УЛК 544.31

ТЕПЛОЕМКОСТЬ И ТЕРМИЧЕСКОЕ РАСШИРЕНИЕ ГАФНАТА САМАРИЯ

© 2021 г. А. В. Гуськов^{1, *}, П. Г. Гагарин¹, В. Н. Гуськов¹, А. В. Хорошилов¹, К. С. Гавричев¹

¹Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук, Ленинский пр., 31, Москва, 119991 Россия

> *e-mail: a.gus@igic.ras.ru Поступила в редакцию 21.04.2021 г. После доработки 11.06.2021 г. Принята к публикации 11.06.2021 г.

Определены температурные зависимости молярной теплоемкости в области 320—1350 К и параметра кристаллической решетки гафната самария со структурным типом пирохлора в интервале 298—1273 К. Оценены коэффициенты термического расширения.

Ключевые слова: теплоемкость, термическое расширение, гафнат самария, пирохлоры

DOI: 10.31857/S0002337X21100043

ВВЕДЕНИЕ

Образование высокотемпературного двойного оксида – гафната самария со структурным типом пирохлора (Fd3m) — и его разупорядочение с переходом в структурный тип дефектного флюорита (Fm3m) при высоких температурах впервые были обнаружены в работе [1]. Более позднее изучение системы $HfO_2-Sm_2O_3$ [2] подтвердило существование пирохлора Sm₂Hf₂O₇. Было показано, что температура плавления $Sm_2Hf_2O_7$ превышает 2713 К и, как установлено в [3], гафнат самария плавится инконгруэнтно при 2823 ± 25 K. Несколько иная температура плавления гафната самария (~2760 К) приведена в [4-6]. Однако эти температуры плавления следует отнести к твердому раствору стехиометрического состава $Sm_2O_3 \cdot 2HfO_2$, так как при ~2673 К происходит обратимый переход $Sm_2Hf_2O_7$ (пирохлор) $\leftrightarrow Sm_2O_3 \cdot 2HfO_2$ (флюорит) [7–10], поэтому T = 2673 K следует считать максимальной температурой существования $\mathrm{Sm_2Hf_2}_{\pm\,\delta}\mathrm{O_7}_{\pm\,2}$ — фазы переменного состава, образующейся в результате упорядочения структуры в области непрерывного ряда твердых растворов $(Sm_2O_3)_x$ · $(2HfO_2)_{1-x}$ при $x = 0.5 \pm \delta$ с переходом в структурный тип пирохлора. Твердые растворы образуются в результате замещения Hf^{4+} на Sm^{3+} в узлах кубической решетки HfO2, при этом уменьшение заряда компенсируется возникновением кислородных вакансий [5, 6].

В работе [2] показано существование широкой области гомогенности $Sm_2Hf_2O_7$ (22—43 мол. % Sm_2O_3 при 1550—2573 K) и определена зависимость параметра кубической решетки (в расчете

на структуру флюорита) от состава: a(Å) = 5.128 + 0.0045x (15 < x < 40) ($x - \text{мол.} \% \text{ Sm}_2\text{O}_3$). По данным [3], параметр кубической решетки пирохлора $\text{Sm}_2\text{Hf}_2\text{O}_7$ равен $10.556\,\text{Å}$, а область гомогенности составляет $31-38\,\text{мол.} \% \text{ Sm}_2\text{O}_3$ (2373 K) с граничными значениями параметра a 10.506 и 10.628 Å соответственно.

В работах [4—6] приведены значения параметра решетки стехиометрического $Sm_2Hf_2O_7$ a=10.568 Å и энтальпии образования из элементов $\Delta_f H^\circ$ (298.15 K) = -4139.2 кДж/моль. Необходимо отметить, что $Sm_2O_3 \cdot 2HfO_2$, так же как и другие двойные оксиды циркония или гафния и лантаноидов, может образовывать наноразмерную метастабильную низкотемпературную фазу со структурой разупорядоченного флюорита, для перевода которой в стабильную кристаллическую структуру пирохлора необходим отжиг при температурах выше 1300—1800 K независимо от способа синтеза [11, 12].

