УДК 544.72:546.18

УЛЬТРАМЯГКАЯ РЕНТГЕНОВСКАЯ ЭМИССИОННАЯ И ИНФРАКРАСНАЯ СПЕКТРОСКОПИИ В ИССЛЕДОВАНИИ ФУНКЦИОНАЛЬНЫХ НАНОРАЗМЕРНЫХ ПЛЕНОК НА InP

© 2021 г. И. Я. Миттова¹, К. А. Барков¹, В. А. Терехов¹, Б. В. Сладкопевцев^{1, *}, А. А. Самсонов¹, Е. В. Томина^{1, 2}, А. Н. Лукин¹

¹Воронежский государственный университет, Университетская пл., 1, Воронеж, 394018 Россия ²Воронежский государственный лесотехнический университет им. Г.Ф. Морозова, ул. Тимирязева, 8, Воронеж, 394087 Россия

> *e-mail: dp-kmins@yandex.ru Поступила в редакцию 18.05.2021 г. После доработки 13.08.2021 г. Принята к публикации 16.08.2021 г.

Термическое оксидирование InP при совместном воздействии магнетронно нанесенного на его поверхность слоя хемостимулятора MnO_2 и вводимого через газовую фазу модификатора $Mn_3(PO_4)_2$ приводит к формированию наноразмерных диэлектрических пленок. По данным лазерной и спектральной эллипсометрии, предложенный подход к модифицированию поверхности InP позволяет, значительно (до 150–200%) ускорять рост пленки по сравнению с собственным оксидированием полупроводника. Эффективное модифицирующее действие $Mn_3(PO_4)_2$ установлено методом УМР-ЭС, подтверждающим формирование тетраэдрической координации фосфора кислородом практически по всей глубине синтезированных пленок. Установлена корреляция между результатами УМРЭС и ИКС, применение метода ИКС выявило наличие в пленках фосфатов и полифосфатов индия и марганца: $In(PO_3)_3$, $InPO_4$, $Mn_3(PO_4)_2$.

Ключевые слова: фосфид индия, наноразмерные пленки, термооксидирование, фосфат марганца(II), модификатор

DOI: 10.31857/S0002337X21120113

введение

Бинарные полупроводники группы $A^{III}B^{V}$ являются материалами, которые находят широкое применение в современной опто- и микроэлектронике. Отдельный интерес представляют полупроводниковые фосфиды, в частности InP, ввиду ряда преимуществ, позволяющих использовать его в качестве базового материала для создания лазерных диодов, солнечных элементов, фотодетекторов и высокоскоростных полевых транзисторов, микроволновых источников и усилителей, работающих на высоких мощностях и частотах с низким уровнем шума [1–7].

Различные варианты термообработки полупроводников и гетероструктур на их основе для получения тонких пленок и модифицирования их свойств до сих пор не потеряли свою актуальность. Так, быстрая термообработка (отжиг) применяется для улучшения характеристик диодов Шоттки [8]. Процессом формирования диэлектрических и полупроводниковых пленок на А^{III}В^V можно управлять, вводя в оксидируемую систему обоснованно выбранные вещества — хемостимуляторы [9, 10]. Основные задачи, решаемые в рамках указанного подхода, — увеличение скорости роста пленок, улучшение их качества и свойств (в первую очередь электрофизических), снижение температуры и длительности процесса. Существует несколько способов введения хемостимулятора в зону реакции: 1) непосредственное нанесение на поверхность (например, вакуумно-термическое или магнетронное нанесение в виде тонких (30–70 нм) слоев) [11]; 2) через газовую фазу в процессе термооксидирования [12].

Помимо хемостимуляторов эффективно применение модификаторов внутренней границы раздела и самих пленок. Они предотвращают испарение летучего компонента, снижают плотность поверхностных состояний на внутренней границе раздела гетероструктуры, влияют на структуру и рельеф поверхности на наноразмерном уровне [13, 14]. С этой точки зрения интересным является использование в процессе термооксидирования сложных соединений, катионная составляющая которых включает хемостимулятор, а анионная может выступать в роли модификатора, в качестве группировки включаясь в состав пленки [15, 16].

