УДК 66.091:548.55:546.34'882

ПОЛУЧЕНИЕ И ИССЛЕДОВАНИЕ МОНОКРИСТАЛЛОВ НИОБАТА ЛИТИЯ, АКТИВИРОВАННЫХ МАГНИЕМ И БОРОМ

© 2021 г. С. М. Маслобоева^{1, *}, И. Н. Ефремов¹, И. В. Бирюкова¹, М. Н. Палатников¹

¹Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева — обособленное подразделение Федерального исследовательского центра "Кольский научный центр Российской академии наук", Академгородок, 26a, Апатиты, Мурманская обл., 184209 Россия

> *e-mail: sofia_masloboeva@mail.ru Поступила в редакцию 23.06.2021 г. После доработки 07.08.2021 г. Принята к публикации 19.08.2021 г.

Разработана технологическая схема получения гомогенной однофазной шихты ниобата лития, легированной магнием и бором. Из шихты методом Чохральского выращены монокристаллы ниобата лития LiNbO₃:Mg,B, характеризующиеся высокой химической однородностью распределения допирующих примесей. Исследования кристаллов позволяют отнести их к кристаллам оптического качества. Результаты работы важны в разработке технологии получения материалов с низким эффектом фоторефракции для использования их в нелинейной оптике, а также в других областях науки и техники.

Ключевые слова: монокристалл ниобата лития, легирование, плотность микродефектов, статический пьезомодуль, монодоменизация

DOI: 10.31857/S0002337X21120101

введение

Разработка и модернизация технологий новых нелинейно-оптических материалов электронной техники является важнейшей задачей современного материаловедения. Как известно [1–5], сегнетоэлектрический кристалл ниобата лития (LiNbO₃) характеризуется высокой лучевой стойкостью, хорошими нелинейными, электрооптическими, пьезоэлектрическими, пироэлектрическими, фотовольтаическими и фоторефрактивными свойствами, что обусловливает возможность его широкого применения в устройствах преобразования и генерации оптического излучения, голографической записи информации, модуляции, дефлекции и других областях.

Для ниобата лития положение точки конгруэнтного плавления на фазовой диаграмме, по литературным данным, варьируется в диапазоне составов от 48.3 до 48.65 мол. % Li_2O [1, 5], что позволяет получать кристаллический ниобат лития различного состава в пределах области гомогенности для номинально чистых кристаллов и, соответственно, варьировать его свойства, расширяя спектр применения. В этом случае важным условием является выращивание кристаллов ниобата лития из шихты с высокой степенью чистоты, что ведет к увеличению стоимости материала [4]. Существенно изменить свойства кристаллов можно за счет введения различных примесей. Так, например, допирование кристаллов LiNbO₃ ионами Mg^{2+} , Zn^{2+} , Sc^{3+} , In^{3+} , Hf^{4+} в концентрациях, превышающих "пороговые" значения, позволяет во много раз снизить фоторефрактивный эффект [6–11]. Аналогичное явление наблюдается и при легировании кристаллов ниобата лития конгруэнтного состава катионами Gd^{3+} , B^{3+} , Y^{3+} , Ta^{5+} ; при этом катионы B^{3+} являются наиболее "нефоторефрактивными" и приводят к практически полному гашению фоторефракции в кристаллах [12].

Значительно расширить область применения кристаллов LiNbO₃ возможно, используя легирование несколькими примесями. К настоящему времени имеются работы, посвященные изучению свойств таких кристаллов. Одним из активаторов во многих случаях является ион Mg²⁺, а другими, например, Gd³⁺, Pr³⁺, Cr³⁺ [13-24]. Однако в литературе отсутствуют данные по двойному легированию кристаллов ниобата лития ионами Mg²⁺ и B³⁺. При этом определенный интерес вызывают кристаллы LiNbO₃, в которых примесь магния содержится в "пороговых" концентрациях. Основной задачей в этом случае является выращивание структурно и оптически однородных кристаллов с равномерно распределенными допирующими примесями.

Рис. 1. Технологическая схема получения однофазной легированной магнием и бором шихты ниобата лития.

