УЛК 541.123.3:543.572.3

ИССЛЕДОВАНИЕ ФАЗОВЫХ РАВНОВЕСИЙ В ТРЕХКОМПОНЕНТНОЙ ВЗАИМНОЙ СИСТЕМЕ K^+ , $Ba^{2+}\|Br^-$, MoO_4^{2-}

© 2021 г. Е. Г. Данилушкина^{1, *}, И. К. Гаркушин¹, Н. С. Тарасова¹

¹ Самарский государственный технический университет, главный корпус, ул. Молодогвардейская, 244, Самара, 443100 Россия *e-mail: e danilu@mail.ru

> Поступила в редакцию 21.06.2021 г. После доработки 05.08.2021 г. Принята к публикации 18.08.2021 г.

С использованием термодинамического метода проведено разбиение трехкомпонентной взаимной системы K^+ , $Ba^{2+}\|Br^-$, MoO_4^{2-} на стабильные симплексы, определены стабильные секущие системы, рассчитан тепловой эффект реакции обмена в точке конверсии. Описаны фазовые равновесия, химическое взаимодействие в системе и разграничены поля кристаллизации фаз. С целью подтверждения теоретического разбиения проведено экспериментальное исследование двух стабильных секущих и трех стабильных элементов трехкомпонентной взаимной системы K^+ , $Ba^{2+}\|Br^-$, MoO_4^{2-} методом дифференциального термического анализа. В результате экспериментальных исследований установлено, что система относится к сингулярной необратимо-взаимной с эвтектическим типом плавления. Система разбивается стабильными секущими диагоналями на четыре стабильных фазовых треугольника $KBr-D_2-K_2MoO_4$, $KBr-D_2-BaMoO_4$, $KBr-D_1-BaMoO_4$, $BaBr_2-D_1-BaMoO_4$ (где $D_1=2KBr\cdotBaBr_2$, $D_2=K_2MoO_4\cdot BaMoO_4$). Данные разбиения подтверждены $P\Phi A$. На стабильных секущих выявлены перевальные квазидвойные эвтектические точки: e_7 (727°C) и e_6 (608°C). Определены координаты (температура плавления, состав) трех тройных эвтектических точек: E_1 (597°C), E_2 (606°C), E_3 (602°C) и тройной перитектической точки P_1 (613°C). Максимальное поле кристаллизации на квадрате составов отвечает тугоплавкому молибдату бария.

Ключевые слова: фазовые равновесия, дифференциальный термический анализ, фазовая диаграмма, эвтектика, перитектика

DOI: 10.31857/S0002337X21120046

ВВЕДЕНИЕ

Композиции из неорганических солей находят применение в качестве функциональных материалов в большом количестве технологических процессов. В первую очередь это электролиты различного назначения, рабочие тела тепловых аккумуляторов, работающих при высоких температурах, флюсы для сварки и пайки, а также среды для проведения химических реакций [1-5]. Ионные расплавы щелочных полимолибдатов используют для синтеза и выращивания многих монокристаллов целевого назначения [6, 7]. Среди неорганических солей наиболее востребованы в технологическом отношении соли галогенидов, молибдатов, сульфатов *s*-элементов [8—14]. Выбор солевой смеси с требуемыми характеристиками неразрывно связан с изучением многокомпонентных систем [15].

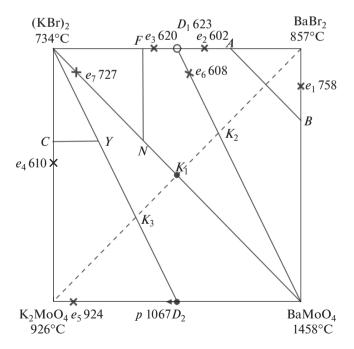
Цель данной работы — исследование трехкомпонентной взаимной системы из бромидов и молибдатов калия и бария (K^+ , $Ba^{2+} \| Br^-$, MoO_4^{2-}). Данные по исходным соединениям приведены в табл. 1 [16, 17].

