УДК 547.1:546.287'271:666.32/.36

ПОЛУЧЕНИЕ И СВОЙСТВА ПРЕДКЕРАМИЧЕСКИХ ОЛИГОБОРСИЛАЗАНОВ

© 2021 г. С. В. Жукова^{1, *}, П. А. Стороженко¹, О. Г. Рыжова¹, А. И. Драчев¹, М. Г. Кузнецова¹, П. А. Тимофеев²

¹Государственный научно-исследовательский институт химии и технологии элементоорганических соединений, ш. Энтузиастов, 38, Москва, 105118 Россия

> ²AO "Композит", Пионерская, 4, Королев, 141070 Россия *e-mail: svetik-zh@ya.ru Поступила в редакцию 04.06.2021 г. После доработки 03.09.2021 г. Принята к публикации 05.09.2021 г.

Получены предкерамические олигосилазаны, проведено исследование их свойств до и после модификации амминбораном BH_3NH_3 . Изучено влияние температуры и продолжительности процесса модификации на формирование в олигосилазанах фрагментов Si–N–B. Установлено, что интенсивность замещения атомов водорода в амминборане зависит от температуры и протекает при 60– 65°С преимущественно с замещением атомов водорода фрагмента– NH_3 , а при 70–140°С – фрагмента– BH_3 . Повышение содержания бора в олигосилазанах сопровождается увеличением молекулярной массы. Амминборан и его производные выступают в роли сшивающих агентов, что приводит в процессе пиролиза до 850°С к повышению выхода неорганического остатка олигоборсилазанов. При пиролизе до 1500°С термическая стабильность керамики состава SiBCN по сравнению с керамикой SiCN характеризуется снижением потери массы в 3.5 раза.

Ключевые слова: силазаны, олигоборсилазаны, предкерамические прекурсоры, керамика SiBCN, композиционные материалы

DOI: 10.31857/S0002337X21120150

введение

Важное место среди функциональных материалов занимает керамика составов SiBN и SiBCN, которая характеризуется повышенной твердостью, устойчивостью к коррозии и термоудару, низкими значениями электропроводности и коэффициента термического расширения, а также высокой окислительной и термической стабильностью до 2000° С и выше [1], тогда как керамика типа Si₃N₄, SiC_xN_y устойчива только до 1450°С [1, 2]. Керамика SiBN и SiBCN находит применение в качестве матриц керамоматричных композиционных материалов; жаропрочных, износостойких и коррозионностойких керамических покрытий [1–3].

При получении олигосилазанов для керамики состава SiBCN в качестве исходного сырья часто используют либо хлорсодержащие [2], либо редкие и малодоступные соединения [4] и катализаторы [5]. Методы получения прекурсоров сложные и многостадийные [4, 5]. Поэтому разработка технологии получения керамообразующих олигоборсилазанов с повышенной термоокислительной стабильностью при сокращении стадийности процесса и без использования хлорсодержащих модификаторов представляет не только научный, но и практический интерес.

Цель данной работы — исследование возможности модификации олигосилазанов бором с концентрацией до ~3 мас. %, условий получения олигоборсилазанов заданного строения, изучение термической и термооокислительной стабильности олигосилазанов до и после модификации бором, а также керамики после пиролиза до 1500°C.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исходные олигосилазаны – олигопергидросилазан (ОПГС) марки "Гидросил" и олигометилгидридсилазан (ОМГС) марки ПС-11 – получали аммонолизом дихлорсилана и метилдихлорсилана соответственно. Бормодифицированные олигосилазаны В-ОПГС и В-ОМГС получали взаимодействием ОПГС и ОМГС с амминбораном (АБ) по методике [6].