Цель настоящей работы заключалась в разработке технологической схемы получения оптически однородных кристаллов ниобата лития, одновременно легированных магнием и бором, и исследованию свойств кристаллов LiNbO₃:Mg,B методами экспресс-оценки их оптического качества и пьезоакустики.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез шихты LiNbO₃:Mg(4.0 мол. %), B(<0.01 мас. %) для выращивания методом Чохральского кристаллов ниобата лития осуществлен методом гомогенного легирования [25] на основе прекурсора Nb₂O₅:Mg,B, полученного в соответствии с технологической схемой, представленной на рис. 1.

Исследования проводили, используя высокочистый фторидный ниобийсодержащий раствор, который получали растворением Nb₂O₅ ("ос. ч.") в HF ("ос. ч."). Раствор имел состав (г/л): Nb₂O₅ – 151.6. F⁻ – 138.5. В него вволили оксил магния MgO ("ос. ч.") с 1%-ным избытком от расчетного значения. Далее 25%-ным раствором NH₄OH ("ос. ч.") до pH 11-12 [26] осаждали гидроксилный остаток, содержащий ниобий и магний. Его отфильтровывали на нутч-фильтре и далее репульпацией трехкратно промывали деионизированной волой от ионов аммония и фтора при соотношении твердой и жидкой фаз Т : Ж = 1 : 3. Подсушенный до влажности 60-70% при 90°С гидроксидный остаток смешивали при T : Ж = 1 : 2 с раствором Н₃ВО₃ ("х. ч.") заданной концентрации с учетом потерь бора в процессе синтеза шихты [27]. Смесь перемешивали в течение 3 ч. Образовавшуюся пульпу упаривали до вязкого состояния, сушили при 140°С и прокаливали при 1000°С в течение 3 ч. В ходе проведенных операций получали прекурсор Nb₂O₅:Mg,B.

Гранулированную шихту LiNbO3:Mg,B конгруэнтного состава (мольное отношение [Li]/[Nb] = = 0.946) получали метолом тверлофазного синтеза из гомогенизированной смеси Nb2O5:Mg,B и Li₂CO₃ ("ос. ч."). Ввиду малой концентрации бора, сравнимой с концентрацией примесного состава Nb₂O₅, расчет необходимого количества Li_2CO_3 проводили без учета его содержания в прекурсоре Nb₂O₅:Mg,B. Процесс синтеза-грануляции шихты осуществляли в отжиговой печи ПВК-1.4-25. Температурный режим выбирали исходя из исследований получения гранулированной шихты из смеси Li₂CO₃ + Nb₂O₅ + H₃BO₃ [28]. Нагрев проводили со скоростью 200°С/ч до температуры 1230°С с последующей выдержкой в течение 5 ч. Термообработку и синтез прекурсора $Nb_2O_5:Mg_B$ и шихты LiNbO₃:Mg,В проводили в платиновых тиглях.

Концентрацию Mg в прекурсоре Nb_2O_5 : Mg, B и шихте определяли методом рентгенофлуоресцентного (РФС) анализа на приборе Спектроскан МАКС-GV, а также методом масс-спектрометрии с индуктивно связанной плазмой (МС-ИСП); бор анализировали методом МС-ИСП. Содержание ниобия в исходном растворе и шихте ниобата лития (после ее перевода в раствор) определяли гравиметрическим методом. Фтор в Nb₂O₅:Mg,B и LiNbO₃:Mg, В анализировали методом пирогидролиза, а фторид-ионы в исходном растворе – потенциометрическим на иономере ЭВ-74 с F-селективным электродом ЭВЛ-1МЗ. Концентрацию катионных примесей (Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Ta, Mo, Sn, Pb) определяли методом спектрального анализа на приборе Д Φ С-13, а содержание Li в шихте LiNbO₃:Mg,B –

методом атомно-эмиссионной спектроскопии с индуктивно связанной плазмой.

Рентгенофазовый анализ (**РФА**) прекурсора $Nb_2O_5:Mg,B$ и шихты LiNbO₃:Mg,B проводили на рентгеновском дифрактометре XRD-6100 (Shi-madzu, Япония).

