УДК 546

ПРИМЕСНЫЙ СОСТАВ ОБРАЗЦОВ ОКСИДОВ ВЫСТАВКИ-КОЛЛЕКЦИИ ВЕЩЕСТВ ОСОБОЙ ЧИСТОТЫ

© 2021 г. О. П. Лазукина^{1, *}, К. К. Малышев¹, Е. Н. Волкова¹, М. Ф. Чурбанов¹

¹Институт химии высокочистых веществ им. Г.Г. Девятых Российской академии наук, ул. Тропинина, 49, Нижний Новгород, 603950 Россия

*e-mail: lazukina@ihps-nnov.ru Поступила в редакцию 02.09.2020 г. После доработки 12.10.2020 г. Принята к публикации 14.10.2020 г.

В статье обсуждается примесный состав высокочистых образцов оксидов Постоянно действующей выставки-коллекции веществ особой чистоты. Получены оценки среднего и суммарного содержания элементов-примесей в наиболее чистых образцах и их массивах. Оценен вклад отдельных классов примесей в суммарное содержание, что позволило более точно охарактеризовать статистические характеристики примесного состава высокочистых оксидов.

Ключевые слова: Выставка-коллекция веществ особой чистоты, примесный состав, высокочистые оксиды

DOI: 10.31857/S0002337X21030088

введение

За последние годы существенно расширены разделы Выставки-коллекции веществ особой чистоты, посвященные высокочистым твердым молекулярным соединениям и материалам на их основе: оксидам, галогенидам [1], стеклам [2], оптической керамике. Интерес к данным веществам обусловлен их востребованностью в оптическом материаловедении для создания новых активных лазерных сред, развития волоконной связи для новых диапазонов длин волн и др.

Целью работы является исследование полного примесного состава образцов оксидов, представленных на Выставке-коллекции: получение интегральных характеристик примесного состава, параметров функции распределения примесных элементов по концентрации, оценка вклада различных классов примесей в суммарное содержание для отдельных образцов и их массивов.

Оксиды представлены на Выставке-коллекции 45 образцами 24 веществ. Характеристика примесного состава образцов оксидов, поступивших на Выставку-коллекцию до 2010 года, дана в работах [3, 4]. В дальнейшем массив Выставки пополнился новыми образцами оксидов редкоземельных элементов (РЗЭ), молибдена, алюминия, цинка, моно- и диоксида кремния. К настоящему времени на Выставке-коллекции представлено 18 образцов 12 оксидов РЗЭ; 8 образцов 5 оксидов тугоплавких металлов, оксиды цинка (4 образца), алюминия (3 образца), фосфора, висмута, теллура; диоксида кремния (8 образцов) и монооксида кремния. Образцы представляют собой микро- и нанопорошки. Поступали из 18 организаций России с 1983 года. Сопоставительный анализ образцов проводился в аналитических центрах ИХВВ РАН, ИПТМ РАН, АО "Гиредмет", ИНХ СО РАН. Применялись атомно-эмиссионный метод, лазерная масс-спектрометрия, искровая масс-спектрометрия, атомно-эмиссионный метод с индуктивно связанной плазмой, массспектрометрический метод с индуктивно связанной плазмой.

В статье приведены характеристики примесного элементного состава наиболее чистых выставочных образцов и массивов оксидов, представленных к 2020 году на Выставке-коллекции (за исключением образцов SiO₂), полученные с применением метода разложения примесей на классы аналогично работам [1, 2, 4]. Примесный состав образцов диоксида кремния, представленного на Выставке-коллекции в различных формах (кварцевого стекла, высокочистых порошков, кварцевой крупки, синтетического монокристалла кварца), охарактеризован в статьях [2, 3] и в данной работе не обсуждается.

ОКСИДЫ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ

Характеристика примесного состава образцов оксидов РЗЭ. Образцы оксидов РЗЭ поступили на Выставку-коллекцию из АО "Гиредмет" (г. Москва),