Использование MnO_2 , нанесенного на поверхность $A^{III}B^{V}$ в виде наноразмерных слоев, показало его эффективность в процессах термооксидирования указанных полупроводников [17, 18]. Наличие нескольких устойчивых степеней окисления для марганца может обеспечить окислительно-восстановительные превращения MnO_2 в ходе процесса термооксидирования как по каталитическому, так и по транзитному механизмам [9]. Для фосфида индия предварительное магнетронное нанесение слоев MnO_2 приводит к химическому связыванию индия и блокировке его диффузии в пленки в процессе термооксидирования, что позволяет в конечном итоге избежать омической проводимости и улучшить электрофизические свойства [18].

Предполагается, что использование в качестве модификатора фосфата марганца Mn₃(PO₄)₂ должно способствовать обогащению формируемой в процессе термооксидирования пленки фрагментами фосфатов со связью кислород-фосфор. Введение фосфатного модификатора обеспечит удовлетворительные свойства пленки за счет заметной компенсации потерь фосфора, характерных для собственного оксидирования InP [19]. Включение готовых фрагментов фосфатов со связью кислород-фосфор из модификатора в пленку может положительно влиять и на сопряжение пленки с подложкой, что предполагает улучшение адгезии пленок к полупроводниковой подложке и повышение надежности работы устройств на основе указанных гетероструктур.

Цель данной работы — исследование методами ультрамягкой рентгеновской эмиссионной спектроскопии и инфракрасной спектроскопии состава пленок, сформированных в процессе термооксидирования гетероструктур MnO₂/InP при дополнительном воздействии вводимого через газовую фазу модификатора Mn₃(PO₄)₂.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали полированные пластины InP (марка ФИЭ-1А, легирующая примесь олово, ориентация (100), концентрация основных носителей заряда при 300 К не менее 5 × 10¹⁶ см⁻³), предварительно обработанные в травителе состава: H₂SO₄ ("х. ч." ГОСТ-4204-77, 93.80%-ная) : : H₂O₂ ("ос. ч." ТУ 6-02-570-750, 56%-ная) : H₂O = = 2 : 1 : 1 [20] в течение 10 мин. После этого пластины многократно промывали в бидистиллированной воде и высушивали на воздухе.

Гетероструктуры MnO₂/InP синтезировали методом магнетронного распыления мишени из оксида марганца (чистота 99.8%) диаметром 50 мм (2 inch) на установке Angstrom engineering CoVap II по методике [18]. Согласно данным рентгенофазового анализа [18], нанесенные слои представляли собой MnO_2 с небольшим содержанием Mn_2O_3 . Толщины нанесенных слоев и формируемых в процессе термооксидирования пленок определяли методом лазерной эллипсометрии (ЛЭ, эллипсометр ЛЭФ-754, HeNe-лазер с длиной волны излучения 632.8 нм, точность ±1 нм) и спектральной эллипсометрии (СЭ, "Эллипс-1891"). Ранее была показана возможность применения методов ЛЭ и СЭ для исследуемых объектов сложного состава [21]. По данным ЛЭ и СЭ толщина магнетронно нанесенного слоя MnO_2 составила ~25 нм.

Навеску предварительно синтезированного модификатора $Mn_3(PO_4)_2$ (m = 0.3 г) помещали в цилиндрический кварцевый контейнер (до отметки на этом контейнере), крышкой которого служила оксидируемая гетероструктура MnO_2/InP . Расстояние от поверхности модификатора до рабочей стороны пластины было постоянным и составляло 10 мм.

Контейнер устанавливали в кварцевый реактор печи резистивного нагрева (МТП–2М–50–500), в который подавался поток кислорода с объемной скоростью 30 л/ч. Образцы подвергали термооксидированию при температурах 450, 475, 500, 530 и 550°С по методике [12].

Ультрамягкие рентгеновские эмиссионные РL_{2 3}-спектры были получены на рентгеновском спектрометре-монохроматоре РСМ-500 [22] в высоком вакууме (~1 \times 10⁻⁶ мм рт. ст.). Метод ультрамягкой рентгеновской эмиссионной спектроскопии (УМРЭС) дает информацию о плотности электронных состояний в валентной зоне, поэтому рентгеновские эмиссионные спектры очень чувствительны к локальному окружению атомов, длинам и углам химической связи. Кроме того, метод УМРЭС позволяет проводить неразрушающий послойный анализ фазового состава в поверхностных слоях образца толщиной от 10 до 120 нм путем изменения величины ускоряющего напряжения на аноде разборной рентгеновской трубки в пределах 1-6 кВ. Величина ускоряющего напряжения определяет глубину генерации ультрамягкого рентгеновского излучения и, соответственно, глубину анализируемого слоя, которая в данном случае составляла 60 нм (при U = 3 кB) и 120 нм (при U = 6 кВ) [23]. Таким образом, метод УМРЭС является одним из эффективных методов исследования процессов хемостимулированного оксидирования А^{III}В^V, поскольку позволяет проследить степень координации фосфора кислородом по глубине пленки и сделать вывод о влиянии хемостимуляторов (модификаторов) на формирование фосфатного каркаса.

