УДК 541.64:546.65:535.37

СИНТЕЗ И ФОТОЛЮМИНЕСЦЕНЦИЯ ФТОРИРОВАННЫХ ИТТРИЙ-АЛЮМИНИЕВЫХ ОКСИДНЫХ КОМПОЗИТОВ

© 2021 г. В. П. Смагин^{1,} *, А. П. Худяков¹, А. А. Бирюков²

¹Алтайский государственный университет, пр. Ленина, 61, Барнаул, 656049 Россия ²Томский государственный университет, пр. Ленина, 34, Томск, 634050 Россия

*e-mail: smaginV@yandex.ru Поступила в редакцию 12.04.2021 г. После доработки 01.06.2021 г. Принята к публикации 03.06.2021 г.

Композиты синтезированы термическим разрушением гелеобразных смесей, содержащих соли иттрия, алюминия и европия(III), а также этилацетат в качестве основы. Люминесценция композитов связана с ${}^{5}D_{0,1} \rightarrow {}^{7}F_{f}$ -электронными переходами в ионах Eu^{3+} . Возбуждение люминесценции происходит в полосы собственного поглощения ионов Eu^{3+} , а также в результате резонансного переноса колебательной энергии матрицы на их возбужденные уровни и перехода 2p-электронов ионов O^{2-} на 4f-орбиталь европия. В спектрах люминесценции и возбуждения люминесценции зарегистрированы изменения положения максимумов отдельных компонент полос, перераспределяется их интенсивность, изменяется штарковская структура. Выявленные изменения связаны с различной долей атомов фтора в составе активаторных центров и их концентрацией, а также с соотношением Y^{3+} : Al^{3+} в продуктах различного фазового состава и структуры, образующихся при синтезе в течение времени от 4 до 12 ч при температуре 800°С.

Ключевые слова: фторированные иттрий-алюминиевые композиты, лантаноиды, европий, люминесценция

DOI: 10.31857/S0002337X21100158

ВВЕДЕНИЕ

Оксиды иттрия и алюминия многие годы применяются в оптическом приборостроении в качестве материалов, преобразующих электромагнитное излучение видимой и ИК-областей спектра. Несмотря на это, новые пути синтеза оптических материалов на их основе и свойства в настоящее время остаются предметом многочисленных исследований [1–9]. Проявляемый интерес связан с поиском новых технологий, улучшающих оптические характеристики, размерные и физические свойства предшественников и продуктов синтеза, снижающих энергозатраты и трудоемкость. Основное внимание сконцентрировано на индивидуальных структурах типа граната и перовскита [4, 6–9]. Наряду с индивидуальными фазами интересны многофазные композиты с сильно связанной структурой различных фаз при условии стабильности их оптических характеристик в условиях эксплуатации [1, 5, 10, 11]. Они могут быть применены для получения люминофоров, оптических сенсоров и керамики сложного фазового состава.

При фторировании, кроме индивидуальных оксидных или оксифторидных фаз вида МОF и $M_nO_{n-1}F_{n+2}$, получаются их смеси, а также структуры ядро/оболочка [3, 12–14]. При вхождении атомов фтора в активаторные центры изменяются их симметрия, энергия кристаллического поля, снимаются запреты на электронные переходы, увеличивается вероятность обменных процессов между активаторными центрами в соактивированных системах [12, 13, 15].

Для получения компактных композитов необходимы порошки заданного состава, формы и размера частиц [5, 11, 16]. При применении золь– гель-технологий порошки синтезируют преимущественно в водной среде с последующим отжигом при температурах выше 1000°С [2, 17–22]. В качестве исходных веществ для золь–гель-синтеза применяются нитраты, карбонаты, ацетаты, оксалаты металлов [14, 23, 24]. Фтор вводят в составе фторида аммония [25]. В процессе синтеза в водной среде и гидролиза продуктов образуются О–Н-группы, которые тушат люминесценцию лантаноидов. Высокая температура синтеза увеличивает кристалличность и размер частиц [24].

Для подготовки термически разлагаемых смесей на основе солей иттрия и смесей солей иттрия и алюминия (Y : Al = 1 : 1) ранее был использован

Рис. 1. Электронные фотографии поверхности порошка, синтезированного из смеси $Y(CF_3COO)_3 + Eu(CF_3COO)_3 + Al(NO_3)_3 + этилацетат, полученные в прямом (а) и отраженном (б) потоках электронов (<math>t = 800^{\circ}$ C, $\tau = 8$ ч).