	N	N	1.0			Основные примеси с установленным	Основные	Содержание примесей в классах
Образец	N _X	NY	$-lgSum_X$	-lgSum	±∆lgSum	содержанием (по убыванию концентрации)	классы примесей	$-\lg \operatorname{Sum}_K \pm \Delta \lg \operatorname{Sum}_K$
Eu ₂ O ₃	33	37	1.04	0.90	0.39	Gd, Si, Cl, Ca, Y	ПМ РЗЭ ГО и легкие	$\begin{array}{c} 1.29 \pm 0.81 \\ 1.44 \pm 0.67 \\ 1.54^{**} \end{array}$
Ho ₂ O ₃	31	39	0.93	0.91	0.06	C, Cl, Er, Gd	ГО и легкие ЩМ и ЩЗМ РЗЭ	$\begin{array}{c} 0.95^{**} \\ 2.30 \pm 1.27 \\ 2.33 \pm 0.45 \end{array}$
Tm ₂ O ₃	35	37	0.97	0.92	0.11	C, F, Cl, Y, Yb, S, Lu	ГО и легкие РЗЭ ПМ	$\begin{array}{c} 1.06^{**} \\ 1.71 \pm 0.45 \\ 2.02 \pm 0.97 \end{array}$
Pr ₆ O ₁₁ *	31	41	1.11	0.96	0.44	Nd, Cl, Ce, F	ГО и легкие РЗЭ	$\begin{array}{c} 1.13 \pm 0.59 \\ 1.54 \pm 0.74 \end{array}$
Tb ₄ O ₇	9	62	1.16	1.16	0.99	F, Cl, Si, Nd, Dy	ГО и легкие	1.05 ± 1.00
Gd ₂ O ₃	25	47	1.41	1.46	0.14	Y, C, Cl, Si, Ca, Sm, S	ГО и легкие РЗЭ ЩМ и ЩЗМ	$\begin{array}{c} 1.61^{**} \\ 2.27 \pm 0.69 \\ 2.46 \pm 0.88 \end{array}$
Er ₂ O ₃	34	35	1.36	1.48	0.32	Tm, Cl, Y	РЗЭ ГО и легкие	1.69 ± 0.52 1.92**
Sc ₂ O ₃	24	32	1.91	2.04	0.34	Fe, Ti, K, Yb, Na, P	ЩМ и ЩЗМ ПМ ГО и легкие	$\begin{array}{c} 2.44 \pm 0.72 \\ 2.52 \pm 0.41 \\ 2.78 \pm 0.62 \end{array}$
CeO ₂	18	53	2.15	2.09	0.23	P, Ca, Si, S, Cl	ГО и легкие ЩМ и ЩЗМ ПМ	$\begin{array}{c} 2.27^{**} \\ 2.61 \pm 0.76 \\ 3.52 \pm 0.78 \end{array}$
La ₂ O ₃	6	55	2.41	2.16	0.90	Ca, K, Mg, Nd, Ce, Pr	ЩМ и ЩЗМ РЗЭ	$\begin{array}{c} 2.33 \pm 1.19 \\ 2.66 \pm 1.25 \end{array}$
Nd ₂ O ₃	19	52	2.01	2.22	0.20	Cl, F, Si, S, Al, P, La, Sc	ГО и легкие ЩМ и ЩЗМ РЗЭ	$\begin{array}{c} 2.43^{**} \\ 2.81 \pm 0.76 \\ 3.10 \pm 0.44 \end{array}$
Y ₂ O ₃	6	34	3.21	3.15	0.40	K, Ca, Fe, Cr	ЩМ и ЩЗМ ПМ	$\begin{array}{c} 3.30 \pm 0.65 \\ 3.87 \pm 0.43 \end{array}$
(–lgSum)				1.62	0.38			

Таблица 1. Характеристики примесного состава наиболее чистых образцов оксидов РЗЭ Выставки-коллекции, мас. %

Примечание. N_X – число примесей с установленной концентрацией; N_Y – число примесей с установленным пределом обнаружения; $-lgSum_{\chi} - (-lg)$ суммарного содержания примесей с измеренной концентрацией; $-lgSum, \pm \Delta lgSum - оценка (-lg)$ суммарного содержания примесей и ее неопределенность; $-\lg Sum_K \pm \Delta \lg Sum_K - оценка (-lg) суммарного содержания при$ месей в классах и ее неопределенность; $\langle -lgSum \rangle - средняя оценка по образцам.$ $* Ундекаоксид гексапразеодима <math>Pr_6O_{11}$ по строению соответствует смешанному окислу $4PrO_2 \cdot Pr_2O_3$.

** Оценка по величине суммарного содержания примесей данного класса с установленной концентрацией.

ООО "Ланхит" (г. Москва), ИХВВ РАН (г. Нижний Новгород), ООО "ЛИТ" ГК "Скайград" (г. Королев Московской обл.). Большинство образцов получено твердофазным методом, базирующимся на термическом разложении карбонатов, оксалатов и гидроксидов металлов, взятых в качестве исходных веществ [5, 6]. Для оксидов неодима и празеодима применялась экстракционно-адсорбционная технология [7, 8].