Исследование образцов методом инфракрасной спектроскопии (ИКС) проводили на ИК-Фу-

МИТТОВА и др.

Температура оксидирования, °С	Толщина пленки, нм				
	InP (эталон)	MnO ₂ /InP	$MnO_2/InP + Mn_3(PO_4)_2^{(r)}$		
450	28	47	70		
475	33	55	76		
500	37	67	84		
530	41	76	98		
550	43	86	111		

Таблица 1. Толщины пленок для образцов, оксидированных при различных температурах в течение 60 мин

Таблица 2. Относительное ускорение роста пленок при термическом оксидировании гетероструктур $MnO_2/InP + Mn_3(PO_4)_2^{(r)}$ в различных режимах в сравнении с эталоном InP и MnO_2/InP

Образец	t, °C	Относительное ускорение, %					
образец		10 мин	20 мин	30 мин	40 мин	50 мин	60 мин
MnO ₂ /InP + Mn ₃ (PO ₄) ^(r) в сравнении с InP	450	240	220	190	170	160	50
	475	230	180	160	150	130	130
	500	210	190	160	140	130	130
	530	170	150	160	140	140	140
	550	180	170	150	140	140	160
	450	40	50	60	50	50	40
	475	37	42	41	40	39	38
$MnO_2/InP + Mn_3(PO_4)_2^{(1)}$	500	50	60	50	40	20	20
в сравнении с мпО ₂ / пр	530	22	22	31	30	29	29
	550	27	32	32	31	25	29

рье-спектрометре Vertex 70 в интервале частот $400-4000 \text{ см}^{-1}$.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Из данных ЛЭ и СЭ (табл. 1) следует, что наноразмерные слои MnO_2 на поверхности InP способствуют интенсификации роста пленок по сравнению с собственным оксидированием InP. Введение через газовую фазу $Mn_3(PO_4)_2$ в процессе термооксидирования гетероструктур MnO_2/InP значительно увеличивает толщину пленок (табл. 1), что наиболее ярко проявляется при температурах оксидирования 450 и 475°C.

Расчет эффективности воздействия хемостимулятора и модификатора по сравнению с собственным оксидированием полупроводника осуществляли по формуле

$$a = \frac{\Delta d_{\text{xемостим}} - \Delta d_{\text{эталон}}}{\Delta d_{\text{эталон}}},$$

где a — относительное ускорение роста пленок, $\Delta d_{\text{эталон}}$ — изменение толщины оксидной плен-

ки при собственном оксидировании $A^{III}B^{V}$, а $\Delta d_{x_{емостим}}$ — изменение толщины оксидной пленки при оксидировании гетероструктур с нанесенным слоем хемостимулятора за вычетом толщины последнего. Для оксидированных об-

разцов $MnO_2/InP + Mn_3(PO_4)_2^{(r)}$ во всем температурно-временном интервале относительное ускорение роста пленок составляет 150–200% по сравнению с собственным оксидированием InP, а в сравнении с оксидированием $MnO_2/InP -$ от 20 до 60% (табл. 2).

По данным СЭ недоокисленный In в пленках не обнаружен, что подтверждает блокирование обратного транзита кислорода от индия к фосфору, который имеет место в случае собственного оксидирования фосфида индия [9].

В то же время, анализ рентгеновских эмиссионных $PL_{2.3}$ -спектров образца MnO_2/InP + + $Mn_3(PO_4)_2^{(r)}$, оксидированного при 500°С (рис. 1), обнаруживает наличие (на глубине 60 нм) двух максимумов интенсивности: при $E \sim 119$ и 126 эВ, характерных для спектров фосфатов [24–

Рис. 1. Рентгеновские эмиссионные $PL_{2,3}$ -спектры в оксидированном при 500°С образце $MnO_2/InP + Mn_3(PO_4)_2^{(r)}$, полученные при глубине анализа 60 и 120 нм, и эталонные $PL_{2,3}$ -спектры в монокристаллическом InP и в соединении AlPO₄ [25].