несмешивающийся с водой этилацетат [26, 27]. Его применение минимизировало участие молекул воды в процессе синтеза порошков композитов. При использовании трифторацетатов металлов полготовлены высококонцентрированные гелеобразные составы координационно взаимодействующих веществ с минимальным содержанием органического растворителя. Присутствие в анионе атомов фтора исключало необходимость введения в исходные смеси фторсодержащих реагентов. В зависимости от условий синтеза получены интенсивно люминесцирующие композиты сложного состава в рядах $(Y_{1-x}Eu_x)F_3$ – $(Y_{1-x}Eu_x)_2O_3$ и $(Y_{1-x}Eu_x)F_3 - (Y_{1-x}Eu_x)_2O_3$ · Al₂O₃ [26, 27]. Компоненты композитов образовывали кристаллы размером 40-150 нм [28]. Вхождение атомов фтора в оксидные активаторные центры и введение алюминия отражалось на спектрах люминесценции и возбуждения люминесценции.

Цель данной работы — исследование влияния времени синтеза на фазовый состав и люминесценцию композитов с соотношением в исходных реакционных смесях Y : Al = 3 : 5 при различном содержании ионов Eu^{3+} . Активирование ионами Eu^{3+} позволяет синтезировать порошки люминофоров красного свечения. Кроме того, ионы Eu^{3+} являются "удобными" моделями изучения люминесцирующих лантаноидсодержащих систем, так как их люминесценция легко сенсибилизируется и тушится, проста для регистрации.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез композитов проведен по методике [27]. В качестве исходных веществ были использованы трифторацетаты иттрия и европия. Навеску трифторацетата европия рассчитывали исходя из содержания ионов Eu³⁺ в конечном продукте, равного 1.0, 3.0 и 5.0 ат. % от содержания ионов иттрия. После их растворения в раствор вносили нитрат алюминия "х. ч.". Навеску нитрата алюминия рассчитывали исходя из соотношения ионов иттрия и алюминия, равного 3 : 5. Раствор нагревали до кипения. При комнатной температуре испаряли растворитель до образования гелеобразной массы. Полученную смесь нагревали в муфельной печи на воздухе при температуре 800°С в течение 4, 8 и 12 ч. В результате получены белые кристаллические порошки.

Исследование проведено методами рентгенофазового анализа (**РФА**) на рентгеновском дифрактометре XRD-6000 с использованием баз данных PCPDFWIN и программы полнопрофильного анализа POWDER CELL 2.4; электронной и колебательной спектроскопии на спектрофлуориметре Shimadzu RF-5301PC и ИК-Фурье-спектрометре InfralumFT 801 по методикам [26, 27]. Электронные фотографии поверхности порошков зарегистрированы на сканирующем электронном микроскопе (**СЭМ**) VEGA3 TESCAN.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

ИК-спектры трифторацетатов иттрия и европия приведены в работе [29]. В спектрах присутствуют полосы валентных колебаний О-Н-групп молекул кристаллизационной воды ($>3000 \text{ см}^{-1}$), карбоксильных групп (1700-1600 см⁻¹), связей C-F (1200-1100 см⁻¹), а также полосы деформашионных колебаний трифторацетат-ионов. В ИК-спектрах продуктов синтеза, как и в [26, 27], зарегистрированы малоинтенсивные полосы в области 1600-1000 см⁻¹. Они обусловлены остаточными C=O, C-O и C-F-связями на поверхности частиц [23]. Интенсивность этих полос уменьшается при увеличении времени синтеза. Наличие в спектрах низкочастотных полос (<1000 см⁻¹) объясняется колебаниями связей Y-F, Al-O и Y-O во фторидах, оксифторидах и оксидах металлов. Структурирование полос при увеличении времени синтеза объясняется формированием более однородной структуры продуктов и увеличением их кристалличности [24].

На электронных фотографиях поверхности порошков, зарегистрированных в прямом (рис. la) и отраженном (рис. lб) потоках электронов, наблюдаются агломерированные структуры, образованные сферическими частицами диаметром несколько десятков нанометров. По виду изображение соответствует данным, приведенным в работе [27].