Монокристаллы ниобата лития, легированные магнием и бором, диаметром 30 мм и длиной цилиндрической части 25 мм выращивали в направлении [001] методом Чохральского из платиновых тиглей диаметром 85 мм на воздухе в ростовой установке индукционного типа "Кристалл 2". Конструкция теплового узла обеспечивала сочетание температурного градиента над расплавом (3°С/мм) и протяженной изотермической области в зоне послеростового отжига монокристалла. Скорость перемещения составляла 0.6 мм/ч, скорость вращения — 12 об./мин, что обеспечивало формирование плоского фронта кристаллизации.

С целью снятия термоупругих напряжений монокристаллы подвергали термической обработке при $t = 1230^{\circ}$ С в течение 15 ч в высокотемпературной отжиговой печи ПВК-1.4-25. Скорость нагрева и охлаждения составляла 50°С/ч.

Определение концентрации магния и бора после термической обработки в легированных монокристаллах LiNbO₃:Mg,В проводили методом MC-ИСП, для чего были срезаны пластины с верхней (конусной) и нижней (торцевой) частей були. Оставшуюся часть були монодоменизировали посредством высокотемпературного электродиффузионного отжига путем приложения постоянного тока при охлаждении образцов в температурном интервале 1223.4–931°С.

Контроль степени монодоменности, определение статического пьезоэффекта и оценку оптического качества выращенных кристаллов LiNbO₃:Mg,В проводили аналогично [29].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Анализ экспериментальных данных показал, что легирующая примесь Mg в пределах допустимых погрешностей метода анализа при выбранных условиях практически количественно переходит в прекурсор Nb₂O₅:Mg,B, в котором концентрация магния составила 0.7265 мас. % (РФС) и 0.6699 мас. % (МС-ИСП) при расчетном его значении в прекурсоре 0.728 мас. %. Концентрация бора в прекурсоре составила 0.01112 мас. %. По содержанию катионных примесей (Mo, Zr, Al, Ti, Co < 5 × 10⁻⁴; Fe ≤ 3 × 10⁻⁴; Mn, Ni, Cu, V < 2 × × 10⁻⁴; Cr, Pb, Sn < 3 × 10⁻⁴; Ca, Si ≤ 1 × 10⁻³ мас. %), определенных методом спектрального анализа, прекурсор может быть использован для получения шихты ниобата лития LiNbO₃:Mg,B.

Результаты РФА свидетельствуют, что в пределах изученных концентраций прекурсор Nb_2O_5 :Mg,B не является однофазным. На рентгенограмме образца, прокаленного при 1000°С в течение 3 ч, четко отмечается пик 2.94 Å, соответствующий фазе MgNb₂O₆ [30], остальные рефлексы совпадают с основной фазой Nb₂O₅ [31].

На основе прекурсора Nb₂O₅:Mg,B синтезирована гранулированная шихта LiNbO₃:Mg,B, содержашая (мас. %): Mg – 0.6499 (РФС) и 0.5831 (MC-ИСП), **B** – 0.00857. Содержание фтора как в прекурсоре, так и в шихте было ниже предела чувствительности используемого метода анализа (<1 × 10⁻³ мас. %). Шихта LiNbO₃:Mg,В по результатам РФА была однофазной и соответствовала LiNbO₃ [32]. Исходя из данных химического анализа она содержала 62.09 мас. % Nb и 4.35 мас. % Li, что соответствует заданному конгруэнтному составу (мольное отношение [Li]/[Nb] = 0.946). По концентрации катионных примесей (Pb, Ni, Cr, Co, V, Ti, Fe, Al < 2×10^{-4} ; Ca, Si < 1×10^{-3} ; Ta < < 1 × 10⁻² мас. %) шихта LiNbO₃:Мg,В может быть использована для вырашивания монокристаллов методом Чохральского.

Выращено четыре кристалла ниобата лития, легированных магнием и бором. Первый, весом 104 г. был получен из гранулированной гомогенно легированной шихты в соответствии с технологической схемой, представленной на рис. 1. Следующие три монокристалла диаметром 30, 32, 32 мм, длиной цилиндрической части 25 мм и весом 104.2, 105.6 и 106.1 г соответственно (рис. 2) выращивали, догружая номинально чистую шихту ниобата лития к оставшемуся после выращивания предыдущего монокристалла плаву, т.е. последовательно разбавляя исходный расплав. При этом масса полной загрузки 1775 г, как и уровень расплава в тигле, оставались постоянными. На выращивание одного монокристалла расходовалось не более 6% массы расплава.