ЯМР-спектры на ядрах ¹H, ¹¹B, ²⁹Si регистрировали на Фурье-спектрометре Bruker AM-360 с рабочей частотой на протонах 360.13 МГц в дейтеробензоле при комнатной температуре. ИК-спек-

Οδηγραι						
Образец	С	Н	Ν	Si	В	
ОМГС	25.40	6.53	20.64	47.43	_	SiC _{0.54} N _{0.44} H _{0.14}
В-ОМГС-1	22.52	8.92	15.23	51.64	1.69	$SiB_{0.03}C_{0.44}N_{0.29}H_{0.17}$
В-ОМГС-2	23.60	9.00	18.00	46.09	3.31	$SiB_{0.07}C_{0.51}N_{0.39}H_{0.20}$
В-ОМГС-3	23.03	8.72	13.50	52.31	2.44	$SiB_{0.05}C_{0.44}N_{0.26}H_{0.17}$
В-ОМГС-4	28.97	9.38	13.10	46.28	2.27	$SiB_{0.05}C_{0.63}N_{0.28}H_{0.20}$
В-ОМГС-5	29.35	9.63	8.81	49.76	2.45	$SiB_{0.05}C_{0.59}N_{0.18}H_{0.19}$
В-ОМГС-6	29.08	9.65	9.08	49.72	2.47	$SiB_{0.05}C_{0.59}N_{0.19}H_{0.19}$

Таблица 1. Элементный состав образцов ОМГС и В-ОМГС

* Массовая доля элементов пересчитана на 100%, доля кислорода не превышает 2 мас. %.

** Массовые соотношения рассчитаны относительно атома Si.

тры регистрировали методом ИК-Фурье-спектроскопии на ИК-спектрометре Specord M-80.

Молекулярно-массовые характеристики определяли методом гель-проникающей хроматографии на хроматографе Aglient 1200 с рефрактометрическим детектором (колонка PlmixC, температура 25°C, элюент — тетрагидрофуран (**ТГФ**), скорость 1 мл/мин, объем пробы 50 мкл, калибровка по полистирольным стандартам фирмы Waters).

Термическую и термоокислительную стабильность олигосилазанов и олигоборсилазанов при пиролизе до 850°С исследовали методами ТГА и ДТА на воздухе и в аргоне на приборе Derivatograph-С (нагрев 5°С/мин).

Высокотемпературная обработка керамики после предварительного пиролиза до 850°С в аргоне включала ступенчатый пиролиз в аргоне при 1350, 1500, 1600°С с выдержкой 1 ч при каждой температуре. Термическую стабильность оценивали по потере массы.

Для удаления растворителей перед пиролизом до 850°С образцы, кроме В-ОМГС-5 и В-ОМГС-6 (табл. 1), предварительно вакуумировали при температурах 60–70°С. Образцы В-ОМГС-5 и В-ОМГС-6 для удаления растворителей предварительно выдерживали при 140°С в течение 1 ч: В-ОМГС-5 в вакууме, В-ОМГС-6 на воздухе.

Исследования методами СЭМ и рентгеновского элементного микроанализа (РЭМА) кера-

Рис. 1. Схема модификации олигосилазанов.

мики, полученной при $1350-1800^{\circ}$ С, проводили на приборе SEM 505 фирмы Philips, оснащенном системой захвата изображения MicroCapture SEM3.0M и системой элементного микроанализа EDAX, с энергодисперсионным детектором SAPHIRE Si (Li), тип SEM10. Разрешение микроскопа 30 Å.

Измерения кинематической вязкости 35-, 45-, 55%-ных растворов проводили при 20°С на вискозиметрах ВПЖ-2 с диаметрами капилляров 1.31 и 1.77 мм.

Содержание углерода, водорода, азота и золы (мас. %) определяли методом экспресс-гравиметрии по Прэглю-Коршун на автоматическом СHNS-анализаторе VarioMicrocube Elementar. Бор определяли сплавлением навески со щелочью в бомбе и разложением кислотой в сочетании со спектрометрическим определением в виде его комплекса с азометином. Содержание кремния определяли спектрофотометрическим методом, предварительно сплавляя навеску с КОН.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Модификация олигосилазанов АБ происходит при взаимодействии связей N–H и Si–H олигосилазанов со связями В–H и N–H АБ с образованием фрагментов Si–N–B (рис. 1).