На рентгенограммах композитов (рис. 2–4) присутствуют рефлексы, указывающие на образование смесей продуктов, включающих в качестве основных фаз фторид иттрия, оксифториды иттрия YOF и $Y_7O_6F_9$, оксиды иттрия и алюминия. При увеличении времени синтеза на рентгенограммах продуктов наблюдается исчезновение

Рис. 2. Рентгенограмма порошка композита и штрихрентгенограммы компонентов: $C_{\text{Eu}} = 3.0$ ат. %, $t = 800^{\circ}$ С, $\tau = 4$ ч.

ряда рефлексов. По общему виду рентгенограмм можно сделать вывод об улучшении однородности структуры фаз. Зарегистрированные изменения связаны с изменением фазового состава композитов при увеличении времени синтеза. Отмечено уменьшение доли фазы Eu(OH)₃ в составе продуктов при синтезе в течение 8 ч и ее практически полное отсутствие после 12-часового синтеза.

Параметры кристаллических решеток продуктов синтеза значительно отличаются от параметров "чистых" фаз (табл. 1). Отмечено присутствие фазы оксида европия моноклинной модификации (пр. гр. C2/m) с сильно искаженными параметрами и плотностью фазы (табл. 1). С учетом малой концентрации ионов Eu^{3+} и значительного искажения параметров решеток образование европийсодержащих фаз (Eu_2O_3 , Eu_2OF_4 , $Eu(OH)_3$) можно связать с внедрением ионов Eu^{3+} в структуры фторидных, оксидных и оксифторидных фаз матрицы, например с образованием ($Y_{1-x}Eu_x$) F_3 , ($Y_{1-x}Eu_x$)OF, ($Y_{1-x}Eu_x$) $_7O_6F_9$, ($Y_{1-x}Eu_x$) $_2O_3$, ($Y_{1-x}Eu_x$) $_2O_3$.

В спектрах люминесценции композитов наблюдаются полосы ${}^{5}D_{0,1} \rightarrow {}^{7}F_{j}$ -электронных переходов в ионах Eu³⁺. Уширение полос связано с образованием близких по симметрии активаторных центров, образующихся в смеси сильно взаимодействующих фаз. Данное заключение подтверждается отсутствием структуры синглетной полосы электронного перехода ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$. Ее регистрация и интенсивность связаны с активаторными центрами низкой симметрии, а структура, в случае

Рис. 3. Рентгенограмма порошка композита и штрихрентгенограммы компонентов: $C_{\text{Eu}} = 3.0$ ат. %, $t = 800^{\circ}$ С, $\tau = 8$ ч.

ее возникновения, — с их неэквивалентностью. С увеличением времени синтеза более полно проявляется штарковская структура полос электронных переходов ${}^{5}D_{0} \rightarrow {}^{7}F_{1,2,4}$, приближаясь к максимальному значению в спектрах образцов, синтезированных в течение 12 ч (рис. 5, спектр *3*). Например, полоса электронного перехода ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ проявляется в максимальной мультиплетности в виде триплета с максимумами 588, 592 и 600 нм, а в полосе электронного перехода ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ из пяти про-

Рис. 4. Рентгенограмма порошка композита и штрихрентгенограммы компонентов: $C_{\rm Eu} = 3.0$ ат. %, $t = 800^{\circ}$ С, $\tau = 12$ ч.