Расчетную концентрацию магния в разбавленном расплаве для выращивания каждого следующего монокристалла определяли по количеству оставшегося в расплаве магния и массе полной загрузки. Количество ушедшего из расплава магния рассчитывали исходя из веса выращенного кристалла и средней его концентрации:

$$\Delta C_{S} = (C_{\text{конус}} + C_{\text{торец}})/2,$$

где $C_{\text{конус}}$ и $C_{\text{торец}}$ – концентрации магния в пластинах, срезанных с конусной и торцевой частей були.

В табл. 1 приведены результаты анализа содержания магния в расплаве и в кристаллах, по которым на основании методики, описанной в работах [33, 34], рассчитаны значения эффективного

Рис. 2. Монокристаллы LiNbO₃:Mg,B, выращенные из расплава путем последовательного разбавления плава номинально чистой шихтой конгруэнтного состава.

коэффициента распределения примеси в системе расплав–кристалл LiNbO₃:Mg,B:

$$K_{\mathrm{s}\phi} = C_{S \,\mathrm{KOHyc}} / C_L$$
,

где $C_{S_{\text{Конус}}}$ — концентрация магния в конусе кристалла, C_L — концентрация магния в расплаве.

Установлено, что зависимости $K_{9\phi} = f(C_L)$ и $C_L = f(C_S)$ имеют линейный характер и могут быть описаны уравнениями: $K_{9\phi} = -0.2648C_L + +2.1163$ (величина достоверности аппроксимации $R^2 = 0.9775$) и $C_L = 0.6816C_S + 1.8905$ ($R^2 = = 0.9899$) соответственно.

Анализ экспериментальных данных показывает, что присутствие ионов бора в малых количествах (0.00857 мас. %) в расплаве кардинальным образом изменяет структуру расплава [28, 29, 35] и характер распределения магния как в системе расплав—кристалл LiNbO₃:Mg,B, так и в выращенных монокристаллах. Несмотря на сохраня-

ющуюся общую тенденцию к линейному снижению эффективного коэффициента распределения от 1.47 до 1.22 с увеличением концентрации магния в расплаве от 2.5 до 3.4 мол. %, обращают на себя внимание аномально высокие значения *К*_{эф} и более чем в 2 раза бо́льшая скорость изменения его величины по отношению к аналогичному концентрационному участку в системе расплав-кристалл LiNbO₃:Mg [36]: с увеличением концентрации MgO в исходном расплаве от 2.94 до 4 мол. % $K_{\rm эф}$ снижается от 1.15 до 1.04, при этом сохраняется характерное для $K_{3\phi} > 1$ уменьшение концентрации магния по длине монокристалла на ≈0.20 мол. % MgO. Для всех выращенных монокристаллов (табл. 1) налицо равномерное распределение легирующего компонента в объеме були, что свидетельствует о высокой концентрационной однородности, характерной для систем расплав-кристалл с $K_{3\phi} = 1$. Подобное

Таблица 1. Концентрация магния в расплаве и кристаллах по результатам МС-ИСП и эффективный коэффициент распределения магния в кристаллах

Кристалл	[Mg] в расплаве		[Mg] в кристалле				
	мас. %	мол. %	конус		торец		K_{igh}
			мас. %	мол. %	мас. %	мол. %	
1	0.5831	3.4	0.71	4.2	0.71	4.2	1.22
2	0.49	2.9	0.66	3.9	0.66	3.9	1.35
3	0.45	2.7	0.62	3.7	0.61	3.7	1.38
4	0.41	2.5	0.61	3.6	0.60	3.5	1.47

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 57 № 12 2021

явление наблюдается и в расплавах LiNbO₃:Mg [35], LiNbO₃:Zn [37], но при более высоких концентрациях примеси в расплаве и связано прежде всего с изменением его ионного состава и структуры [35].

Следует также отметить, что применение гомогенно легированной шихты способствует более равномерному распределению примеси в объеме расплава, что подтверждается результатами химического анализа застывшего плава после выращивания 4-го монокристалла: концентрация магния на поверхности и в объеме тигля была одинаковой и равнялась 0.4 мас. % (2.5 мол. %).