ТЕОРЕТИЧЕСКИЙ АНАЛИЗ

Исследование трехкомпонентной взаимной системы K^+ , $Ba^{2+}\|Br^-$, MoO_4^{2-} проведено с целью установления фазовых равновесий и нахождения нонвариантных составов. Трехкомпонентная взаимная система включает четыре составляющих соли (рис. 1), образующие четыре двухкомпонентные системы, которые исследованы ранее [18–21].

Система $KBr-K_2MoO_4$ характеризуется образованием эвтектики (e₉) с координатами 610°C, 55.4% KBr, 44.6 K_2MoO_4 (трехфазное равновесие $\mathcal{K}_{e4} \rightleftharpoons KBr + K_2MoO_4$ [18, 19])¹.

В системе K_2MoO_4 — $BaMoO_4$ образуются соединение инконгруэнтного плавления K_2MoO_4 ·


 $^{^{1}}$ Здесь и далее составы выражены в экв. %.

Вещество	$\Delta_{\!f}\!H_{298}^{\circ}$, кДж/моль	$\Delta_{\!f}\!G_{298}^{\circ}$, кДж/моль	t _{пл} , °C	Температура полиморфных переходов
КВг (кІ, куб.)	-393.480	-380.108	734 ± 1	_
ВаВr ₂ (к, ромб.)	-756.490	-732.263	857 ± 2	_
$\mathrm{K}_{2}\mathrm{MoO}_{4}$ (кIV, монокл.)	-1498.457	-1381.481	926 ± 1	$476 \pm 10 \ (\beta/\alpha)$ $450 \pm 5 \ (\beta/\gamma)$ $316 \pm 10 \ (\delta/\gamma)$
ВаМоО ₄ (к, тетр.)	-1533.372	-1427.709	1458 ± 3	_

Таблица 1. Термодинамические и термические данные исходных солей [16, 17]

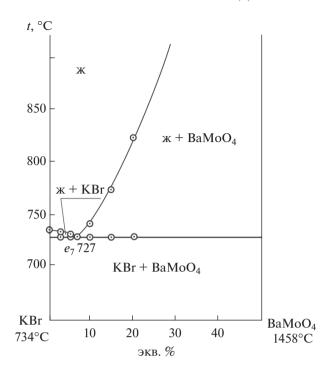
·ВаМоО₄ (D_2) при температуре 1067°С и 51% K_2 МоО₄, 49% ВаМоО₄, а также эвтектика (e_5) при температуре 924°С и 95% K_2 МоО₄, 5% ВаМоО₄. При 3 экв. % ВаМоО₄ и температуре плавления смеси 936°С в ликвидусе отмечается максимум, отвечающий граничному твердому раствору на основе α - K_2 МоО₄ [20].

В системе $BaBr_2-BaMoO_4$ температура плавления эвтектики 758°C (e_1), состав 85% $BaBr_2$, 15% $BaMoO_4$. Эвтектическому составу соответствует нонвариантное равновесие ж \rightleftharpoons $BaBr_2 + BaMoO_4$ [20, 21].

Рис. 1. Расположение политермических разрезов в тройной взаимной системе K^+ , $Ba^{2+}\|Br^-$, MoO_4^{2-} .

Система KBr—BaBr₂ характеризуется образованием конгруэнтного соединения 2KBr·BaBr₂ (D_1) при температуре 623°C и 50% KBr, 50% BaBr₂, эвтектики (e_2) при температуре 602°C и 31% KBr, 69% BaBr₂, эвтектики (e_3) при температуре 620°C и 61% KBr, 39% BaBr₂ [18].

На первом этапе было проведено теоретическое разбиение системы на симплексы. Для подтверждения варианта разбиения проведен термодинамический расчет $\Delta_r H^\circ$ и $\Delta_r G^\circ$ реакции в точке конверсии по данным $\Delta_r H^\circ$ и $\Delta_r G^\circ$ исходных веществ [16, 17].