Фаза (пр. гр.)	Время синтеза, ч	<i>a</i> , <i>b</i> , <i>c</i> , Å	Углы α, β, γ, град	<i>V</i> , Å ³	Число формульных единиц Z	р, г/см ³
Y ₂ O ₃ (<i>Iа</i> 3, куб.)	4	10.71, 10.71, 10.71	90, 90, 90	1230	- 16	4.879
	8	10.65, 10.65, 10.65		1207		4.970
	12	10.64, 10.64, 10.64		1204		4.985
		10.61, 10.61, 10.61*				4.85*
YOF (<i>R3m</i> , гекс.)	4	3.821, 3.821, 19.09	90, 90, 120	241.3	6	5.116
	8	3.803, 3.803, 19.04		238.5		5.176
	12	3.799, 3.799, 18.86		235.7		5.238
		3.827, 3.827, 18.97*		_		5.18*
Y ₇ O ₆ F ₉ (<i>Abm</i> 2)	4	5.413, 38.73, 5.554	90, 90, 90	1164	4	5.073
	8	5.434, 38.56, 5.540		1161		5.088
	12	5.393, 37.66, 5.485		1114		5.302
YF ₃ (Pnma)	4	6.376, 6.873, 4.405	90, 90, 90	193.0	- 4	5.020
	8	6.275, 6.814, 4.500		192.4		5.037
	12	6.341, 6.830, 4.429		191.8		5.052
		6.367, 6.859, 4.394*		_		5.06*
Eu ₂ O ₃ (<i>C</i> 2/ <i>m</i> , монокл.)	4	14.16, 3.613, 8.836	90, 100, 90	445.0	- 6	7.879
	8	14.07, 3.592, 8.783		437.1		8.022
	12	14.14, 3.610, 8.826		443.6		7.905
		14.08, 3.604, 8.778*		—		7.96*
Eu(OH) ₃ (<i>Р</i> 63/ <i>m</i> , гекс.)	4	6.361, 6.361, 3.573	90, 90, 120	125.2		_
	8	6.329, 6.329, 3.600		124.9		
	12	6.310, 6.310, 3.581		123.5		
		6.352, 6.352, 3.653*		—		
Al ₂ O ₃ (<i>R3c</i> , гекс.)	4	4.766, 4.766, 13.01	90, 90, 120	255.9	6	3.970
	8	4.765, 4.765, 12.99		255.4		3.978
	12	4.755, 4.755, 12.97		254.0		4.00
		-		—		3.99*
Al ₂ O ₃ (корунд) (<i>R</i> 3 <i>c</i> , гекс.)	4	4.995, 4.995, 13.639	90, 90, 120	294.6	6	3.448
	8	5.043, 5.043, 13.772		303.4		3.349
	12	5.033, 5.033, 13.745		301.6		3.369
		_		_		3.9-4.1*

Таблица 1. Результаты РФА продуктов, полученных термическим разложением смесей $Y(CF_3COO)_3 + Al(NO_3)_3 + Eu(CF_3COO)_3 + этилацетат, C_{Eu} = 3.0 at. %, t = 800°C$

* Параметры и плотность фаз.

являются четыре компоненты с максимумами 611, 615, 623 и 630 нм. Отмечено незначительное смещение максимумов относительно данных, приведенных в работах [26, 27]. Соотношение пиковых интенсивностей наиболее интенсивных компонент сверхчувствительного электро-дипольного электронного перехода ${}^5D_0 \rightarrow {}^7F_2$ и магнитно-дипольного электронного перехода ${}^5D_0 \rightarrow {}^7F_1$, не чувствительного к симметрии окружения ионов

Рис. 5. Спектры люминесценции ($\lambda_{\rm B} = 394$ нм) порошков композитов, синтезированных в течение 4 (*1*), 8 (*2*) и 12 ч (*3*) ($C_{\rm Eu} = 5.0$ ат. %, Y^{3+} : $Al^{3+} = 3 : 5$, $t = 800^{\circ}$ С, ширина щелей монохроматора 3–1.5).

Еu³⁺, составляет 2.42, 2.45, 2.45 в спектрах *1, 2, 3* соответственно (рис. 5). Теоретическое значение соотношения интенсивностей данных полос, соответствующее нахождению ионов Eu³⁺ в центрах симметрии C_2 и C_{3i} в оксидных матрицах, равно 3 [30]. Нахождение ионов Eu³⁺ в центрах с меньшей симметрией соотносится с результатами РФА, показывающими сложный фазовый состав композитов с искаженными параметрами элементарных ячеек. При уменьшении температуры синтеза композитов отмечено выравнивание интенсивностей полос электронных переходов ${}^5D_0 \rightarrow {}^7F_{1,2}$ и далее обратное соотношение $I_{592} > I_{611}$ аналогично [27].

В спектрах возбуждения люминесценции композитов при длинах волн больше 300 нм наблюдаются полосы, совпадающие с полосами собственного поглощения ионов Eu³⁺ при переходе электронов из основного электронного состояния ${}^{7}F_{0}$ (рис. 6). В области длин волн меньше 320 нм зарегистрирована широкая полоса. Ее длинноволновые компоненты (>280 нм) связаны с переносом колебательной энергии оксоанионных групп кислородсодержащей матрицы на уровни ионов Eu³⁺ [12]. Изменение положения максимумов и перераспределение интенсивностей компонент в этой части спектра связаны с искажением кислородного окружения ионов Eu³⁺ при внедрении атомов фтора в состав активаторных центров. Коротковолновые компоненты полосы (<280 нм) связаны с переходом электронов с полностью заполненной 2*p*-орбитали ионов О²⁻ на частично заполненную 4*f*-орбиталь ионов Eu^{3+} ($Eu^{3+} \rightarrow O^{2-}$ -переход) [31, 32]. Пиковые интенсивности в максимумах полос (I₂₅₈ и I₃₉₄) близки (рис. 6). Высокая