26], как это видно из спектра AlPO₄ [25]. Максимум при $E \sim 126$ эВ обусловлен связью P3s + O2p, а максимум при Е ~ 119 эВ отражает энергетическое распределение валентных электронов фосфора с координацией [PO₄]³⁻ [25, 26]. Кроме того, в области энергий ~104-110 эВ наблюдается слабо интенсивный максимум, обусловленный связью P3s + O2s в пределах фосфор-кислородных октаэдров [25, 26]. Таким образом, по данным УМРЭС, на глубине 60 нм фосфор в данном образце преимущественно содержится в виде фосфатов. Однако высокие значения интенсивности в области энергий ~118 эВ, где располагается максимум спектра InP [24-27], позволяет предположить присутствие в пленке небольшого количества фазы InP. На глубине 120 нм значительно снижается интенсивность максимума при 126 эВ, что связано с уменьшением числа связей фосфор-кислород (рис. 1). При этом главным становится максимум при E = 118 эВ, обусловленный увеличением вклада в спектр сигнала от монокристаллической подложки фосфида индия, поскольку толщина пленки для данного режима оксидирования составляет ~84 нм.

Рис. 2. Рентгеновские эмиссионные $PL_{2,3}$ -спектры в оксидированном при 530°С образце MnO_2/InP +

+ $Mn_3(PO_4)_2^{(r)}$, полученные при глубине анализа 60 и 120 нм, и эталонные $PL_{2,3}$ -спектры в монокристаллическом InP и в InP после анодного окисления при напряжении 80 В [26].

Увеличение температуры оксидирования до 530°С приводит к еще более заметному изменению формы PL_{2.3}-спектров (рис. 2). При глубине анализа 60 нм рентгеновский эмиссионный РL2.3спектр пленки $MnO_2/InP + Mn_3(PO_4)_2^{(r)}$ по положению и соотношению максимумов интенсивности аналогичен спектру фосфида индия, прошедшего анодное оксидирование при напряжении 80 В [26]. При этом увеличение интенсивности максимума, обусловленного связью P3s + O2p (при $E \sim$ ~ 126 эВ), свидетельствует об увеличении степени координации фосфора кислородом, близкой к $[PO_4]^{3-}$. Действительно, по данным [26], пленки, сформированные анодным оксидированием InP, представляют собой в основном смесь InPO₄ и $In(PO_3)_3$ с некоторым содержанием In_2O_3 , а по мнению [28], внутренняя область анодного оксида, примыкающая к границе раздела, есть ни что иное, как однофазные нестехиометрические фосфаты $In(PO_x)_v$ с x и y, близкими к 3.Таким образом, увеличение температуры оксидирования с 500 до 530°С приводит к значительной интенсификации процесса фосфатообразования.

Рис. 3. ИК-спектры поглощения пленок, сформированных в процессе термооксидирования гетероструктуры $MnO_2/InP + Mn_3(PO_4)_2^{(r)}$ в режиме 500°С, 60 мин.

При увеличении глубины анализа до 120 нм в спектре также наблюдается рост интенсивности при $E \sim 118$ эВ от монокристаллической подлож-

Таблица 3. Результаты интерпретации ИК-спектров [29] пленок, сформированных в процессе термооксидирования гетероструктуры $MnO_2/InP + Mn_3(PO_4)_2^{(r)}$ при 450, 500 и 550°C в течение 60 мин

t, °C	ν, см ⁻¹	Отнесение
450	472, 541, 664	InPO ₄
	420, 500	[PO ₄ ³⁻]
	422, 465, 536	In(PO ₃) ₃
	505	MnO ₂
	456, 500, 542	$Mn_3(PO_4)_2$
500	952, 980, 1060, 1160	InPO ₄
	707, 750	In(PO ₃) ₃
	456, 636, 950	$Mn_3(PO_4)_2$
	816, 948	MnO ₂
550	472, 560, 664	InPO ₄
	420, 500, 667	[PO ₄ ³⁻]
	422, 465	$In(PO_3)_3$
	456, 500, 636	$Mn_3(PO_4)_2$

ки InP. Однако высокая интенсивность максимума при $E \sim 126$ эВ свидетельствуют о том, что и на глубине 120 нм пленки, сформированной при температуре оксидирования 530°С, присутствуют в большом количестве соединения со связями фосфор-кислород, что коррелирует с данными ЛЭ для данного образца.