Являясь высокотемпературным двойным оксидом, не имеющим структурных превращений во всем температурном интервале существования, гафнат самария вызывает интерес исследователей как вещество, перспективное для разработки различных керамических материалов, в том числе для термобарьерных и защитных покрытий газотурбинных энергетических установок [13—15], твердых электролитов топливных элементов [16, 17], материалов атомной промышленности [18, 19].

Практическое применение гафната самария в областях техники, где имеются особые требования к качеству материалов, требует подтвержде-

ния его химической инертности по отношению к контактным материалам и средам, что представляется сложной экспериментальной задачей, решаемой с помощью математического моделирования [15]. Для этого необходимо располагать термодинамическими параметрами гафната самария. Авторами [20] были измерены приращения энтальпии в области 730-1672 К методом калориметрии сброса и рассчитаны теплоемкость. энтропия и приращение энтальпии в интервале 298-1700 К. Эти эксперименты не затрагивают интервала 0-730 K и не являются прямыми измерениями по отношению к теплоемкости, поэтому требуют дополнительного подтверждения, особенно в интервале 298-730 К. Молярная теплоемкость Sm₂Hf₂O₇ в графическом виде приведена в [21] в интервале 400—1100 К, однако представляется завышенной, по-видимому, из-за использования гелия в качестве инертной атмосферы, что было отмечено нами при изучении гафната гадолиния [22].

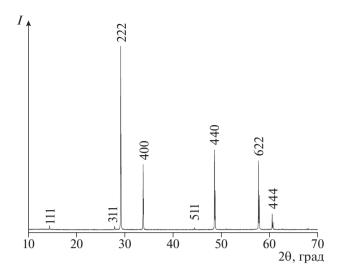
Термическое расширение гафната самария в интервале 298—1500 К методом высокотемпературной рентгеновской дифракции изучали в [23], было показано отсутствие структурных превращений и аномалий в этой области температур. Эти данные существенно отличаются от результатов, полученных методом дилатометрии в работе [24], и требуют дополнительного рассмотрения.

Целью настоящей работы является измерение молярной теплоемкости гафната самария $Sm_2Hf_2O_7$ в области 320-1300~K и изучение температурной зависимости его параметра кристаллической решетки в интервале 300-1273~K.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Гафнат самария получали совместным осаждением стехиометрической смеси гидроксидов гафния и самария в растворе аммиака (25-28 мас. % NH₄OH, "ос. ч.", ООО "Химмед") из водных растворов хлоридов гафния и самария, полученных растворением сексвиоксида самария (99.99 мас. %) и диоксида гафния (99.99 мас. %, ООО "Ланхит") в соляной кислоте (35-38 мас. %, ОСЧ 20-4, ООО "Химмед"). Для расчетов стехиометрических отношений компонентов использовали моляльные концентрации и весовой метод смешивания исходных компонентов, как в работе [22]. Полученный осадок обезвоживали при 368 К (95°С) и ступенчато отжигали с окончательным прокаливанием на воздухе при 1773 К. Подробное описание методики синтеза приведено в [25].

Синтезированный образец идентифицировали рентгенофазовым анализом (**РФА**) с помощью дифрактометра Bruker D8 Advance (Cu K_{α} -излучение, $\lambda = 1.5418$ Å, Ni-фильтр, LYNXEYE-детектор, геометрия на отражение) в интервале углов