интенсивность полос электронных переходов ${}^7F_0 \rightarrow {}^5D_2 \ (\lambda_{\rm max} = 466 \ {\rm HM}), {}^7F_0 \rightarrow {}^5D_1 \ {\rm u} \ {}^7F_1 \rightarrow {}^5D_1 \ (>520 \ {\rm HM})$ соответствует нахождению ионов Eu³⁺ в составе оксифторидных активаторных центров [12, 30]. Уменьшение интенсивности полос в спектрах люминесценции (рис. 5) и возбуждения люминесценции (рис. 6) в ряду спектров 1-2-3 объясняется смещением соответствующих максимумов в спектрах в результате изменения состава и симметрии активаторных центров при изменении фазового состава продуктов с увеличением времени синтеза.

С увеличением в составе композитов концентрации ионов Eu³⁺ изменяется соотношение интенсивностей отдельных компонент в полосах электронных переходов ${}^{5}D_{0} \rightarrow {}^{7}F_{2, 4}$ (рис. 7). Изменения в спектрах связаны с увеличением в составе активаторных центров доли атомов фтора, соответствующем увеличению концентрации трифторацетат-ионов в исходных реакционных смесях.

Пиковая интенсивность в максимумах наиболее интенсивных компонент полос электронных переходов ${}^{5}D_{0} \rightarrow {}^{7}F_{1, 2, 4}$ при приведении к одинаковой ширине щелей монохроматора линейно увеличивается с увеличением концентрации ионов Eu³⁺. Это подтверждает достаточно равномерное распределение ионов Eu³⁺ в матрице. В соответствующих спектрах возбуждения ($\lambda_{\pi} = 615$ нм) зарегистрировано перераспределение интенсивности компонент сложной полосы в области <320 нм.

При сопоставлении спектров люминесценции композитов ($\lambda_{\rm B} = 394$ нм), содержащих ионы Y³⁺ и Al³⁺ в соотношениях 3 : 5 (рис. 8, спектры *1* и *2*)

Рис. 6. Спектры возбуждения люминесценции ($\lambda_{\pi} = 615$ нм) порошков композитов, синтезированных в течение 4 (*1*), 8 (*2*) и 12 ч (*3*) ($C_{\text{Eu}} = 5.0$ ат. %, Y^{3+} : Al³⁺ = 3 : 5, $t = 800^{\circ}$ С, ширина щелей монохроматора 3–1.5).

Puc. 7. Спектры люминесценции ($\lambda_{\rm B}$ = 394 нм) порошков композитов, содержащих ионы Eu³⁺ в концентрации 1.0 (*1*), 3.0 (*2*) и 5.0 ат. % (*3*) (Y³⁺ : Al³⁺ = 3 : 5, τ = 12 ч, *t* = 800°C), ширина щелей монохроматора: 3–3 (*I*), 3–1.5 (*2* и *3*).

и 1 : 1 (рис. 8, спектры 3 и 4) [33], отмечено перераспределение интенсивности компонент электронных переходов ${}^{5}D_{0} \rightarrow {}^{7}F_{1,2}$ с увеличением соотношения Y : Al для образцов, синтезированных в течение 12 ч.

На рис. 9 приведены спектры люминесценции образца, зарегистрированные при возбуждении излучением с длинами волн 240 и 394 нм. Различия в спектрах объяснены исходя из данных РФА и природы процессов, приводящих к образованию возбужденных состояний ионов Eu³⁺. В области меньше 320 нм возбуждение связано с кисло-

родом оксоанионных групп и их искажением под влиянием атомов фтора. Возбуждение излучением с длиной волны 394 нм происходит при непосредственном поглощении ионами Eu³⁺ энергии источника. При таком возбуждении проявляется штарковская структура полос люминесценции, близкая к максимальной.

В спектрах возбуждения люминесценции, соответствующих максимумам различных компонент электронного перехода ${}^5D_0 \rightarrow {}^7F_2$ (610 и 615 нм) зарегистрированы полосы с различным соотношением интенсивностей $I_{394}/I_{466,>520}$ (рис. 10). Из-

Puc. 8. Спектры люминесценции ($\lambda_{\rm B}$ = 394 нм) порошков композитов, содержащих ионы Y³⁺ и Al³⁺ в соотношении 3 : 5 (1, 2), 1 : 1 (3, 4), время синтеза 8 (1, 3), 12 ч (2, 4), ширина щелей монохроматора 3–1.5 (1, 3, 4), 3–3 (2) ($C_{\rm Eu}$ = 1.0 at. %, t = 800°C).