Присутствие в синтезированных пленках целого набора фосфатов подтверждается и методом ИКС. Из рис. 3 и табл. 3 следует, что сформированные пленки содержат $In(PO_3)_3$, $InPO_4$, MnO_2 , $Mn_3(PO_4)_2$.

Отметим, что с увеличением температуры качественный состав сформированных пленок изменяется, а именно: при 450 и 500°С в пленках присутствуют различные оксиды марганца, а при 550°С имеет место полный расход хемостимулятора с образованием целого ряда фосфатов марганца. Это свидетельствует об активизации процессов фосфатообразования с ростом температуры. Модификатор Mn₃(PO₄)₂ из газовой фазы поставляет готовые фосфат-анионы в пленку и способствует формированию фосфатного каркаса, тогда как при термооксидировании гетероструктур MnO₂/InP в отсутствие модификатора, по данным РФА, в сформированных пленках фиксируются преимущественно оксиды марганца и индия [18].

Таким образом, данные ИКС для гетероструктур $MnO_2/InP + Mn_3(PO_4)_2^{(r)}$ коррелируют с данными УМРЭС и подтверждают наличие фосфатов и полифосфатов индия и марганца в сформированных пленках. Поскольку InPO₄ химически стабилен и обладает достаточно хорошими диэлектрическими свойствами (ширина запрещенной зоны 4.5 эВ), а полифосфат состава $In(PO_3)_3$, являясь изолятором (ширина запрещенной зоны 5.5 эВ), способен образовывать объемные стекла за счет широкого интервала углов группы Р-О-Р, обеспечивающего хорошее согласование решеток фосфата и фосфида индия (как на интерфейсе Si/SiO₂) [28], можно ожидать улучшенных электрофизических характеристик пленок. Действительно, если под действием нанесенного на поверхность InP хемостимулятора MnO₂, в отсутствие дополнительно вводимого модификатора, были синтезированы только полупроводниковые пленки с удельным сопротивлением, не превышающим 10⁸ Ом см [18], введение через газовую фазу модификатора Mn₃(PO₄)₂ позволило получить нанометровые диэлектрические пленки, удельное сопротивление которых не ниже 10¹⁰ Ом см.

ЗАКЛЮЧЕНИЕ

Методами ЛЭ и СЭ установлено, что модифицирование поверхности InP магнетронно нанесенными наноразмерными слоями хемостимулятора MnO₂ и последующее введение в реакционную зону модификатора Mn₃(PO₄)₂ через газовую фазу способствуют значительному ускорению роста толшины пленок по сравнению как с собственным оксидированием InP (150-200%), так и с термооксидированием гетероструктур MnO₂/InP (20-60%).

Методом УМРЭС установлено формирование тетраэдрической координации фосфора кислородом практически по всей глубине пленок с некоторым снижением атомного соотношения Р: О во внутренних областях, что не наблюдалось при термооксидировании MnO₂/InP и связано с эффективным модифицирующим действием фосфата марганца. Данные УМРЭС хорошо согласуются с результатами ИКС о присутствии в пленках фосфатов и полифосфатов индия и марганца: In(PO₃)₃, InPO₄, Mn₃(PO₄)₂. Наличие большого разнообразия фосфатов обеспечивает диэлектрические свойства пленок.

БЛАГОДАРНОСТЬ

Работа частично поддержана грантом FZGU-2020-0036 Министерства науки и высшего образования Российской Федерации в рамках Государственного задания.

Результаты исследований частично получены на оборудовании Центра коллективного пользования Воронежского государственного университета. URL: http://ckp.vsu.ru.