 $2\theta = 10^{\circ} - 80^{\circ}$. Состав образца определяли химическим анализом (оптико-эмиссионный спектрометр с индуктивно-связанной плазмой Agilent 725). Морфологию образца исследовали с помощью электронного микроскопа Gross Beam Zeiss NVision 40 (SEM and XPS). Молярную массу гафната самария 769.6958 г/моль рассчитывали из значений атомных масс элементов, рекомендованных в [26]. Теплоемкость при высоких температурах (320—1300 К) измеряли методом дифференциальной сканирующей калориметрии (ДСК) на приборе STA 449 F1 Jupiter (Netzsch). Методики измерений теплоемкости с помощью ДСК и сглаживания экспериментальных данных по температурной зависимости теплоемкости описаны в [27]. Температурную зависимость параметра кристаллической решетки при 298—1273 К с шагом 100 К определяли на воздухе с помощью 20-0-рентгеновского дифрактометра SHIMADZU XRD-600 с приставкой НА-1001 (ИМЕТ РАН) на фильтрованном $Cu K_{\alpha}$ -излучении [28].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Для проведения исследований был приготовлен образец гафната самария состава $Sm_2Hf_{1.97}O_{6.94}$ по данным химического анализа (величина индекса при кислороде рассчитана исходя из соотношения оксидов металлов). Как было показано ранее [29]. такое отклонение от стехиометрического состава не может оказать существенного влияния на величину молярной теплоемкости и получаемые величины могут быть отнесены к составу с идеальной стехиометрией. Дифрактометрические исследования, результаты которых представлены на рис. 1, показали отсутствие посторонних фаз, хорошую закристаллизованность образца и подтвердили структурный тип пирохлора Fd3m. Рассчитанное значение параметра кубической решетки составило a = 10.580 Å, что соответствует величинам, приведенным в [3–6], близко к величине 10.574 Å [30] и хорошо совпадает со значением из работы [23]. Оценка размеров областей когерентного рассеяния по ширине дифракционных отражений показала, что их размеры превышают 100 нм и находятся вне интервала существования наноразмерных частиц. Это подтверждено электронномикроскопическими исследованиями морфологии образца гафната самария (рис. 2).

Температурную зависимость молярной теплоемкости гафната самария в области 320—1300 К измеряли методом ДСК. Температурная кривая не содержит признаков структурных превращений во всей области измерений.

Высокотемпературная теплоемкость гафната самария (320—1300 K) хорошо описывается уравнением Майера—Келли [31]

Рис. 1. Дифрактограмма образца $\mathrm{Sm_2Hf_2O_7}$, структурный тип пирохлора $\mathit{Fd3m}$, $a=10.580\,\mathrm{\mathring{A}}$.

$$C_{p,m}(Дж/(моль K)) = 257.57 + 0.042597T - - 2871249/ T^2 , $R^2 = 0.9993$. (1)$$

Авторы работы [20] дифференцированием полученной экспериментальной зависимости инкремента энтальпии от температуры (730—1672 K) получили уравнение

$$C_{p,m}(\text{Дж/(моль K)}) = 259.89 +$$

+ $0.043220T - 3238900/T^2$. (2)

Величины теплоемкости, рассчитанные по уравнениям (1) и (2), отличаются в пределах $\sim 1\%$, что свидетельствует об их взаимном соответствии и достоверности экспериментальных данных, полученных обоими методами.

Результаты высокотемпературных дифракционных измерений приведены в табл. 1. Температурная зависимость параметра решетки удовлетворительно описывается линейным уравнением

$$a (Å) = (10.5474 \pm 0.0007) + + (1.1537 \pm 0.0077) \times 10^{-4} T, R^2 = 0.9998.$$
 (3)

Расчет относительного коэффициента термического расширения (α_r)

$$\alpha_r(K^{-1}) = (1/a_{298}) (da/dT)$$
 (4)

приводит к значению $\alpha_r = 10.90 \times 10^{-6} \ {\rm K}^{-1}$, которое в изученном интервале 298—1273 К практически не зависит от температуры, так как уравнение (4) не содержит членов второй степени и выше. Значение текущего коэффициента термического расширения (α_i)

$$\alpha_i(K^{-1}) = (1/a_T) (da/dT)$$
 (5)

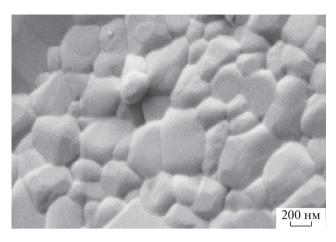
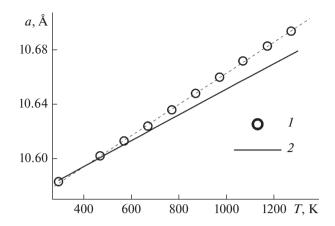


Рис. 2. Морфология образца гафната самария.

приведено в табл. 1. Как видно, α_i закономерно уменьшается с ростом температуры. Относительное термическое расширение (*TE*)

$$TE(\%) = 100(a_T - a_{298})/a_{298}$$
 (6)

также содержится в табл. 1 и может быть описано уравнением


$$TE(\%) = -0.0762 \pm 0.0225 +$$

+ $0.0876 \pm 0.0028T$. $R^2 = 0.9915$. (7)

Температурная зависимость параметра a была измерена в [23] в интервале 298—1500 К (рис. 3) и представлена в виде квадратного уравнения с аргументом T-273 К, о чем авторы, по-видимому, забыли упомянуть.