Рис. 9. Спектры люминесценции порошков композитов, зарегистрированные при возбуждении излучением с длиной волны 240 (*1*) и 394 нм (*2*) ($C_{Eu} = 1.0$ ат. %, Y^{3+} : $Al^{3+} = 3 : 5$, $\tau = 12$ ч, $t = 800^{\circ}$ С, ширина щелей монохроматора 3–3).

Рис. 10. Спектры возбуждения люминесценции порошков композитов, зарегистрированные для люминесценции 610 (*I*) и 615 нм (*2*) ($C_{Eu} = 1.0$ ат. %; Y³⁺ : Al³⁺ = 3 : 5, $\tau = 12$ ч, $t = 800^{\circ}$ C), ширина щелей монохроматора 3–1.5 (*I*), 3–3 (*2*).

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 57 № 10 2021

менение соотношения интенсивностей полос, связанных с оксидным и оксифторидным окружением ионов Eu^{3+} , объясняется участием активаторных центров оксидных и оксифторидных фаз различного O/F-состава в возбуждении отдельных компонент электронного перехода ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$.

ЗАКЛЮЧЕНИЕ

Термическим разрушением гелеобразных смесей, содержащих соли иттрия, алюминия и европия, синтезированы порошки сложного состава на основе фторированного оксида иттрия и оксида алюминия, содержащие 1, 3 и 5 ат. % ионов европия. Увеличение соотношения Y^{3+} : Al^{3+} до 3 : 5 и внедрение атомов фтора в состав оксоанионного окружения ионов Eu³⁺ приводят к изменению штарковской структуры и интенсивностей отдельных компонент полос сверхчувствительных электронных переходов ${}^{5}D_{0} \rightarrow {}^{7}F_{2,4}$, а также к изменению интенсивностей полос возбуждения. Выявленные изменения происходят прогнозируемо. Они связаны с изменением фазового состава продуктов при увеличении времени синтеза в ряду $(Y_{1-x}Eu_x)F_3 - (Y_{1-x}Eu_x)_2O_3 \cdot Al_2O_3$, которое подтверждено данными РФА.

Полученные результаты дополняют опубликованные ранее данные, показывают возможность синтеза композитов сложного состава с прогнозируемыми спектральными характеристиками.

БЛАГОДАРНОСТЬ

Работа выполнена с использованием научного оборудования межрегионального центра коллективного пользования НИ "Томский государственный университет".

СПИСОК ЛИТЕРАТУРЫ

- 1. *Maciel Glauco S., Rakov N., Zanon R.A. de S. et al.* Red Photoluminescence in NdAlO₃ Crystalline Ceramic Powders Prepared by Combustion Synthesis // Chem. Phys. Lett. 2008. V. 465. P. 258–260. https://doi.org/10.1016/j.cplett.2008.09.062
- 2. Pavasaryte L., Katelnikovas A., Momot A. et al. Eu^{3+} -Doped Ln₃Al₅O₁₂ (Ln = Er, Tm, Yb, Lu) Garnets: Synthesis, Characterization and Investigation of Structural and Luminescence Properties // J. Lumin. 2019. V. 212. P. 14–22.

https://doi.org/10.1016/j.jlumin.2019.04.005

- Jiang N., Zhao Y., Ge L. et al. Fabrication and Kw-Level Mopa Laser Output of Planar Waveguide YAG/ Yb:YAG/YAG Ceramic Slab // J. Am. Ceram. Soc. 2019. V. 102. № 4. P. 1758–1767. https://doi.org/10.1111/jace.16040
- Jusza A., Piramidowicz R., Lipińska L. et al. Short Wavelength Emission Properties of Tm³⁺ and Tm³⁺+Yb³⁺ Doped LaAlO₃ Nanocrystals and Polymer

Composites // Opt. Mater. 2019. V. 97. P. 109365 https://doi.org/10.1016/j.optmat.2019.109365