В ходе исследований установлено, что степень замещения атома водорода в АБ зависит от температуры, продолжительности процесса модификации, природы олигосилазана. Процесс модификации ОПГС начинается при 40°С, а ОМГС при 70°С и протекает с участием атомов водорода реакционных групп NH, NH₂ и SiH, SiH₂, а также фрагментов $-BH_3$, $-NH_3$ AБ.

Синтезированные олигоборсилазаны В-ОПГС и В-ОМГС были охарактеризованы методами спектроскопии ЯМР на ядрах ¹H, ²⁹Si, ¹¹B и ИК-спектроскопии, позволяющими контролировать последовательность замещения атомов во-

Рис. 2. Спектры ЯМР на ядрах ¹¹В олигоборсилазана, полученного при температурах: 65°С (18 ч) (*1*), 110°С (5 ч) (*2*), 140°С (3.5 ч) (*3*).

дорода в АБ. Ступенчатое повышение температуры (70, 90, 110 и 140°С) с выдержкой от 2 до 5 ч при каждой температуре способствует увеличению степени превращения исходного АБ, что подтверждается методом ЯМР на ядрах ¹¹В (рис. 2). Процесс модификации ОМГС АБ при температурах $60-65^{\circ}$ С с выдержкой до 18 ч происходит преимущественно с участием водорода фрагмента– NH₃ (рис. 2, спектр *1*). Однако степень замещения водорода в исходном АБ при этом не превы-

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 57 № 12 2021

Образец	M _n	M_w	D
ОМГС	829	1714	2.10
B-OM Γ C -1	1089	2343	2.15
В-ОМГС-3	918	2048	2.23
Β-ΟΜΓC-4	1321	9482	7.18

Таблица 2. Характеристики молекулярно-массового распределения образцов ОМГС и В-ОМГС

Примечание. *D* – полидисперсность.

шает 38 мол. %. При $t \ge 70^{\circ}$ С активизируется замещение атомов водорода группы—BH₃ с увеличением степени превращения исходного AБ до 98 мол. % (рис. 2, спектр 3). Выход олигосилазановых боразинпроизводных составляет 91 мол. %, а продуктов частичного термолиза (BH₂–NH₂)_n [7] – около 7 мол. %. Отнесение сигналов в спектре ЯМР¹¹В сделано на основании данных [8].

При $t \ge 110^{\circ}$ С активизируется процесс дегидрирования АБ [7]. По-видимому, образовавшийся продукт (BH₂—NH₂)_n содержит более реакционноспособные атомы водорода, которые обеспечивают высокую степень превращения исходного АБ (рис. 2, спектры 2, 3). При этом в ИК-спектрах олигоборсилазанов появление новых уширенных полос поглощения с частотами 1333, 1387, 1446 см⁻¹, характерными для связей B–N, B=N [3], сопровождается снижением интенсивности полос поглощения связей Si–H и N–H, N–H₂ олигосилазанов.

Концентрация бора в структуре олигосилазана определяет агрегатное состояние прекурсора. Так, В-ОМГС с мольным отношением Si/B \leq 6 представляют собой твердые продукты, а с отношением Si/B > 6 – вязкие жидкости. При жидкофазной пропитке каркасов используют олигобор-

Рис. 3. Зависимости кинематической вязкости В-ОМГС-3 от длительности хранения.

силазаны с низким содержанием бора (Si/B > 6), так как при высоком содержании бора (Si/B \leq 6) наблюдаются повышение вязкостных характеристик и снижение их пропитывающей способности. В работе использовали В-ОМГС с мольным соотношением Si/B в диапазоне 3–18. Элементный состав полученных ОМГС и В-ОМГС приведен в табл. 1.