В точке K_2 (рис. 1) протекает реакция обмена

ВаВг
$$_2$$
 + К $_2$ МоО $_4$ \rightleftharpoons 2КВг + ВаМоО $_4$, (1) для состава которой рассчитаны тепловой эффект и энергия Гиббса реакции в точке конверсии ($\Delta_r H^\circ = -63.01 \text{ кДж}$; $\Delta_r G^\circ = -110.30 \text{ кДж}$). Система относится к сингулярной необратимо-взаимной по классификации Бергмана [22—25] со стабильной диагональю КВг—ВаМоО $_4$.

Наличие соединений конгруэнтного плавления $2KBr \cdot BaBr_2$ (D_1) и инконгруэнтного плавления $K_2MoO_4 \cdot BaMoO_4$ (D_2) с учетом стабильной диагонали $KBr - BaMoO_4$ позволяет провести разбиение системы K, $Ba \parallel Br$, MoO_4 на четыре симплекса: $KBr - D_2 - K_2MoO_4$, $KBr - D_2 - BaMoO_4$, $KBr - D_1 - BaMoO_4$, $BaBr_2 - D_1 - BaMoO_4$.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исследования проводили методом дифференциального термического анализа (ДТА), датчик температуры — комбинированная Pt-Pt/Rh(10%Rh)-термопара, индифферентное вещество — свежепрокаленный Al_2O_3 . Исходные реактивы квалификаций "х. ч." (КВг, $BaBr_2$, K_2MoO_4 , $BaMoO_4$) были предварительно обезвожены. Температуры плавления веществ KBr, $BaBr_2$, K_2MoO_4 соответ-

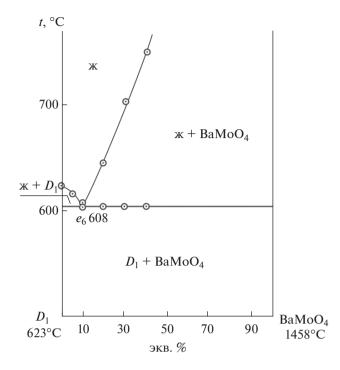


Рис. 2. t—x-диаграмма стабильной диагонали KBr— $BaMoO_4$.

ствовали справочным данным. Температура плавления $BaMoO_4$ принята равной 1458°C [16, 17]. Исследования проводили в платиновых микротиглях. Масса навесок составляла $0.4~\rm f.$

Для экспериментального подтверждения выбранного варианта разбиения трехкомпонентной взаимной системы K^+ , $Ba^{2+}\|Br^-$, MoO_4^{2-} системы на симплексы проведено исследование методом ДТА квазибинарной системы $KBr-BaMoO_4$. t-x-диаграмма стабильной диагонали $KBr-BaMoO_4$ представлена на рис. 2. Ветви первичной кристаллизации бромида калия и молибдата калия сходятся в квазидвойной эвтектической точке e_7 : $727^{\circ}C$, 7% $BaMoO_4$ ($\#_{e7} \rightleftharpoons KBr + BaMoO_4$). Таким образом, квазибинарная система $KBr-BaMoO_4$ является стабильной диагональю трехкомпонентной взаимной системы, разбиение выполнено верно.

Проведен рентгенофазовый анализ образца смеси, отвечающего точке конверсии K_2 . Для этого образец, содержащий смесь 50% BaBr₂ + 50% K₂MoO₄, нагрели до температуры $525-540^{\circ}$ C, выдержали 30 мин, а затем закалили в лед. По результатам РФА, в образце кристаллизуются две фазы — KBr и BaMoO₄, что также подтверждает теоретический вариант разбиения системы термодинамическим методом.

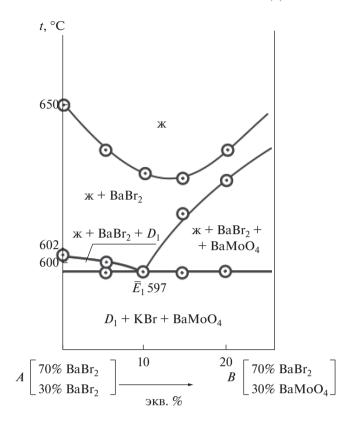
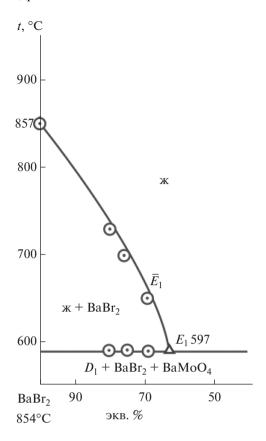


Рис. 3. t—x-диаграмма квазибинарной системы D_1 — $BaMoO_4$.