- Yin D., Wang J., Tang D. et al. Fabrication and Microstructural Characterizations of Lasing Grade Nd:Y₂O₃ Ceramics // J. Am. Ceram. Soc. 2019. V. 102. № 12. P. 7462–7468. https://doi.org/10.1111/jace.16671
- Boyarintseva Y., Neicheva S., Zhmurin P. et al. Optical Study of Y_{3-x}Gd_xAl₅O₁₂:Ce Crystals Grown From the Melt // Opt. Mater. 2019. V. 96. P. 109283 https://doi.org/10.1016/j.optmat.2019.109283
- Panahibakhsh S., Bahramian R., Jaberi M., Jelvani S. Control of Defects and their Luminescence Properties in Nd:YAG Crystals by Laser Irradiation // J. Luminescence. 2020. V. 218. P. 116813. https://doi.org/10.1016/j.jlumin.2019.116813
- Chaika M., Tomala R., Strek W. et al. Upconversion Luminescence in Cr³⁺:YAG single Crystal under inerared excitation // J. Luminescence. 2020. V. 226. P. 117467. https://doi.org/10.1016/j.jlumin.2020.117467
- Zhang Z., Goldner P., Ferrier A. et al. Tailoring the ³F₄ Level Lifetime in Tm³⁺:Y₃Al₅O₁₂ by Eu³⁺ Co-Doping for Signal Processing Application // J. Lumin. 2020. V. 222. P. 117107. https://doi.org/10.1016/j.jlumin.2020.117107
- 10. Иванов М.Г., Копылов Ю.Л., Кравченко В.Б. и др. Лазерная керамика ИАГ и Y₂O₃ из неагломерированных наноразмерных порошков // Неорган. материалы. 2014. Т. 50. № 9. С. 1028–1036. https://doi.org/10.7868/S0002337X14090048
- Feng Y., Toci G., Pirri A. et al. Fabrication, Microstructure, and Optical Properties of Yb:Y₃ScAl₄O₁₂ Transparent Ceramics with Different Doping Levels // J. Am. Ceram. Soc. 2020. V. 103. № 1. P. 224–234. https://doi.org/10.1111/jace.16691
- Уклеина И.Ю. Дис. ... канд. хим. наук. Ставрополь: СтГУ, 2005. 158 с.
- Rakov N., Maciel G.S. Comparative Study of Er³⁺ and Tm³⁺ Co-Doped YOF and Y₂O₃ Powders as Red Spectrally Pure Up-Converters // Opt. Mater. 2013. № 35. P. 2372–2375. https://doi.org/10.1016/j.optmat.2013.06.037
- Tian Y, Chen B., Hua R. et al. Fabrication and Luminescent Enhancement of Eu³⁺-Doped Y₂O₃@YOF Core-Shell Nanocrystals // J. Nanosci. Nanotechnol. 2011. V. 11. № 11. P. 9631–9635. https://doi.org/10.1166/jnn.2011.5312
- Кузнецов С.В., Осико В.В., Ткаченко Е.А., Федоров П.П. Неорганические нанофториды и композиты на их основе // Успехи химии. 2006. Т. 75. № 12. С. 1193– 1211.
- Коломиец Т.Ю., Тельнова Г.Б., Ашмарин А.А. и др. Синтез и спекание субмикронных частиц ИАГ:Nd, полученных из карбонатных прекурсоров // Неорган. материалы. 2017. Т. 53. № 8. С. 890–899. https://doi.org/10.7868/S0002337X17080152
- Garskaite E., Lindgren M., Einarsrud M.-A., Grande T. Luminescent Properties of Rare Earth (Er, Yb) Doped Yttrium Aluminium Garnet thin Filmsand Bulk Samples Synthesized by an Aqueous Sol-Gel Technique // J. Eur. Ceram. Soc. 2010. V. 30. № 7. P. 1707–1715. https://doi.org/10.1016/j.jeurceramsoc.2010.01.001