СПИСОК ЛИТЕРАТУРЫ

- 1. Fundamentals of III-V Semiconductor MOSFETs / Ed. Oktyabrsky S., Ye P.D. N.Y.: Springer, 2010. 445 p. https://doi.org/10.1007/978-1-4419-1547-4
- 2. Alferov Z.I., Andreev V.M., Rumvantsev V.D. III-V Solar Cells and Concentrator Arrays // High-Efficient Low-Cost Photovoltaics. Berlin, Heidelberg: Springer, 2009. P. 101-141.

https://doi.org/10.1007/978-3-030-22864-4 8

- 3. Wasley N.A. Nano-Photonics in III-V Semiconductors for Integrated Quantum Optical Circuits. Switzerland: Springer, 2014. 129 p. https://doi.org/10.1007/978-3-319-01514-9
- 4. Rudan M. Physics of Semiconductor Devices. Switzerland: Springer, 2014. 643 p. https://doi.org/10.1007/978-1-4939-1151-6

5. Chen J., Lv J., Wang Q. Electronic Properties of Al/MoO₃/p-InP Enhanced Schottky Barrier Contacts //

- Thin Solid Films. 2016. V. 616. P. 145-150. https://doi.org/10.1016/j.tsf.2016.08.019
- 6. Balaram N., Reddy V.R., Reddy P.R.S., Janardhanam V., Choi C.-J. Microstructural, Chemical States and Electrical Properties of Au/CuO/n-InP Heterojunction with a Cupric Oxide Interlayer // Vacuum. 2018. V. 152. P. 15-24.

https://doi.org/10.1016/j.vacuum.2018.02.041

7. Cetin H., Avvildiz E. The Electrical Properties of Metal-Oxide-Semiconductor Devices Fabricated on the

Chemically Etched n-InP Substrate // Appl. Surf. Sci. 2007. V. 253. № 14. P. 5961-5966. https://doi.org/10.1016/j.apsusc.2006.12.110

- 8. Padma R., Shanthi Latha K., Reddy V.R., Choi C.-J. Rapid Thermal Annealing Effects on the Electrical and Structural Properties of Ru/V/n-InP Schottky Barrier Diode // Superlattices Microstruct. 2015. V. 83. P. 48-60. https://doi.org/10.1016/j.spmi.2015.03.015
- 9. Миттова И.Я. Влияние физико-химической природы хемостимулятора. способа и метода его введения в систему на механизм термооксидирования GaAs и InP // Неорган. материалы. 2014. Т. 50. № 9. C. 948-955.

https://doi.org/10.7868/S0002337X14090097

- 10. Миттова И.Я., Томина Е.В., Лапенко А.А., Хорохордина А.О. Твердофазные процессы при термическом окислении GaAs с поверхностью, модифицированной ванадием // Неорган. материалы. 2004. T. 40. № 5. C. 519–523.
- 11. Миттова И.Я., Томина Е.В., Самсонов А.А., Лукин А.Н., Симонов С.П. Термическое окисление поверхности InP, модифицированной смесями NiO + PbO разного состава // Неорган. материалы. 2005. T. 41. № 4. C. 391-399.
- 12. Sladkopevtcev B.V., Tretyakov N.N., Dontsov A.I., Tomina E.V., Mittova I.Ya. Effect of Oxide Composition $(V_2O_5 + Al_2O_3)$ via Gas Phase on the Thermal Oxidation of InP // Nanosystems: Phys., Chem., Math. 2013. V. 4. № 2. P. 260–268.
- 13. Rathi M.K., Tsvid G., Khandekar A.A., Shin J.C., Botez D., Kuech T.F. Passivation of Interfacial States for GaAsand InGaAs/InP-Based Regrown Nanostructures // J. Electron. Mater. 2009. № 20038. P. 2023–2032. https://doi.org/10.1007/s11664-009-0887-z
- 14. Bessolov V.N., Lebedev M.V., Konenkova E.V. Sulfidization of GaAs in Alcoholic Solutions: a Method Having an Impact on Efficiency and Stability of Passivation // Mater. Sci. Eng., B. 1997. V. 44. № 1–3. P. 376–379. https://doi.org/10.1016/S0921-5107(96)01816-8
- 15. Миттова И.Я., Сладкопевцев Б.В., Самсонов А.А., Томина Е.В., Андреенко С.Ю., Костенко П.В. Синтез и свойства наноразмерных пленок, сформированных термооксидированием MnO₂/InP под воздействием Mn₃(PO₄)₂ // Неорган. материалы. 2019. T. 55. № 9. C. 969–974. https://doi.org/10.1134/S0002337X19090070