Также для подтверждения разбиения системы с помощью ДТА изучена стабильная секущая, являющаяся квазибинарной системой D_1 —BaMoO₄ (рис. 3).

Ветви первичной кристаллизации соединения конгруэнтного типа плавления и молибдата бария сходятся в квазидвойной эвтектической перевальной точке e_6 (608°C, 10% BaMoO₄) с трехфазным равновесием $\mathbf{x}_{e6} \rightleftharpoons D_1 + \mathrm{BaMoO_4}$.

Для экспериментального изучения тройной взаимной системы проекционно-термографическим методом [25] рассмотрены политермические разрезы AB, NF, CY. В стабильном треугольнике D_1 -BaBr₂-BaMoO₄ (рис. 1) выбран и исследован политермический разрез AB в поле кристаллизации бромида бария. *t-х-*диаграмма разреза представлена на рис. 4. Установлено наличие третичной кристаллизации с тройной эвтектикой E_1 ($t_{E1} = 597$ °C). Пересечением ветвей вторичной кристаллизации бромида калия, молибдата бария и эвтектической прямой в точке \bar{E}_1 определили проекцию тройной эвтектики на плоскость разреза АВ с постоянным соотношением компонентов KBr и BaMoO₄. На разрезе BaBr₂— $\overline{\mathbf{E}}_1 - E_1$ (рис. 5), исходящем из вершины BaBr_2 , определены координаты тройной эвтектической точки E_1 : 597°C, 65% BaBr₂, 32% KBr, 3% BaMoO₄.


Рис. 4. t—x-диаграмма политермического разреза AB квазитройной системы KBr— $BaBr_2$ — $BaMoO_4$.

Ликвидус квазитройной системы D_1 —BaBr₂—BaMoO₄ представлен пятью полями кристаллизации компонентов BaBr₂, 2KBr BaBr₂ (D_1) и BaMoO₄. Наибольшее поле принадлежит молибдату бария.

Для нахождения нонвариантной точки в симплексе $KBr-D_1$ - $BaMoO_4$ (рис. 1) экспериментально изучен политермический разрез NF, расположенный в поле кристаллизации бромида калия. По экспериментальным данным политермического сечения (рис. 6) определена температура плавления эвтектической точки и соотношение в ней компонентов $BaBr_2$ и $BaMoO_4$.

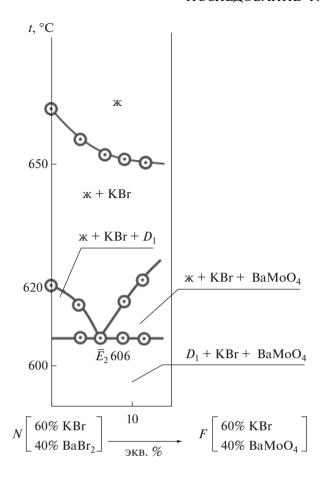
Изучением нонвариантного разреза $KBr-\overline{E}_2-E_2$, исходящего из вершины бромида калия, через найденное направление \overline{E}_2 определены координаты тройной эвтектической точки E_2 : 606°C, 57% KBr, 40.5% $BaBr_2$, 2.5% $BaMoO_4$ (рис. 7). Ликвидус квазитройной системы $KBr-D_1-BaMoO_4$ представлен тремя полями кристаллизации компонентов $D_1=2KBr\cdot BaBr_2$, KBr и $BaMoO_4$. Наибольшее поле принадлежит бромиду калия.