В табл. 1 приведены характеристики примесного элементного состава наиболее чистых образцов 12 оксидов РЗЭ, представленных на Выстав-

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 57 Nº 3 2021

Рис. 1. Среднее содержание примесей в образцах оксидов РЗЭ, для которых есть измеренные значения концентрации; оценки приведены с доверительными интервалами; для 13 примесей указано единственное измеренное значение концентрации.

ке-коллекции. Как видно из табл. 1, во всех образцах средние значения логарифма суммарного содержания примесей для измеренных значений $-lgSum_X$ и для теоретической оценки данной величины -lgSum совпадают в пределах неопределенности $\pm \Delta lgSum$, что свидетельствует о соответствии структуры экспериментальных данных применяемой модели расчета [9]. Теоретическая оценка суммарного содержания примесей при усреднении по образцам составляет 2 × 10⁻² мас. %.

Для образцов оксидов РЗЭ выделяются следующие классы примесей [4]:

 – газообразующие (ГО) и легкие *p*-элементы (класс ГО и легкие): H, B, C, N, F, Al, Si, P, S, Cl;

остальные *p*-элементы: 13 стабильных элементов 13–16-й групп Периодической системы элементов Д.И. Менделеева (ПС);

переходные металлы (ПМ): 26 стабильных элементов 4–12-й групп ПС;

- щелочные (ЩМ) и щелочноземельные металлы (ЩЗМ): 10 стабильных элементов 1- и 2-й групп ПС;

– РЗЭ: 16 стабильных элементов.

Обследованность всех образцов оксидов РЗЭ составляет 83% (общая) и 28.5% для примесей с измеренной концентрацией, что позволяет рассчитать интегральные характеристики примесного состава для более чем 50% классов примесей в отдельных образцах. Основной вклад в большинстве образцов оксидов РЗЭ вносят примеси класса ГО и легкие, РЗЭ, ЩМ и ЩЗМ, определяя, как правило, их уровень чистоты. Для ряда образцов в классе ГО и легкие установлена концентрация 7—8 определявшихся примесей из 10. Оценка суммарного содержания примесей данного класса в отдельных образцах в данном случае совпадает с величиной суммарного содержания примесей с измеренной концентрацией.

Характеристики примесного состава массива оксидов РЗЭ. На рис. 1 приведена оценка среднего содержания 52 примесей с измеренной концентрацией для массива образцов оксидов РЗЭ. Средняя концентрация отдельных примесей в массиве находится в интервале $2 \times 10^{-7}-2 \times 10^{-2}$ мас. %; наиболее высокое значение концентрации установлено для примесей углерода и хлора. Для 22 примесей установлены средние пределы обнаружения, составляющие $2 \times 10^{-6}-3 \times 10^{-3}$ мас. %. Таким образом, в образцах определялись фактически все примеси (кроме водорода и примесей инертных газов).

В табл. 2 приведены оценки (-lg) среднего суммарного содержания и содержания различных классов примесей в массиве оксидов РЗЭ. Уточненная оценка среднего (-lg) суммарной концентрации примесей во всем массиве образцов оксидов РЗЭ, найденная как сумма оценок для всех классов примесей (1.51 ± 0.14), значимо ниже, чем оценка во всем массиве образцов, полученная без разбиения примесей на классы (0.97 ± 0.18) и близка к значению, полученному как среднее по отдельным образцам (1.62 ± 0.38; табл. 1). Близость данных величин иллюстрирует тот факт, что в рас-

Рис. 2. Функции распределения содержания классов примесей в массиве наиболее чистых образцов оксидов РЗЭ (по оси ординат отложено число элементоопределений).

сматриваемом массиве образцов установлено содержание всех основных примесей.

Примеси класса ГО и легкие вносят основной вклад в суммарное содержание примесей в оксидах РЗЭ, равный 2×10^{-2} мас. %. Оценка среднего суммарного содержания примесей класса РЗЭ (аналогов) составляет 5×10^{-3} мас. %, примесей класса РЛЭ (аналогов) составляет 5×10^{-3} мас. %, примесей класса РЭЭ (аналогов) составляет 5×10^{-3} мас. %, примесей класса p-элементов -2×10^{-3} мас. %, примесей класса p-элементов -2×10^{-5} мас. %. Оценка среднего суммарного содержания примесей как суммы классов в "типичном" образце оксида РЗЭ равна 3×10^{-2} мас. %; это значимо ниже данной величины (7×10^{-2} мас. %) для массива образцов оксидов РЗЭ, поступивших до 2010 года и описанных в статье [4], и свидетельствует о повышении уровня чистоты образцов.