Процесс получения олигоборсилазанов сопровождается увеличением среднечисловой (M_n) и средневесовой (M_w) молекулярных масс, как видно из анализа характеристик молекулярномассового распределения образцов ОМГС и В-ОМГС, приведенных в табл. 2.

Пропитывающие составы должны иметь высокую пропитываюшую способность и высокий выхол неорганического остатка (ВНО) после пиролиза. Оптимальная пропитывающая способность получена при использовании толуольных растворов ОМГС и В-ОМГС с кинематической вязкостью в диапазоне 7-15 сСт, которая достигается при концентрациях 65-75 и 30-35 мас. % соответственно. При исследовании зависимости вязкости В-ОМГС-3 от длительности хранения установлено, что концентрация В-ОМГС в интервале 30-35 мас. % обеспечивает стабильность вязкости в течение 3 месяцев и более, тогда как при повышении концентрации до 45-55 мас. % наблюдается снижение стабильности вязкости (рис. 3).

Термическую и термоокислительную стабильности олигосилазанов до и после модификации бором оценивали по ВНО. Проведены исследования зависимости ВНО от концентрации АБ, природы олигосилазана, режимов термообработки в процессе модификации. Условия подготовки образцов к пиролизу описаны ранее.

Термические превращения в аргоне образцов ОМГС и В-ОМГС-3,4,6 протекают в два этапа (табл. 3). Первый – низкотемпературный, в диапазоне 150–400°С – обусловлен процессами отверждения с участием концевых групп и удалением низкомолекулярных продуктов реакции. Второй – высокотемпературный, в диапазоне 400– 850°С – обусловлен термическими перегруппировками. Из табл. 3 видно, что наибольшая потеря массы для всех образцов происходит на первом этапе.

Увеличение времени проведения процесса модификации и концентрации бора с ~1.7 до 3.3 мас. % (В-ОМГС-1 и В-ОМГС-2 соответственно) при прочих равных условиях повышает ВНО в аргоне на 28 мас. %. Повышение температуры процесса модификации и температуры на стадии предварительного удаления растворителей перед пиролизом также способствует существенному увеличению ВНО. Так, для образцов В-ОМГС-3 и В-ОМГС-5 с одинаковой концентрацией бора повышение температуры процесса модификации от 110 до 140°С, а также температуры на стадии предварительного удаления растворителей перед

Образен	C _B ,	t °C	τυ	$t_1, ^{\circ}\mathrm{C}$	<i>М</i> ₁ , мас. %	t_2 , °C	<i>М</i> ₂ , мас. %	t_1 , °C	<i>М</i> ₁ , мас. %	<i>t</i> ₂ , °C	<i>М</i> ₂ , мас. %
ооризец	мас. %	· Max, C	v , 1		во	здух			арі	юн	
ΟΠΓC	0	_	_	300	93	*	93	400	60	*	60
В-ОПГС-1	1.0	40	3	н/о	н/о	н/о	н/о	200	78	*	78
В-ОПГС-2	3.0	100	1	200	95	*	95	180	86	*	86
ΟΜΓϹ	0	_	—	280	93	600	82	400	57	650	50
В-ОМГС-1	1.69	70	7	170	88	630	82	320	67	730	58
В-ОМГС-2	3.31	70	14	180	91	700	92	300	87	750	80
В-ОМГС-3	2.44	110	1.5	210	81	700	80	190	80	790	67
В-ОМГС-5	2.45	140	2	*	100	650	95	250	88	*	88
В-ОМГС-6	2.47	140	3.5	*	100	600	100	250	98	*	98

Таблица 3. Выход неорганического остатка олигосилазанов после пиролиза до 850°С на воздухе и в аргоне

Примечание. *С*_В – концентрация бора; *t*_{мах} – максимальная температура процесса модификации; т – время выдержки при максимальной температуре; *t*₁, *t*₂ – температуры 1-го и 2-го этапов потери массы; *M*₁, *M*₂ – выходы неорганического остатка на 1-м и 2-м этапе; н/о – не определяли.