Аналогичное исследование провели и в симплексе $KBr-K_2MoO_4-BaMoO_4$ (рис. 1), в котором изучен политермический разрез $CY(C-60\% \ KBr,$

Рис. 5. t—x-диаграмма нонвариантного разреза KBr— E_1 квазитройной системы KBr— $BaBr_2$ — $BaMoO_4$.

 $40\% \text{ K}_2\text{MoO}_4$; Y — 60% KBr, $40\% \text{ BaMoO}_4$), расположенный в поле кристаллизации бромида калия (рис. 8).

На разрезе CY были определены температуры плавления тройных эвтектики (E_3) и перитектики (P) и соотношение в них компонентов KBr и ВаМоО₄ (\overline{E}_3 и \overline{P}_1). Составы эвтектики E_3 и перитектики P выявлены при исследовании разрезов KBr $-\overline{E}_3$ - E_3 (рис. 9) и KBr $-\overline{P}$ -P соответственно:


 $E_3-602^{\circ}\mathrm{C}$, 36% KBr, 60% K₂MoO₄, 4% BaMoO₄. Для тройного эвтектического состава экспериментально определена энтальпия плавления: $\Delta H_m(E_3)=$ = 24.48 кДж/кг.

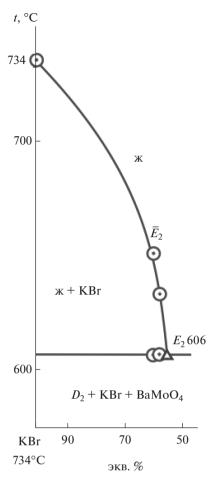
 $P_1 - 613^{\circ}\text{C}, 60\% \text{ KBr}, 33\% \text{ K}_2\text{MoO}_4, 7\% \text{ BaMoO}_4.$

Все найденные нонвариантные точки нанесены на квадрат составов системы K^+ , $Ba^{2+}\|Br^-$, MoO_4^{2-} (рис. 10).

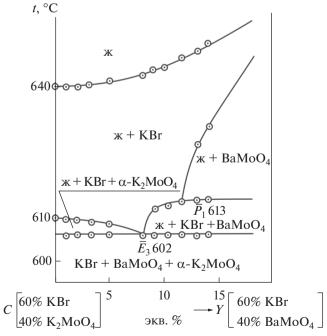
РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

По результатам экспериментальных исследований установлено, что трехкомпонентная вза-

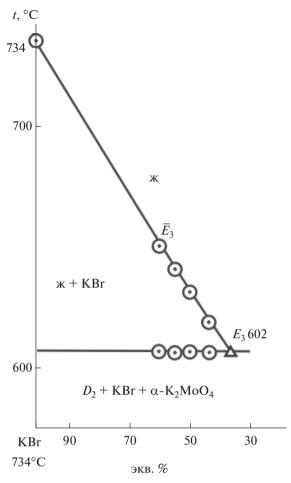
Рис. 6. t—x-диаграмма политермического разреза NF квазитройной системы KBr— $BaBr_2$ — $BaMoO_4$.


имная система K^+ , $Ba^{2+}\|Br^-$, MoO_4^{2-} разбивается тремя стабильными секущими $KBr-BaMoO_4$, $D_1-BaMoO_4$, D_2-KBr на четыре стабильных фазовых треугольника: $KBr-D_2-K_2MoO_4$, $KBr-D_2-BaMoO_4$, $KBr-D_1-BaMoO_4$, $BaBr_2-D_1-BaMoO_4$ ($D_1=2KBr\cdot BaBr_2$, $D_2=K_2MoO_4\cdot BaMoO_4$). Данные разбиения подтверждены $P\Phi A$. Максимальное поле кристаллизации на квадрате составов отвечает тугоплавкому молибдату бария, оттесняющему поля кристаллизации остальных фаз.

Фазовые равновесные состояния для различных элементов квадрата составов приведены в табл. 2.