Несмотря на то что наклоны зависимостей параметра кристаллической решетки от температуры несколько отличаются, средняя величина от-

Таблица 1. Температурная зависимость параметра a, текущего коэффициента термического расширения (α_i) и относительного термического расширения (TE), $p=101.3~\mathrm{k}\Pi a$

<i>T</i> , K	a, Å	$\alpha_i \times 10^6, \mathrm{K}^{-1}$	TE, %
298	10.580	10.905	0
299	10.583	10.902	0.03
473	10.602	10.88	0.21
573	10.613	10.87	0.31
673	10.624	10.86	0.42
773	10.636	10.85	0.53
873	10.648	10.84	0.64
973	10.660	10.82	0.76
1071	10.672	10.81	0.87
1173	10.683	10.80	0.97
1273	10.694	10.79	1.08

Рис. 3. Температурные зависимости параметра решетки $Sm_2Hf_2O_7$ (пирохлор): I — настоящая работа, 2 — [23].

носительного коэффициента термического расширения в интервале 298—1500 К, по данным [23], составляет $\sim 9.8 \times 10^{-6} \text{ K}^{-1}$, что ниже нашего значения $10.90 \times 10^{-6} \text{ K}^{-1}$. Разница составляет ~10%, что, вероятнее всего, связано с экспериментальными погрешностями данного метода. В работе [23] отмечается, что неопределенность высокотемпературного дифракционного эксперимента составляет ~5%. Среднее значение коэффициента термического расширения в интервале 673— 1373 К, по данным дилатометрии [24], составляет $\sim 14.9 \times 10^{-6} \, \text{K}^{-1}$ и заметно отличается от расчетов из температурной зависимости параметра кристаллической решетки. Такое различие, возможно, связано с разными способами синтеза: образцы в работе [24] были синтезированы под давлением 15 МПа в графитовых формах, однако в описании методики отсутствует упоминание о последующем отжиге образцов при нормальном давлении.

ЗАКЛЮЧЕНИЕ

Методом ДСК выполнены измерения молярной теплоемкости гафната самария со структурным типом пирохлора и показано отсутствие структурных превращений в области 320-1300 К. Теплоемкость $Sm_2Hf_2O_7$ описывается уравнением $C_{p,m}$ (Дж/(моль K)) = $257.57 + 0.042597T - 2871249/T^2$. С помощью высокотемпературной рентгеновской дифракции определена температурная зависимость параметра кристаллической решетки гафната самария в интервале 298-1273 К и оценены коэффициенты термического расширения.

БЛАГОДАРНОСТЬ

Исследование выполнено за счет гранта Российского научного фонда № 18-13-00025, https://rscf.ru/project/18-13-00025.

Экспериментальные исследования высокотемпературной теплоемкости были выполнены с использованием оборудования ЦКП ФМИ ИОНХ РАН. Авторы благодарят к. т. н. А.А. Ашмарина за помощь в изучении методом высокотемпературной рентгеновской дифракции.