В соответствии с данными МС-ИСП концентрация бора в кристаллах LiNbO₃:Mg,B составляла следовые количества. Анализ содержания бора в пластинах, срезанных с конусной и торцевой частей були, показал, что оно находится в пределах (8–9) × 10^{-5} мас. %. При этом концентрация посторонних примесей в кристаллах составляет: Pb, Ni, Cr, Co, V, Ti, Fe, Al менее 2 × 10^{-4} ; Ca, Si менее 1 × 10^{-3} мас. %.

Известно, что одним из основных показателей степени структурной однородности и монодоменности кристаллов ниобата лития является значение его пьезоэлектрического модуля d_{333} . На рис. 3 для кристаллов LiNbO₃:Mg,В представлены зависимости величины поляризационного заряда Q_{Π} от прилагаемой силы *F*. В ходе расчетов были получены следующие значения пьезомодуля d_{333} для каждого из исследуемых кристаллов: $d_{333(I)} = 5.1 \times 10^{-12}$; $d_{333(2)} = 6.6 \times 10^{-12}$; $d_{333(3)} = 4.2 \times 10^{-12}$; $d_{333(4)} = 8.1 \times 10^{-12}$ Кл/Н. Для сравнения на графике (рис. 3) представлены результаты измерений величины Q_{Π} до проведения процесса монодоменизации (прямая 5).

На рис. 4 показаны амплитудно-частотные характеристики (АЧХ) исследуемых кристаллов LiNbO₃:Mg,B. Во всех полученных кристаллах наблюдались два ярко выраженных пика электроакустического резонанса. В кристалле 1 основной пик (главный резонанс) наблюдался на частоте 198.3 кГц, амплитуда пика главного резонанса примерно в три с половиной раза превышала фоновое значение. Кроме основного резонанса, на АЧХ наблюдался второстепенный пик на частоте 119.1 кГц. В кристалле 2 главный резонанс располагался на частоте 183.6 кГц, амплитуда пика главного резонанса в 4 раза превышала фоновое значение. Частота второстепенного пика равнялась 119.05 кГц, причем амплитуда второстепенного резонанса незначительно превышала амплитуду основного пика. В кристалле 3 главный резонанс наблюдался на частоте 180.5 кГц, амплитуда пика главного резонанса примерно в 4.2 раза превышала фоновое значение. Кроме основного резонанса, наблюдался второстепенный

Рис. 3. Зависимости $Q_{\Pi} = f(F)$: 1-4 – измерения после монодоменизации кристаллов 1-4; 5 – полидоменный кристалл.

пик на частоте 117.2 кГц. Для кристалла 4 главный резонанс наблюдался в виде двух близко расположенных по частоте пиков, примерно равной амплитуды, в 4—4.5 раза превышающей фоновое значение. Побочный резонанс был зафиксирован на частоте 118.7 кГц.

Таким образом, на всех полученных АЧХ выращенных кристаллов наблюдаются два пика – основного и побочного резонанса. Это свидетельствует о том, что процесс монодоменизации данными кристаллами был пройден. Однако невысокая амплитуда пиков, а также наличие сдвоенного резонанса в кристалле 4 и второстепенного пика в кристалле 2, по амплитуде превышающего основной, говорят о том, что монодоменизация полученных кристаллов прошла не идеально. Данные АЧХ согласуются с невысокими значениями компонент d_{333} для исследуемых кристаллов.

Отсюда следует вывод, что для получения более высокой степени монодоменности выращенных кристаллов LiNbO₃:Mg,B необходима корректировка режимов процесса монодоменизации.

На основе экспресс-оценки оптического качества исследованных кристаллов LiNbO₃:Mg,B по количеству центров рассеяния установлено, что в них отсутствуют протяженные оптические дефекты. Плотность микродефектов (табл. 2) варьируется в диапазоне от 7 до 9 на 1 см⁻³, что свидетельствует о получении кристаллов оптического качества.

Рис. 4. АЧХ низкочастотной части спектра исследуемых кристаллов LiNbO3:Mg,B.