В системе, кроме реакций обмена в точке K_1 , протекают и реакции образования двойных соединений $2KBr \cdot BaBr_2$ (K_2BaBr_4 , D_1) и $K_2MoO_4 \cdot BaMoO_4$ (K_2BaMoO_4 , D_2):

$$K_2MoO_4 + 2BaBr_2 =$$


$$= K_2BaBr_4 + BaMoO_4(точка K_2),$$
(2)

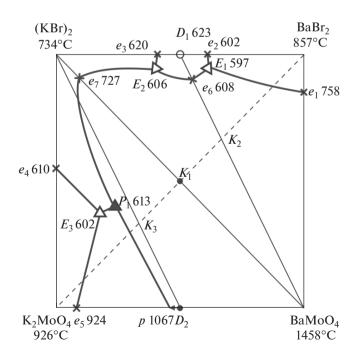

Рис. 7. t—x-диаграмма нонвариантного разреза $BaBr_2$ — E_2 квазитройной системы KBr— $BaBr_2$ — $BaMoO_4$.

Рис. 8. t—x-диаграмма политермического разреза CY квазитройной системы KBr— K_2MoO_4 — $BaMoO_4$.

Рис. 9. t—x-диаграмма нонвариантного разреза квазитройной системы KBr— K_2MoO_4 — D_2 .

Рис. 10. Квадрат составов системы K^+ , $Ba^{2+} \| Br^-$, MoO_4^{2-} .

Таблица 2. Фазовые равновесные состояния для различных элементов квадрата составов

Элемент диаграммы	Фазовое равновесие			
Дивариантные равновесия				
Поле $e_1E_1e_2$	$x \rightleftharpoons BaBr_2$			
Поле $e_2E_1e_6E_2e_3$	$\mathbf{x} \rightleftarrows D_1$			
Поле $e_3E_2e_7P_1E_3e_4$	ж ≠ KBr			
Поле $e_4E_3e_5$	$x \rightleftharpoons \alpha - K_2 MoO_4$			
Поле $e_5E_3P_1p_2$	$\mathbf{x} \rightleftarrows D_2$			
Поле $p_2 P_1 e_7 E_2 e_6 E_1 e_1$	ж ⇄ BaMoO₄			
Моновариантные равновесия				
Линия e_1 — E_1	$x \rightleftharpoons BaBr_2 + BaMoO_4$			
Линия $e_2 - E_1$	$x \rightleftharpoons D_1 + BaBr_2$			
Линия $e_6 - E_1$	$x \rightleftharpoons D_1 + \text{BaMoO}_4$			
Линия $e_6 - E_2$	$x \rightleftharpoons D_1 + \text{BaMoO}_4$			
Линия e_3 — E_2	$x \rightleftharpoons D_1 + KBr$			
Линия $e_7 - E_2$	$x \rightleftharpoons BaMoO_4 + KBr$			
Линия $e_7 - P_1$	$x \rightleftharpoons BaMoO_4 + KBr$			
Линия $p_1 - P_1$	$x \rightleftharpoons BaMoO_4 + D_2$			
Линия $E_3 - P_1$	$x \rightleftharpoons KBr + D_2$			
Линия $e_4 - E_3$	$x \rightleftharpoons KBr + \alpha - K_2MoO_4$			
Линия $e_5 - E_3$	$x \rightleftharpoons D_2 + \alpha - K_2 MoO_4$			
Нонвариантные равновесия				
Точка E_1	$x \rightleftharpoons D_1 + BaBr_2 + BaMoO_4$			
Точка E_2	$x \rightleftharpoons D_1 + \text{BaMoO}_4 + \text{KBr}$			
Точка E_3	ж \rightleftarrows KBr + D_2 + α -K ₂ MoO ₄			
Точка P_1	$x \rightleftharpoons D_2 + \text{BaMoO}_4 + \alpha - \text{K}_2 \text{MoO}_4$			

$$2K_2MoO_4 + BaBr_2 =$$

= $K_2Ba(MoO_4)_2 + 2KBr$ (точка K_3).

