 1. Параметры решетки, оптическая ширина запрещенной зоны E_g из спектров КЛ и оптического поглощения твердых растворов Cd_{1 – x}Zn_xS

Примечание. Отношение Cd : Zn в электролите 1 : 1.

линии на рентгенограммах не обнаружены, как и линии примесных фаз. На рентгенограммах сульфидных пленок рефлексы от подложки SnO₂ не проявились.

При электрохимическом осаждении из раствора состава 75 мол. % $CdSO_4 + 25$ мол. % $ZnSO_4$ получена пленка, которая представляла собой, согласно данным РФА, практически чистый сульфид кадмия – определить значение *x* для $Cd_{1-x}Zn_xS$ не представилось возможным (*x* близок к нулю). Поэтому с целью получения пленок $Cd_{1-x}Zn_xS$ процесс осаждения подробно исследовали при составе электролита 50 мол. % $CdSO_4 + 50$ мол. % $ZnSO_4$. Для определения состава пленок использовали концентрационные зависимости параметров вюртцитной решетки твердых растворов системы CdS-ZnS [10]: для $Cd_{1-x}Zn_xS$ в области 0 < x < 0.06 параметры решетки линейно изменяются с составом в соответствии с прави-

Рис. 5. Спектр оптического поглощения пленки твердого раствора $Cd_{1-x}Zn_xS$ с x = 0.036.

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 57 № 10 2021

лом Вегарда [10]. Определенные значения x приведены в табл. 1. Погрешность в определении xсоставляла ± 0.002 . На выращенных электрохимическим методом поликристаллических пленках твердых растворов $Cd_{1-x}Zn_xS$ исследовали спектры катодолюминесценции и оптического поглощения.

Спектры оптического поглощения пленок $Cd_{1-x}Zn_xS$. Спектр оптического поглощения пленки $Cd_{1-x}Zn_xS$ с x = 0.036 приведен на рис. 5 (α – коэффициент поглощения). Спектральная зависимость поглощения пленок $Cd_{1-x}Zn_xS$ в координатах $\alpha^2(hv)^2-hv$ (рис. 6) показывает существование края фундаментального поглощения в области 2.42–2.46 эВ. При экстраполяции линейных участков ($\alpha^2(hv)^2$) до пересечения с осью энергии были определены значения оптической ширины запрещенной зоны E_g пленок (рис. 6). Линейный характер зависимостей $\alpha^2(hv)^2-hv$ в интервале 2.53–2.70 эВ (рис. 6) свидетельствует о формировании края поглощения прямыми межзонными оптическими переходами [11].

Спектры КЛ пленок твердых растворов Cd_{1-x}Zn_xS. В спектре КЛ, снятом при 298 К, пленки Cd_{1-x}Zn_xS с x = 0.036 имеется одна линия с максимумом 2.445 эВ (рис. 7а), отвечающая переходу валентная зона—зона проводимости. Значения E_g приведены в табл. 1. Для пленки CdS максимум линии в спектре КЛ при 298 К соответствует $E_g = 2.40$ эВ, что хорошо согласуется со значением E_g для специально нелегированных объемных кристаллов CdS. Для пленок твердых растворов Cd_{1-x}Zn_xS значения E_g существенно выше, чем 2.40 эВ (рис. 7а, табл. 1). Сульфид цинка – широкозонный материал ($E_g = 3.6-3.8$ эВ), и твердые растворы Cd_{1-x}Zn_xS характеризуются большей, чем у CdS, шириной запрещенной зоны.

Данные по ширине запрещенной зоны E_g , полученные из спектров оптического поглощения,

Puc. 6. Спектральные зависимости оптического поглощения в координатах $\alpha^2(h\nu)^2 - h\nu$ пленок твердых растворов Cd_{1-x}Zn_xS c x= 0.025 (1), 0.036 (2) (a); 0.042 (6).

хорошо соответствуют значениям E_g из спектров КЛ для одного и того же состава (табл. 1).

В спектрах КЛ (78 К) пленок $Cd_{1-x}Zn_xS$ не обнаружены экситонные линии, которые позволили бы определить значение ширины запрещенной зоны

Рис. 7. Спектры КЛ пленок твердых растворов $Cd_{1-x}Zn_xSc x = 0.036$ при 298 (а) и 78 К (б).