СПИСОК ЛИТЕРАТУРЫ

- Isupova E.N., Glushkova V.B., Keler K.E. The HfO₂-Sm₂O₃ System in SOLID PHAses in the HfO₂-RICH REGION // Izv. Akad. Nauk SSSR. Neorg. Mater. 1968. V. 4. P. 1330–1331.
- 2. *Duran P*. The System Hafnia-Samaria // J. Am. Ceram Soc. 1979. V. 62. P. 9–12. https://doi.org/10.1111/j.1151-2916.1979.tb18794.x
- 3. Шевченко А.В., Лопато Л.М., Назаренко Л.В. Системы HfO₂-оксиды самария, гадолиния, тербия и диспрозия при высоких температурах // Изв. АН СССР. Неорган. материалы. 1984. Т. 20. С. 1862—1866
- 4. *Папутский Ю.Н., Кржижановская В.А., Глушкова В.Б.* Энтальпия образования гафнатов и цирконатов редкоземельных элементов // Изв. АН СССР. Неорган. материалы. 1974. Т. 10. С. 1551—1552.
- 5. *Арсеньев П.А., Глушкова В.Б., Евдокимов А.А. и др.* Соединения редких элементов. Цирконаты, гафнаты, ниобаты, танталаты, антимонаты. М.: Наука, 1985. 261 с.
- Andrievskaya E.R. Phase Equilibria in the Refractory Oxide Systems of Zirconia, Hafnia and Yttria With Rare-Earth Oxides // J. Europ. Ceram. Soc. 2008. V. 28. P. 2363–2388. https://doi.org/10.1016/jeurceramsoc.2008.01.009
- 7. *Stanec C.R., Grimes R.W.* Prediction of Rare-Earth A₂Hf₂O₇ PYROCHLORE Phases // J. Am. Ceram. Soc. 2002. V. 85. P. 2139–2141. https://doi.org/10.1111/j.1151-2916.2002.tb00423.x
- 8. Rushton M.J.D., Grimes R.W., Stanek C. R., Owens S. Predicted Pyrochlore to Fluorite Disorder Temperature for A₂Zr₂O₇ Compositions // J. Mater. Res. 2004. V. 19. P. 1603–1604. https://doi.org/10.1557/jmr.2004.0231
- 9. Subramanian M.A., Aravamudan G., Subba Rao G.V. Oxide pyrochlores a review // Prog. Solid State Chem. 1983. V. 15. P. 55—143. https://doi.org/10.1016/0079-6786(83)90001-8
- Jiang C., Stanek C.R., Sickafus K.E., Uberiaga B.P. First-Orinciples Prediction of Disordering Tendencies in Pyrochlore Oxides // Phys. Rev. B. 2009. V. 79. P. 104203. https://doi.org/10.1103/PhysRevB.79.104203
- 11. *Popov V.V., Menushenkov A.P., Yaroslavtsev A.A. et al.* Fluorite-Pyrochlore Phase Transition in Nanostructured Ln₂Hf₂O₇ (Ln = La-Lu) // J. Alloys Compd. 2016. V. 689. P. 669–679. https://doi.org/10.1016/j.jallcom.2016.08.019

- 12. *Гуськов В.Н., Гавричев К.С., Гагарин П.Г., Гуськов А.В.* Термодинамические функции сложных оксидов лантаноидов на основе диоксида циркония пирохлоров $Ln_2Zr_2O_7$ (Ln=La, Pr, Sm, Eu, Gd) и флюоритов $Ln_2O_3 \cdot 2ZrO_2$ (Ln=Tb, Ho, Er, Tm) // Журн. неорган. химии. 2019. Т. 64. С. 1072—1088. https://doi.org/10.1134/S00444457X19100040
- 13. Vaßen R., Jarligo M.O., Steinke T. et al. Overview on Advanced Thermal Barrier Coatings // Surf. Coat. Technol. 2010. V. 205. P. 938–942. https://doi.org/10.1016/j.surfcoat.2010.08.151
- Clarke D.R., Phillpot S.R. Thermal Barrier Coating Materials // Mater. Today. 2005. V. 8. P. 22–29. https://doi.org/10.1016/s1369-7021(05)70934-2
- Poerschke D.L., Jackson R.W., Levi C.G. Silicate Deposit Degradation of Engineered Coatings in Gas Turbines: Progress Toward Models and Materials Solutions // Ann. Rev. Mater. Res. 2017. V. 47. P. 297—330. https://doi.org/10.1146/annurev-matsci-010917-105000
- 16. *Yamamura H*. Electrical Conductivity Anomaly Around Fluorite—Pyrochlore Phase Boundary // Solid State Ionics. 2003. V. 158. P. 359—365. https://doi.org/10.1016/s0167-2738(02)00874-3
- 17. *Shlyakhtina A.V., Shcherbakova L.G.* Polymophism and High-Temperature Conductivity of Ln₂M₂O₇ (Ln = Sm-Lu; M = Ti, Zr, Hf) pyrochlores // Solid State Ionics. 2011. V. 192. P. 200–204. https://doi.org/1016/j.ssi.2010.07.013
- 18. Risovany V.D., Zakharov A.V., Muraleva E.M. et al. Dysprosium Hafnate as Absorbing Material for Control Rods // J. Nucl. Mater. 2006. V. 355. P. 163–170. https://doi.org/10.1016/j.jnucmat.2006.05.029
- Ewing R.C., Weber W.J., Lian J. Nuclear Waste Disposal—Pyrochlore (A₂B₂O₇): Nuclear Waste Form for the Immobilization of Plutonium and "Minor" Actinides // J. Appl. Phys. 2004. V. 95. P. 5949–5971. https://doi.org/10.1063/1.1707213
- 20. *Kandan R., Prabhakara Reddy B., Panneerselvam G., Mudali U.K.* Enthalpy Measurements on Rare Earth Hafnates RE₂O₃ · 2HfO₂ (s) (RE = Sm, Eu, Dy) // J. Therm. Anal. Calorim. 2017. V. 131. P. 2687–2692. https://doi.org/10.1007/s10973-017-6802-6
- Lópes-Cota F.A., Cepeda-Sánchez N.M., Díaz-Guillén J.A. et al. Electrical and Thermophysical Properties of Mechanochemically Obtained Lanthanide Hafnates // J. Am. Ceram. Soc. 2017. V. 100. P. 1994–2004. https://doi.org/10.1111/jace.14712