Для составов, расположенных на участке диагонали $\mathrm{BaBr}_2{-}K_2$, из приведенных реакций реализуется реакция (2) - образование соединения K_2BaBr_4 , которое с $BaBr_2$ и $BaMoO_4$ образует симплекс K_2BaBr_4 - $BaBr_2$ - $BaMoO_4$. Составы на нестабильной диагонали между точками K_2 и K_1 характеризуются протеканием реакций (2) и (1), в результате которых из расплава кристаллизуются три фазы: КВг, К2ВаВг4 и ВаМоО4. Составы между точками K_1 и K_3 характеризуются протеканием реакций (1) и (3), в результате которых после кристаллизации из расплава образуются три твердые фазы стабильного треугольника КВг-ВаМоО₄- $K_2Ba(MoO_4)_2$ (D_2). А на последнем участке диагонали K_3 -Ва MoO_4 в смесях после расплавления и кристаллизации образуются три твердые фазы:

KBr, K_2 MoO₄ и K_2 Ba(MoO₄)₂, т.е. протекает только реакция (3).

БЛАГОДАРНОСТЬ

Работа выполнена при финансовой поддержке Минобрнауки РФ в рамках проектной части государственного задания № 0778-2020-0005.

СПИСОК ЛИТЕРАТУРЫ

- Губанова Т.В., Афанасьева А.Д., Бузгон Е.А., Гаркушин И.К. Трехкомпонентные системы NaГ-NaVO₃-Na₂CrO₄ (Г = Cl, Br) // Журн. неорган. химии. 2018. Т. 63. № 2. С. 257–260. https://doi.org/10.7868/S0044457X1802019
- 2. Данилова В.П., Фролова Е.А., Кондаков Д.Ф., Свешникова Л.Б. Применение физико-химического анализа при разработке и исследовании противогололедных реагентов // Журн. неорган. химии. 2019. Т. 64. № 9. С. 984—987. https://doi.org/10.1134/S0044457X1909006X
- 3. *Гаркушин И.К., Дворянова Е.М., Губанова Т.В., Фролов Е.И., Истомова М.А., Гаркушин А.И.* Функциональные материалы на основе многокомпонентных солевых систем // Журн. неорган. химии. 2015. Т. 60. № 3. С. 374—391. https://doi.org/10.7868/S0044457X14120095
- Вердиев Н.Н., Гаркушин И.К., Бурчаков А.В., Вердиева З.Н., Алхасов А.Б., Мусаева П.А., Кондратюк И.М., Егорова Е.М. Фазовые равновесия в системе NaF—NaCl—NaBr—Na₂CrO₄ // Неорган. материалы. 2020. Т. 56. № 11. С. 1243—1251. https://doi.org/10.31857/S0002337X20110159
- 5. *Гаркушин И.К., Егорцев Г.Е., Истомова М.А.* Поиск электролитов для химических источников тока на основе древ фаз (древ кристаллизации) солевых систем // Электрохимическая энергетика. 2009. Т. 9. № 2. С. 95—109.
- 6. Дробашева Т.И., Снежков В.И., Расторопов С.Б. Ионные расплавы полифольфраматов, молибдатов щелочных металлов и их применение для выращивания кристаллов целевого назначения // Современные наукоемкие технологии. 2011. № 5. С. 69—70.
- 7. *Базарова Ж.Г., Логвинова А.В., Базаров Б.Г.* Фазообразование в системах Rb₂MoO₄−R₂(MoO₄)₃− Zr₂(MoO₄)₂ (R − Al, Fe, Cr, Y) // Неорганические материалы. 2020. Т. 56. № 12. С. 1350−1355. https://doi.org/10.31857/S0002337X20120040
- 8. *Фролов Е.И., Губанова Т.В.* Многокомпонентные системы LiCl–LiBr–Li₂SO₄ и LiCl–LiBr–Li₂SO₄– Li₂MoO₄ // Журн. неорган. химии. 2017. Т. 62. №11. С. 1521–1524. https://doi.org/10.1134/S0036023617110079
- 9. *Гаркушин И.К., Рагрина М.С., Сухаренко М.А.* Исследование стабильного тетраэдра четырехкомпонентной взаимной системы Na, K, Cs|F, Cl // Журн. неорган. химии. 2018. Т. 63. № 1. С. 94–98. https://doi.org/10.7868/S0044457X18010130
- 10. Ushak S., Fernández A.G., Grageda M. Using Molten Salts and Other Liquid Sensible Storage Media in Ther-