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 57 № 10 2021

- Mamonova D.V., Kolesnikov I.E., Manshina A.A. et al. Modified Pechini Method for the Synthesis of Weakly-Agglomerated Nanocrystalline Yttrium Aluminum Garnet (YAG) Powders // Mater. Chem. Phys. 2017. V. 189. P. 245–251. https://doi.org/10.1016/j.matchemphys.2016.12.025
- *Zhang J., Zhang Z., Tang Z. et al.* Luminescent Properties of Y₂O₃:Eu Synthesized by Sol-Gel Processing // J. Mater. Process. Technol 2002. V. 121. № 2–3. P. 265–268. https://doi.org/10.1016/S0924-0136(01)01263-8
- Chong M.K., Pita K., Kam C.H. Photoluminescence of Y₂O₃:Eu³⁺ thin Film Phosphors by Sol–Gel Deposition and Rapid Thermal Annealing // J. Phys. Chem. Solids. 2005. V. 66. № 1. P. 213–217. https://doi.org/10.1016/j.jpcs.2004.09.016
- Cho J.Y., Ko K.Y., Do Y.R. Optical Properties of Sol– Gel Derived Y₂O₃:Eu³⁺ Thin-Film Phosphors for Display Applications // Thin Solid Films. 2007. V. 515. № 7–8. P. 3373–3379. https://doi.org/10.1016/j.tsf.2006.09.029
- Back M., Massari A., Boffelli M. et al. Optical Investigation of Tb³⁺-Doped Y₂O₃ Nanocrystals Prepared by Pechini-Type Sol-Gel Process // J. Nanopart. Res. 2012. V. 14. P. 792. https://doi.org/10.1007/s11051-012-0792-x
- 23. Wen T., Luo W., Wang Y. et al. Multicolour and Up-Conversion Fluorescence of Lanthanide Doped Vernier Phase Yttrium Oxyfluoride Nanocrystals // J. Mater. Chem. C. 2013. V. 1. № 10. P. 1995–2001. https://doi.org/10.1039/c3tc00642e
- 24. Помелова Т.А., Баковец В.В., Корольков И.В. и др. Об аномальной эффективности люминесценции субмикронного фосфора Y₂O₃:Eu³⁺ // ФТТ. 2014. Т. 56. № 12. С. 2410–2419.
- Rakov N., Guimarãaes R.B., Lozano W., Maciel G.S. Structural and Spectroscopic Analyses of Europium Doped Yttrium Oxyfluoride Powders Prepared by Combustion Synthesis // J. Appl. Phys. 2013. V. 114. P. 043517. https://doi.org/10.1063/1.4816623

- 26. *Смагин В.П., Худяков А.П.* Влияние условий синтеза на люминесценцию европийсодержащих композиций на основе оксида и оксифторидов иттрия // Неорган. материалы. 2019. Т. 55. № 1. С. 67–79. https://doi.org/10.1134/S0002337X19010147
- 27. Смагин В.П., Худяков А.П. Фотолюминесценция европийсодержащих композиций на основе фторированных оксидов иттрия и алюминия // Неорган. материалы. 2020. Т. 56. № 10. С. 1095-1106. https://doi.org/10.31857/S0002337X20100140
- Худяков А.П., Смагин В.П., Стручева Н.Е., Затонская Л.В. Неводный синтез и люминесценция композиций (YF₃ - Y₂O₃):Eu³⁺ // Ползуновский вестн. 2019. № 2. С. 106-112. https://doi.org/10.25712/ASTU.2072-8921.2019.02.021
- Смагин В.П., Мокроусов Г.М. Физико-химические аспекты формирования и свойства оптически прозрачных металлсодержащих полимерных материалов. Барнаул: Изд-во Алт. ун-та, 2014. 258 с. (http://elibrary.asu.ru/xmlui/bitstream/handle/asu/840/ read.7book?sequence=1)
- Манаширов О.Я., Зверева Е.М., Воробьев В.А. Сравнительное исследование различных классов люминофоров, активированных ионами Yb³⁺, при ИК возбуждении // Вестн. Южного науч. центра РАН. 2012. Т. 8. С. 38–49.
- 31. *Ćirć A., Stojadinović S.* Structural and Photoluminescence Properties of Y₂O₃ and Y₂O₃:Ln³⁺ (Ln = Eu, Er, Ho) Films Synthesized by Plasma Electrolytic Oxidation of Yttrium Substrate // J. Lumin. 2020. V. 217. P. 116762. https://doi.org/10.1016/j.jlumin.2019.116762
- Alarćon-Flores G., García-Hipólito M., Aguilar-Frutis M. et al. Synthesis and Fabrication of Y₂O₃:Tb³⁺ and Y₂O₃:Eu³⁺ thin Films for Electroluminescent Applications: Optical and Structural Characteristics // Mater. Chem. Phys. 2015. V. 149–150. P. 34–42. https://doi.org/10.1016/j.matchemphys.2014.09.020
- Смагин В.П., Худяков А.П., Бирюков А.А. Люминесценция ионов Eu³⁺ в матрице фторированной алюмоиттриевой композиции // ФТТ. 2020. Т. 62. № 2. С. 274–280.

https://doi.org/10.21883/FTT.2020.02.48879.566