- Guskov V.N., Tyurin A.V., Guskov A.V. et al. Thermal Expansion and Thermodynamic Properties of Gadolinium Hafnate Ceramics // Ceram. Int. 2020. V. 46. P. 12822–12827. https://doi.org/10.1016/j.ceramint.2020.02.052
- 23. Kutty K.V.G., Rajagopalan S., Mathews C.K., Varadaraju U.V. Thermal Expansion Behaviour of Some Rare Earth Oxide Pyrochlore // Mater. Res. Bull. 1994. V. 29. P. 759–766 https://doi.org/10.1016/0025-5408(94)90201-1
- 24. *Mikuśkiewicz M., Migas D., Moskal G.* Synthesis and Thermal Properties of Zirconate, Hafnate and Cerate of Samarium // Surf. Coat. Technol. 2018. V. 354. P. 66–75. https://doi.org/10.1016/j.surfcoat.2018.08.096
- 25. *Гагарин П.Г., Тюрин А.В., Гуськов В.Н. и др.* Термодинамические свойства и термическое расширение твердого раствора Tm₂O₃ · 2ZrO₂ // Журн. неорган. химии. 2018. Т. 63. С. 1458−1464. https://doi.org/10.1134/S0044457X18110053
- Wieser M.E. Atomic Weights of the Elements 2005 (IUPAC Techn. Rep.) // Pure Appl. Chem. 2006. V. 78. P. 2051–2066. https://doi.org/10.1351/pac200678112051
- 27. *Рюмин М.А., Никифорова Г.Е., Тюрин А.В. и др.* Теплоемкость и термодинамические функции $La_2Sn_2O_7$ // Неорган. материалы. 2020. Т. 56. С. 102—109.
- 28. *Коломиец Т.Ю., Тельнова Г.Б., Ашмарин А.А., Челпанов В.И., Солнцев К.А.* Синтез и спекание субмикронных частиц Nd:YAG, полученных из карбонатных прекурсоров // Неорган. материалы. 2017. Т. 53. С. 899—900. https://doi.org/10.7868/S0002337X17080152
- 29. Gagarin P.G., Guskov A.V., Guskov V.N. et al. Dysprosium Orthotantalate Ceramics: Thermal Expansion and Heat Capacity // Ceram. Int. 2021. V. 47. P. 2892–2896.
 - https://doi.org/10.1016/j.ceramint.2020.09072
- 30. Shlyakhtina A.V., Knotko A.V., Boguslavskii M.V. et al. Effect of Non-Stoichiometry and Synthesis Temperature on the Structure and Conductivity of $\operatorname{Ln}_{2+x} \operatorname{M}_{2-x} \operatorname{O}_{7-x/2}$ (Ln = Sm-Gd; M = Zr, Hf; x = 0 0.286) // Solid State Ionics 2007. V. 17. P. 59–66. https://doi.org/10.1016/j.ssi.2006.11.001
- 31. *Maier C.G., Kelley K.K.* An Equation for Representation of High Temperature Heat Content Data // J. Am. Chem. Soc. 1932. V. 54. P. 3243–3246. https://doi.org/10.1021/ja01347a029