* Изменение массы отсутствует.

пиролизом с 70 до 140°С приводит к росту ВНО на 21 мас. %. Причем на воздухе процесс предварительного удаления растворителей (В-ОМГС-6) перед пиролизом способствует лучшему сохранению ВНО (до 98 мас. %), чем в вакууме (В-ОМГС-5).

Постепенное увеличение тепловыделения образцом В-ОМГС-5 на начальном участке нагрева до 400°С в аргоне (рис. 4б, кривая *I*) вызвано экзотермическими реакциями, протекающими в объеме. Кривая ДТА плавно проходит через экстремум при 350°С, а далее наблюдается ярко выраженный эндотермический эффект, что, по-видимому, обусловлено двумя конкурирующими процессами: экзотермическими реакциями, протекающими в результате внутримолекулярных перегруппировок; деструкцией фрагментов цепи.

1369

Термоокислительные превращения на воздухе образца В-ОМГС-5 сопровождаются увеличением массы и обусловлены взаимодействием олигоборсилазана с кислородом воздуха (рис. 4а). При этом термическая деструкция на начальном участке нагрева до 200°С (рис. 4а, кривая *I*) сопровождается слабовыраженным эндотермическим эффектом. При 300°С появляется экзотермический пик, а при дальнейшем нагреве от 350 до 850°С наблюдается непрерывный рост тепловыделения, очевидно, связанный с увеличением интенсивности окислительных процессов.

Рис. 4. Кривые ДТА (2) и ТГА (1) процесса пиролиза до 850°С образца В-ОМГС-5 на воздухе (а), в аргоне (б).

Ofpasau	Потеря массы, мас. %								
Образец	1350°C	1500°C	1600°C	1350–1500°C					
ОМГС	3.8	36.8	52.0	40.6					
В-ОМГС-1	0.9	11.2	67.0	12.1					
Δ	+2.9	+26.5	-5	+28.5					

Таблица 4. Влияние температуры термообработки на потерю массы керамических образцов ОМГС и В-ОМГС-1

Примечание. Δ – разница между потерями массы ОМГС и В-ОМГС-1.

Существенное влияние на термическую и термоокислительную стабильность олигоборсилазанов оказывает природа исходного олигосилазана. Как видно из табл. 3, для образцов ОПГС и В-ОПГС-1,2 второй этап термодеструкции в аргоне отсутствует совсем. Термоокислительные

Рис. 5. ИК-спектры В-ОМГС (1) и керамики В-ОМГС, полученной после пиролиза 850°С в среде аргона (2).

Рис. 6. ИК-спектры керамических образцов, полученных в среде аргона после термообработки до 1800°С: В-ОМГС-1 (1), В-ОМГС-2 (2), В-ОМГС-3 (3).

превращения образцов ОПГС и В-ОПГС на воздухе протекают в один этап, без дальнейшего изменения массы, по-видимому, вследствие образования защитного промежуточного слоя оксинитрида кремния.

Таким образом, введение фрагментов Si–N–B в структуру олигосилазанов позволило существенно повысить BHO после пиролиза до 850°С. Для образцов В-ОПГС удалось повысить BHO в 1.4 раза, а для образцов В-ОМГС – в 1.8 раз. Повидимому, АБ и его производные играют роль сшивающих агентов низкомолекулярных олигосилазанов, что приводит к увеличению молекулярной массы при поликонденсации и повышению ВНО после пиролиза.