при 78 К, следовательно, линия 2.477 эВ в спектре (рис. 76) обусловлена энергетическим уровнем внутри запрещенной зоны ($E_g > 2.477$ эВ) — донорным центром, включающим вакансии серы V_S [12].

ЗАКЛЮЧЕНИЕ

Методом электрохимического осаждения из водного раствора $Na_2SO_3 + ZnSO_4 + CdSO_4$ выращены поликристаллические пленки с вюртцитной структурой $Cd_{1-x}Zn_xS$ (0 < x ≤ 0.042) на диоксиде олова. Значения х определены из данных рентгенографического исследования пленок. Исследованы спектры оптического поглощения и КЛ выращенных пленок. Линейный характер зависимостей $\alpha^2 (hv)^2 - hv$ в интервале 2.53–2.70 эВ свидетельствует о формировании края поглощения прямыми межзонными оптическими переходами. Определены значения оптической ширины запрещенной зоны полученных пленок $Cd_{1-x}Zn_xS$ для разных значений х при 298 К. В спектрах КЛ (78 K) пленок Cd_{1 – x}Zn_xS линия 2.477 эВ обусловлена энергетическим уровнем внутри запрещенной зоны – донорным центром, включающим вакансии серы $V_{\rm S}$.

СПИСОК ЛИТЕРАТУРЫ

- Ильчук Г.А., Украинец В.О., Рудь Ю.В. и др. Электрохимический синтез тонких пленок CdS // Письма в ЖТФ. 2004. Т. 30. № 15. С. 19–24.
- 2. *McGregor S.M., Dharmadasa I.M., Wadsworth I., Care C.M.* Growth of CdS and CdTe by Electrochemical

Technique for Utilization in Thin Film Solar Cells // Opt. Mater. 1996. V. 6. P. 75–81.

- Nel J.M., Gaigher H.L., Auret F.D. Microstructures of Electrodeposited CdS Layers // Thin Solid Films. 2003. V. 436. P. 186–195.
- Nishino J., Chatani S., Uotani Y., Nosaka Y. Electrodeposition Method for Controlled Formation of CdS Films from Aqueous Solutions // J. Electroanal. Chem. 1999. V. 473. P. 217–222.
- Zarebska K., Skompska M. Electrodeposition of CdS from Acidic Aqueous Thiosulphate Solution – Investigation of the Mechanism by Electrochemical Quartz Microbalance Technique // Electrochim. Acta. 2011. V. 56. P. 5731–5739.
- 6. Демиденко И.В., Ишимов В.М. Электроосаждение тонких пленок сульфида кадмия из электролита на основе Na₂SO₃ // Журн. Прикл. химии. 2017. Т. 90. № 8. С. 992–996.
- Сенокосов Э.А., Один И.Н., Чукичев М.В. и др. Электрохимический синтез, катодолюминесценция и оптическое поглощение пленок CdS и Cd_{1 – x}Zn_xS

(0 < *x* ≤ 0.017) // Неорган. материалы. 2016. Т. 52. № 11. С. 1003–1007. https://doi.org/10.7868/S0002337X16110154

- Zhang Y., Man H., Wu D. et al. A Generalized in Situ Electrodeposition of Zn Doped CdS-Based Photoelectrochemical Strategy for the Detection of Two Metal Ions on the Same Sensing Platform // Biosens. Bioelectron. 2016. V. 77. P. 936–941.
- 9. Гурвич А.М. Введение в физическую химию кристаллофосфоров. М.: Высшая школа, 1971. С. 244.
- Cherin P., Lind E.L., Davis E.A. The Preparation and Crystallography of Cadmium Zinc Sulfide Solid Solutions // J. Electrochem. Soc. 1970. V. 117. № 2. P. 233–236.
- Грибниковский В.П. Теория поглощения и испускания света в полупроводниках. Минск: Наука и техника, 1975. С. 92.
- 12. Гавриленко В.И., Грехов А.М., Корбутяк Д.В., Литовченко В.Г. Оптические свойства полупроводников. Киев: Наук. думка, 1987. 607 с.