На рис. 2 приведены функции распределения содержания примесей в классах и во всей совокупности примесей в массиве образцов оксидов РЗЭ, а в табл. 3 – численные характеристики этих распределений. Кривая "По сумме классов" представляет собой сумму гауссовых кривых, описывающих отдельные классы, и не является гауссовой. Примеси класса ГО и легкие имеют прогнозируемое среднее содержание в области 10^{-3} — 10^{-5} мас. %. Для примесей из остальных классов эта величина смещена в область более низких концентраций, и вероятность наблюдения примесей металлов в областях концентраций, определяющих степень чистоты массива образцов, ниже, чем для примесей класса ГО и легкие.

Таблица 2. Интегральные характеристики примесного состава массива образцов оксидов РЗЭ. Разложение на классы примесей, (–lg) концентрации, мас. %

Примеси	\overline{X}	S _X	\overline{Y}	S_Y	N _X	N_Y	$-lgSum_X$	$-lgSum_Y$	-lgSum	$\pm \Delta lgSum$
Все примеси массива	3.80	1.00	4.90	0.77	272	524	1.64	2.45	0.97	0.18
(без разбиения на классы)										
ГО и легкие	3.14	1.00	3.44	1.28	65	14	1.72	2.67	1.66	0.19
РЗЭ	3.88	0.98	4.62	0.69	83	96	2.56	3.67	2.29	0.19
ЩМ и ЩЗМ	3.86	0.72	5.10	0.87	54	60	2.79	4.06	2.63	0.25
ПМ	4.13	0.83	5.07	0.65	60	224	3.19	3.38	2.78	0.25
р-Элементы	4.99	0.92	4.86	0.66	10	130	4.38	3.50	4.79	0.22
Сумма классов примесей									1.51	0.14

Примечание. \overline{X} , S_X – среднее и среднеквадратичное отклонение для величины $X = -\lg x$ (x – концентрация примеси); \overline{Y} , S_Y – то же для $Y = -\lg y(y - предел обнаружения); <math>-\lg Sum_Y - (-\lg)$ суммы пределов обнаружения примесей; остальные обозначения см. в табл. 1.

Примеси	Оценка ((–lg) концентр	среднего ации примесей	Среднеквадратичное отклонение величины $X = - \lg x$ и его неопределенность			
примеен	в классе и ее не	определенность				
	М	$\pm \Delta M$	S	$\pm \Delta S$		
Все примеси (без разбиения на классы)	6.10	0.12	2.04	0.10		
ГО и легкие	3.94	0.18	1.32	0.15		
РЗЭ	5.10	0.15	1.48	0.13		
ЩМ и ЩЗМ	5.30	0.22	1.64	0.20		
ПМ	6.92	0.28	2.00	0.22		
р-Элементы	7.18	0.51	1.31	0.30		
Среднее по всем классам	5.94	0.27	2.03	0.20		

Таблица 3. Параметры функций распределения примесей в классах для массива образцов оксидов РЗЭ, (-lg) концентрации, мас. %

ОКСИДЫ ТУГОПЛАВКИХ МЕТАЛЛОВ

Характеристика примесного состава образцов оксидов тугоплавких металлов (ТМ). Образцы оксидов ТМ представлены на Выставку-коллекцию ООО "Промхимпермь", Соликамским магниевым заводом, ИПТМ РАН (г. Черноголовка Московской обл.), ИХВВ РАН (г. Нижний Новгород), РХТУ им. Д.И. Менделеева (г. Москва).

В табл. 4 приведены характеристики примесного элементного состава наиболее чистых образцов 5 оксидов тугоплавких металлов, представленных на Выставке-коллекции.

Образцы TiO₂ марки OCЧ 7-5 и Ta₂O₅ марки OCЧ 7-3 – нанодисперсные порошки с размером частиц 20–30 и 50 нм соответственно. Основной вклад в измеренное содержание в обоих образцах вносит примесь хлора на уровне $n \times 10^{-2}$ мас. %. Исходя из метода получения данных оксидов через органические соединения (алкоголяты) возможно присутствие в достаточно высокой кон-

центрации не определявшейся примеси углерода в форме включений или нелетучих карбидов. Примеси хлора и фтора в данных оксидах могут находиться в форме оксифторидов и оксихлоридов соответствующих элементов [3].