Таблица 2. Результаты экспресс-оценки оптического качества исследуемых кристаллов LiNbO₃:Mg,B

Кристалл	Количество рядов	Суммарное количество центров рассеяния	Среднее количество центров рассеяния в ряду	Плотность микродефектов, см ⁻³
1	25	6	0.24	7.63
2	25	7	0.28	8.91
3	25	7	0.28	8.91
4	25	6	0.24	7.63

ЗАКЛЮЧЕНИЕ

На основе проведенных исследований разработана технологическая схема получения пентаоксида ниобия, легированного магнием и бором, и однофазной шихты ниобата лития на его основе. Определены условия синтеза шихты LiNbO₃:Mg,B заданного состава, которая использована для выращивания методом Чохральского монокристаллов ниобата лития оптического качества. Подтверждена высокая концентрационная однородность распределения допирующих примесей как в кристаллах LiNbO₃:Mg,B, так и в объеме расплава. Рассчитаны эффективные коэффициенты распределения магния в системе расплав– кристалл.

С использованием пьезоакустического метода показано, что для всех исследуемых кристаллов необходима корректировка режимов монодоменизации. Экспресс-оценка кристаллов LiNbO₃:Mg,B по количеству центров рассеяния позволила отнести их к кристаллам оптического качества.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Кузьминов Ю.С.* Электрооптический и нелинейнооптический кристалл ниобата лития. М.: Наука, 1987. 264 с.
- 2. *Гурзадян Г.Г., Дмитриев В.Г., Никогосян Д.Н.* Нелинейно-оптические кристаллы. Свойства и применение в квантовой электронике. М.: Радио и связь, 1991.160 с.
- Gunter P., Jean Pierre Huignard J.P. Photorefractive Materials and Their Applications 3 Applications. N.Y.: Springer Science + Business Media: LLC, 2007. 365 p.
- Сидоров Н.В., Волк Т.Р., Маврин Б.Н., Калинников В.Т. Ниобат лития: дефекты, фоторефракция, колебательный спектр, поляритоны. М.: Наука, 2003. 255 с.
- 5. *Volk T., Wohleke M.* Lithium Niobate. Defects, Photorefraction and Ferroelectric Switching. Berlin: Springer, 2008. 250 p.
- Bryan D.A., Gerson R., Tomaschke H.E. Increased Optical Damage Resistance in Lithium Niobate // Appl. Phys. Lett. 1984. V. 44. P. 847–849. https://doi.org/10.1063/1.94946
- Volk T.R., Pryalkin V.I., Rubinina N.M. Optical-Damage-Resistant LiNbO₃:Zn Crystal // Opt. Lett. 1990. V. 15. P. 996–998. https://doi.org/10.1364/OL.15.000996
- Qiao H., Xu J., Wu Q., Yu X., Sun Q., Zhang X., Zhang G., Volk T.R. An Increase of Photorefractive Sensitivity in In:LiNbO₃ Crystal // Opt. Mater. 2003. V. 23. P. 269– 272.
 - https://doi.org/10.1016/S0925-3467(02)00299-9
- Kong Y., Wen J., Wang H. New Doped Lithium Niobate Crystal with High Resistance to Photorefraction–LiNbO₃: In // Appl. Phys. Lett. 1995. V. 66. P. 280–281. https://doi.org/10.1063/1.113517
- Yamamoto J.K., Kitamura K., Iyi N., Kimura S. Sc₂O₃-Doped LiNbO₃ Grown by the Float Zone Method // J. Cryst. Growth. 1992. V. 121. № 3. P. 522–526. https://doi.org/10.1016/0022-0248(92)90165-F
- Li S., Liu S., Kong Y., Deng D., Gao G., Li Y., Gao H., Zhang L., Huang Z., Chen S., Xu J. The Optical Damage Resistance and Absorption Spectra of LiNbO₃:Hf Crystals // J. Phys.: Condens. Matter. 2006. V. 18. P. 3527–3534.
- Сюй А.В. Нелинейно-оптические эффекты с широкополосным излучением в кристаллах ниобата лития: Автореф. дис. ... докт. физ.-мат. наук. Хабаровск: ДВГУПС, 2013. 39 с.