- mal Energy Storage (TES) Systems // Advances in Thermal Energy Storage Systems. 2015. P. 49–63.
- 11. *Егорова Е.М., Игнатьева Е.О., Гаркушин И.К., Кондратнок И.М.* Изучение фазовых равновесий в трехкомпонентной взаимной системе Na, K∥I, MoO₄ // Журн. неорган. химии. 2018. T. 63. № 5. C. 645—649. https://doi.org/10.7868/S0044457X18050185
- Вердиев Н.Н., Бабаев Б.Д., Гасаналиев А.М. Фазовые равновесия в системах Li, Na, Ba||MoO₄ и Li, Ca, Ba||MoO₄ // Журн. неорган. химии. 1996. Т. 41. № 2. С. 309–312.
- 13. Химические источники тока: справочник / Под ред. Коровина Н.В., Скундина А.М. М.: Изд-во МЭИ, 2003, 740 с.
- 14. *Быстров В.П., Ливчак А.В.* Теплоаккумуляторы с использованием фазового перехода // Вопросы экономии теплоэнергетич. ресурсов в системах вентиляции и теплоснабжения. Сб. науч. тр. М.: Изд. ЦНИИЭПИО, 1984.
- 15. Гаркушин И.К., Кондратюк И.М., Егорцев Г.Е., Истомова М.А. Теоретические и экспериментальные методы исследования многокомпонентных систем: уч. пособие. Самара: СамГТУ, 2012. 125 с.
- Термические константы веществ. Справочник / Под ред. Глушко В.П. М.: ВИНИТИ, 1981. Вып. Х. Ч. 1. 300 с.
- 17. Термические константы веществ. Справочник / Под ред. Глушко В.П. М.: ВИНИТИ, 1981. Вып. Х. Ч. 2. 440 с.
- 18. Посыпайко В.И., Алексеева Е.А., Васина Н.А. Диаграммы плавкости солевых систем: Ч. III. Двойные системы с общим катионом. Справочник. М.: Металлургия, 1979. 78 с.
- Воскресенская Н.К., Евсеева Н.Н., Беруль С.И. и др. Справочник по плавкости систем из безводных неорганических солей. М.: Изд-во АН СССР, 1961. Т. 1. 845 с.
- 20. *Гасаналиев А.М., Трунин А.С., Дибиров М.А.* Система K₂MoO₄−CaMoO₄−BaMoO₄ // Журн. неорган. химии. 1979. Т. 24. № 6. С. 1716–1718.
- 21. Данилушкина Е.Г., Гаркушин И.К., Рыжкова Д.С. Исследование трехкомпонентной взаимной системы Na, Ba||Br, MoO₄ // Журн. неорган. химии. 2019. Т. 64. № 8. С. 881–888. https://doi.org/10.1134/S0044457X19080038
- 22. *Бергман А.Г., Бухалова Г.А.* Термодинамические взаимоотношения в тройных взаимных системах с комплексообразованием // Изв. сектора физ.-хим. анализа. 1952. Т. 21. С. 228–249.
- 23. *Васина Н.А., Грызлова Е.С., Шапошникова С.Г.* Теплофизические свойства многокомпонентных солевых систем. М.: Химия, 1984. 99 с.
- 24. Лупейко Т.Г., Тарасов Н.И., Зяблин В.Н., Петров М.П. Новые возможности расчетов термодинамических характеристик солевых систем на основе их диаграмм плавкости. М. 2012. С. 90—94.
- 25. Космынин А.С., Трунин А.С. Проекционно-термографический метод исследования гетерогенных равновесий в конденсированных многокомпонентных системах // Тр. Самар. науч. школы по физ.-хим. анализу многокомпонентных систем. Т. 9. Самара: Самар. гос. техн. ун-т, 2006. 183 с.