При исследовании термической стабильности после высокотемпературной обработки установлено, что по сравнению с керамикой ОМГС присутствие бора (≥ 1 мас. %) приводит к резкому снижению потери массы: при 1350°С в 4 раза, а при 1500°С в 3.5 раза. Однако при 1600°С наблюдается рост потери массы до 67 мас. % (табл. 4), по-видимому, вследствие образования кристаллических фаз α -SiC и α -SiC/ β -Si₃N₄ [2]. Таким образом, присутствие более 1 мас. % бора, суще-

Рис. 7. Микрофотографии поверхности керамики В-ОМГС, полученной при 1350 (а), 1500 (б), 1600 (в), 1800°С (г).

ственно повышает термическую стабильность керамики до 1500°С: в интервале 1100–1500°С суммарная потеря массы у керамики В-ОМГС-1 на 28.5 мас. % ниже, чем у керамики ОМГС (табл. 4).

Термические превращения при пиролизе B-ОМГС до 850°С в ИК-спектре сопровождаются уменьшением интенсивности полос поглощения связей N–H, C–H и Si–H (рис. 5, кривые 1, 2). В керамике B-ОМГС присутствуют две широкие полосы поглощения, одна их которых соответствует валентным колебаниям связи B–N (1380 см⁻¹, 1446 см⁻¹ (плечо)), а уширенные абсорбционные полосы 904–1001 см⁻¹ представляют собой суперпозицию индивидуальных валентных колебаний связей Si–C–N и Si–N [3]. При увеличении температуры до 1800°С (рис. 6) появляются полосы поглощения связей B–N (1390 см⁻¹), Si–N (1080 см⁻¹), Si–C (850 см⁻¹).

С помощью СЭМ установлено, что при $t > 1500^{\circ}$ С в объеме керамики В-ОМГС активизируется процесс структуризации (рис. 7). Методом РЭМА определено, что атомы азота, бора, кремния и углерода остаются в составе керамики В-ОМГС-5 до 1800°С.

ЗАКЛЮЧЕНИЕ

Проведенные исследования показали, что путем химической модификации амминбораном получены олигоборсилазаны заданного строения с повышенной термической и термоокислительной стабильностью, которые могут быть использованы в качестве перспективных предкерамических пропиточных составов для формирования матриц керамоматричных композиционных материалов, термоустойчивых до 1500°С.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Riedel R., Kienzle A., Dressler W. et al.* A Silicoboron Carbonitride Ceramic Stable to 2.000°C // Nature. 1996. V. 382. P. 796–798.
- 2. Weinmann M., Kamphowe T.W. et al. Synthesis and Thermal Behavior of Novel SiBCN Ceramic Precursors // Chem. Mater. 2000. V. 12. P. 623–632.
- 3. Файнер Н.И., Косинова М.Л., Румянцев Ю.М. Тонкие пленки карбонитридов кремния и бора: синтез, исследование состава и структуры // Рос. хим. журн. 2001. Т. 45. № 3. С. 101–108.
- Jaschke B., Klingebiel U., Riedel R. Cyclosilazanes and Borazines: Polymer Precursors to Silicon- and Boron-Containing Ceramics // Appl. Organomet. Chem. 2000. V. 14. P. 671–685.
- Blum Y.D., Laine R.M. Process for Making Ceramic Materials: Пат. 5017529 США, C04B 35/58. Заявлено 01.12.1989; опубл. 21.05.1991.
- Рыжова О.Г., Стороженко П.А., Жукова С.В. и др. Способ получения олигоборсилазанов: Пат. RU 2546664 C1, МПКС07F 5/02. Заявлено 30.12.2013; опубл. 10.04.2015.
- 7. Стороженко П.А., Свицын Р.А., Кецко В.А. и др. Синтез и физико-химические свойства амминборана // Журн. неорган. химии. 2005. Т. 50. №. 7. С. 1066–1071.
- Bluhm M.E., Bradley M.G., Butterick R. et al. Amineborane-Based Chemical Hydrogen Storage: Enhanced Ammonia Borane Dehydrogenation in Ionic Liquids // J. Am. Chem. Soc. 2006. V. 128. P. 7748–7749.