- Rahman M.K., Riscob B., Bhatt R. Investigations on Crystalline Perfection, Raman Spectra and Optical Characteristics of Transition Metal (Ru) Co-Doped Mg:LiNbO₃ Single Crystals // ACS OMEGA. 2021. V. 6. № 16. P. 10807–10815. https://doi.org/10.1021/acsomega.1c00452
- 14. Kong T., Luo Y., Wang W., Kong H., Fan Z., Liu H. Enhanced Ultraviolet Damage Resistance in Magnesium Doped Lithium Niobate Crystals through Zirconium Co-Doping // Materials. 2021. V. 14. № 4. P. 1017. https://doi.org/10.3390/ma14041017
- Zhou L., Liu Y., Lou H., D Y., Xie G., Zhu Z., Deng Z., Luo D., Gu C., Chen H. Octave Mid-Infrared Optical Frequency Comb from Er:Fiber-Laser-Pumped Aperiodically Poled Mg:LiNbO₃ // Opt. Lett. 2020. V. 45. № 23. P. 6458–6461. https://doi.org/10.1364/OL.410958
- Palatnikov M.N., Sandler V.A., Sidorov N.V., Masloboeva S.M., Makarova O.V. Study of Electrical Characteristics of Crystals of Homogeneously Doped LiNbO₃:Zn,Mg in the Temperature Range of 450–900 K // Tech. Phys. 2020. V. 65. № 12. P. 1987–1993. https://doi.org/10.1134/S1063784220120208
- Ma C., Yu S., Lu F., Liu K., Xu Y., Ma C. Enhancement of Near-Infrared Photoluminescence in Mg:Er:LiNbO₃ Containing Au Nanoparticles Synthesized by Direct Ion Implantation // Nanotechnology. 2020. V. 31. № 33. 335206.
 - https://doi.org/10.1088/1361-6528/ab8f4e
- Long S., Yang M., Ma D., Zhu Y., Lin S., Wang B. Enhanced Red Emissions and Higher Quenching Temperature Based on the Intervalence Charge Transfer in Pr³⁺ Doped LiNbO₃ with Mg²⁺ Incorporation // Opt. Mater. Express. 2019. V. 9. № 3. P. 1062–1071. https://doi.org/10.1364/OME.9.001062
- Galutskii V.V., Stroganova E.V., Yakovenko N.A., Sudarikov K.V., Rasseikin D.A., Yurova N.A. Structure of the LiNbO₃:Mg,Cr Crystal and Its Properties at Visible and Terahertz Wavelengths // J. Opt. Technol. 2018. V. 85. № 4. P. 250–254. https://doi.org/10.1364/JOT.85.000250
- 20. *Dai L., Liu C., Tan C., Yan Z., Xu Y.* Optical Properties of Mg²⁺, Yb³⁺, and Ho³⁺ Tri-Doped LiNbO₃ Crystals // Chin. Phys. B. 2017. V. 26. № 4. 044207. https://doi.org/10.1088/1674-1056/26/4/044207
- Fan M., Li T., Zhao S., Liu H., Sang Y., Li G., Li D., Yang K., Qiao W., Li S. Experimental and Theoretical Investigation on Passively Q-Switched Laser Action in c-Cut Nd:MgO:LiNbO₃ // Appl. Opt. 2015. V. 54. № 31. P. 9354–9358. https://doi.org/10.1364/AO.54.009354
- 22. Zhang T., Wang B., Ling F., Fang S.Q., Xu Y. Growth and Optical Property of Mg, Fe Co-Doped Near-Stoichiometric LiNbO₃ Crystal // Mater. Chem. Phys. 2004. V. 83. P. 350–353.
- Yang C., Tu X., Wang S., Xiong K., Chen Y., Zheng Y., Shi E. Growth and Properties of Pr³⁺ Doped LiNbO₃ Crystal with Mg²⁺ Incorporation: A Potential Material for Quasi-Parametric Chirped Pulse Amplification // Opt. Mater. 2020. V. 105. P. 109893. https://doi.org/10.1016/j.optmat.2020.109893
- 24. Маслобоева С.М., Бирюкова И.В., Палатников М.Н., Теплякова Н.А. Получение и исследование кри-

сталлов ниобата лития, легированных магнием и цинком // Журн. неорган. химии. 2020. Т. 65. № 6. С. 856–864.