- 16. Миттова И.Я., Сладкопевиев Б.В., Илясова Н.А., Томина Е.В., Донцов А.И., Тарасова О.С. Воздействие некоторых сложных хемостимуляторов и модификаторов на термооксидирование InP // Конденсированные среды и межфазные границы. 2020. T. 22. № 2. C. 245–256. https://doi.org/10.17308/kcmf.2020.22/2851
- 17. Миттова И.Я., Сладкопевцев Б.В., Томина Е.В., Самсонов А.А., Третьяков Н.Н., Пономаренко С.В. Синтез диэлектрических пленок термооксидированием MnO₂/GaAs // Неорган. материалы. 2018. T. 54. № 11. C. 1149–1156. https://doi.org/10.1134/S0002337X18110106
- 18. Третьяков Н.Н., Миттова И.Я., Сладкопевцев Б.В., Самсонов А.А., Андреенко С.Ю. Влияние магнетронно напыленного слоя MnO₂ на кинетику термооксидирования InP, состав и морфологию син-

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 57 № 12 2021 тезированных пленок // Неорган. материалы. 2017. Т. 53. № 1. С. 41–48. https://doi.org/10.7868/S0002337X17010171

- Yamaguchi M., Ando K. Thermal Oxidation of InP and Properties of Oxide Films // J. Appl. Phys. 1980. V. 51. № 9. P. 5007–5012. https://doi.org/10.1063/1.328380
- Сангвал К. Травление кристаллов: Теория, эксперимент, применение: Пер. с англ. Быстрицкого А.В.; Под ред. Марковой Т.И. М.: Мир, 1990. 496 с.
- 21. Миттова И.Я., Швец В.А., Томина Е.В., Сладкопевцев Б.В., Третьяков Н.Н., Лапенко А.А. Экспрессконтроль толщины и спектрально-эллипсометрическое исследование пленок, полученных термооксидированием InP и структур V_xO_y/InP // Неорган. материалы. 2013. Т. 49. № 2. С. 173–179. https://doi.org/10.7868/S0002337X13020140
- Зимкина Т.М., Фомичев В.А. Ультрамягкая рентгеновская спектроскопия. Л.: Изд-во Ленинградского у-та, 1971. 127 с.
- Domashevskaya E.P., Peshkov Y.A., Terekhov V.A., Yurakov Y.A., Barkov K.A. Phase Composition of the Buried Silicon Interlayers in the Amorphous Multilayer Nanostructures [(Co₄₅Fe₄₅Zr₁₀)/a-Si:H]₄₁ and [(Co₄₅Fe₄₅Zr₁₀)₃₅(Al₂O₃)₆₅/a-Si:H]₄₁ // Surf. Interface

Anal. 2018. V. 50. № 12–13. P. 1265–1270. https://doi.org/10.1002/sia.6515

- Самсонов А.А., Миттова И.Я., Валюхов Д.П., Томина Е.В., Лукин А.Н. Термооксидирование InP наноразмерными слоями V₂O₅ + PbO разного состава // Неорган. материалы. 2011. Т. 47. № 2. С. 138–145.
- 25. Wiech G. X-Ray Emission Bands and Energy Structure of Pure Phosphorous, III-V-Phosphides and Phosphates // Z. Phys. 1968. V. 216. P. 472–487.
- 26. Андреев В.М., Аллахвердиев А.М., Ивентьева О.О., Кашкаров В.М., Румянцев В.Д., Терехов В.А. Фотолюминесцентные свойства и электронное строение поверхности анодно окисленного n-InP // Физика и техника полупроводников. 1985. Т. 19. № 1. С. 110–113.
- Домашевская Э.П., Кашкаров В.М., Середин П.В., Терехов В.А., Турищев С.Ю., Арсентьев И.Н., Улин В.П. Исследования пористого InP методами рентгеновской дифракции, ИК-спектроскопии, УМРЭС, XANES и ФЛ // Изв. РАН. Сер. физ. 2008. Т. 72. № 4. С. 470-473.
- Besland M.P., Robach Y., Joseph J. In-Situ Studies of the Anodic Oxidation of Indium Phosphide // J. Electrochem. Soc. 1993. V. 140. P. 104–108.
- 29. Атлас ИК-спектров фосфатов / Под ред. Мельниковой Р.Я. М.: Наука, 1985. 235 с.