https://doi.org/10.31857/S0044457X20060100

- Маслобоева С.М., Палатников М.Н., Арутюнян Л.Г., Иваненко Д.В. Методы получения легированной шихты ниобата лития для выращивания монокристаллов // Изв. СПбГТИ(ТУ). 2017. Т. 38(64). С. 34–43.
- 26. Маслобоева С.М., Сидоров Н.В., Палатников М.Н., Арутюнян Л.Г., Чуфырев П.Г. Синтез и исследование строения оксида ниобия(V), легированного катионами Mg²⁺ и Gd³⁺ // Журн. неорган. химии. 2011. Т. 56. № 8. С. 1264–1268.
- 27. Маслобоева С.М., Кадырова Г.И., Арутюнян Л.Г. Синтез и исследование фазового состава твердых прекурсоров Nb₂O₅⟨B⟩ и шихты LiNbO₃⟨B⟩ // Журн. неорган. химии. 2016. Т. 61. С. 433–440. https://doi.org/10.7868/S0044457X16040140
- Палатников М.Н., Бирюкова И.В., Макарова О.В., Ефремов В.В., Кравченко О.Э., Калинников В.Т. Получение и свойства кристаллов ниобата лития, выращенных из расплавов конгруэнтного состава, легированных бором // Тр. КНЦ РАН. Химия и материаловедение. 2015. № 5(31). С. 434–438.
- Маслобоева С.М., Ефремов И.Н., Бирюкова И.В., Палатников М.Н. Получение и исследование монокристалла ниобата лития, легированного бором // Неорган. материалы. 2020. Т. 56. № 11. С. 1208– 1214.

https://doi.org/10.31857/S0002337X2011007X

30. Pagola S., Carbonio R.E., Alonso J.A., Fernandez-Diaz M.T. Crystal Structure Refinement of MgNb₂O₆ Columbitefrom Neutron Powder Diffraction Data and Study of the Ternary System MgO-Nb₂O₅-NbO, with Evidence of Formation of New Reduced Pseudobrookite Mg_{5-x}Nb_{4+x}O_{15-\delta} (1.14 $\le x \le 1.60$) Phases // J. Solid State Chem. 1997. V. 134. P. 76–84. https://doi.org/10.1006/jssc.1997.7538

- Kato K. Structure Refinement of H-Nb₂O₅ // Acta Crystallogr., Sect. B. 1976. V. 32. P. 764–767. https://doi.org/10.1107/S0567740876003944
- 32. Hsu R., Maslen E.N., Boulay D., Ishizawa N. Synchrotron X-ray Studies of LiNbO₃ and LiTaO₃ // Acta Crystallogr., Sect. B. 1997. V. 53. P. 420–428. https://doi.org/10.1107/S010876819600777X
- 33. Бирюкова И.В. Высокотемпературный синтез и модификация свойств сегнетоэлектрических монокристаллов и шихты ниобата и танталата лития: Дис. ... канд. техн. наук. Апатиты. 2005. 132 с.
- 34. Палатников М.Н., Бирюкова И.В., Макарова О.В., Ефремов В.В., Кравченко О.Э., Скиба В.И., Сидоров Н.В., Ефремов И.Н. Выращивание сильно легированных кристаллов LiNbO₃:Zn // Неорган. материалы. 2015. Т. 51. № 4. С. 428–432. https://doi.org/10.7868/S0002337X15040120
- 35. Макарова О.В., Палатников М.Н., Бирюкова И.В., Сидоров Н.В. Влияние электронного строения примеси на физические свойства, дефектную структуру и особенности технологии легирования кристаллов ниобата лития // ЖТФ. 2019. Т. 89. Вып. 12. С. 1971–1977.

https://doi.org/10.21883/JTF.2019.12.48498.230-18

- 36. Палатников М.Н., Бирюкова И.В., Макарова О.В., Сидоров Н.В., Ефремов В.В. Выращивание крупногабаритных кристаллов LiNbO₃(Mg) // Неорган. материалы. 2013. Т. 49. № 3. С. 293–300. https://doi.org/10.7868/S0002337X13030147
- 37. Палатников М.Н., Сидоров Н.В., Макарова О.В., Бирюкова И.В. Фундаментальные аспекты технологии сильно легированных кристаллов ниобата лития. Апатиты: Изд-во КНЦ РАН, 2017. 241 с.