Образец MoO₃ получен методом вакуумной сублимации [10]. Основной вклад в сумму примесей вносит сера (1×10^{-3} мас. %). Этот образец является наиболее чистым из трех, представленных на Выставке, и находится на уровне лучших зарубежных образцов.

Образцы Nb₂O₅ и WO₃ проанализированы на 8–10 примесей металлов. В Nb₂O₅ найдена примесь кремния (5 × 10^{-3} мас. %), содержание остальных определявшихся примесей ниже предела обнаружения (<*n* × 10^{-4} мас. %). Образец WO₃ получен гидролизом очищенного WF₆ с последующим выделением оксида вольфрама из раствора продуктов гидролиза и прокаливанием последнего; очистка WF₆ проводилась дистилляцией

Таблица 4. Характеристики примесного состава наиболее чистых образцов оксидов ТМ Выставки-коллекции, мас. %

Образец	N_X	N_Y	-lgSum _X	—lgSum	±∆lgSum	Основные примеси с установленным	Основные классы	Содержание примесей в классах
						концентрации)	примесей	$- \lg \operatorname{Sum}_{K} \pm \\ \pm \Delta \lg \operatorname{Sum}_{K}$
TiO ₂	11	60	1.06	1.06		$Cl - 8 \times 10^{-2}$; S, Si - 2 × 10 ⁻³	ГО и легкие	1.07*
Ta ₂ O ₅	18	47	1.50	1.49	0.05	$Cl - 2 \times 10^{-2}; F - 6 \times 10^{-3};$	ГО и легкие	1.51*
						$Si - 1 \times 10^{-3}$		
MoO ₃	36	34	2.62	1.99	0.76	$S - 1 \times 10^{-3}$; $Cl - 5 \times 10^{-4}$;	ПМ	2.17 ± 1.10
						$Nb - 2 \times 10^{-4}$	ГО и легкие	2.47 ± 0.67
Nb ₂ O ₅	1	7	2.28	2.28		$Si - 5 \times 10^{-3}$		
WO ₃	4	6	5.92	5.29	0.43	Fe, Al, Cu, Mn – $n \times 10^{-7}$	ПМ	5.45 ± 0.36

Примечание. Обозначения те же, что в табл. 1.

* Оценка по величине суммарного содержания примесей данного класса с установленной концентрацией.

Рис. 3. Среднее содержание примесей в образцах оксидов ТМ, для которых есть измеренные значения концентрации.

с последующей фильтрацией потока WF₆ [11]; в образце установлена концентрация 4 примесей на уровне $n \times 10^{-7}$ мас. %.

Для оксидов TM выделяются те же классы примесей, что и для оксидов РЗЭ.

Обследованность всех образцов оксидов ТМ составляет 55.5% (общая) и 17.5% для примесей с измеренной концентрацией, что позволяет рассчитать интегральные характеристики примесного состава лишь для 20% классов примесей в отдельных образцах. Основной вклад в образцах оксидов ТМ вносят примеси класса ГО и легкие и ПМ.

Характеристики примесного состава массива оксидов ТМ. На рис. 3 приведена оценка среднего содержания 43 примесей с измеренной концентрацией для массива образцов оксидов ТМ. Средняя концентрация отдельных примесей в массиве находится в интервале $3 \times 10^{-8}-9 \times 10^{-3}$ мас. %; наиболее высокое значение средней концентрации установлено для примесей хлора, фтора и кремния ($10^{-2}-10^{-3}$ мас. %). Для 31 примеси установлены средние пределы обнаружения, составляющие $2 \times 10^{-7}-2 \times 10^{-2}$ мас. %.

В табл. 5 приведены оценки (-lg) среднего суммарного содержания и содержания различных классов примесей в массиве оксидов TM.

Примеси класса ГО и легкие вносят основной вклад в суммарное содержание примесей в оксидах ТМ, равный 1×10^{-2} мас. %. Оценка среднего суммарного содержания примесей классов ПМ и ЩМ, ЩЗМ составляет 3×10^{-4} и 1×10^{-4} мас. % соответственно; примесей классов *p*-элементов –

Примеси	\overline{X}	S_X	\overline{Y}	S_Y	N_X	N_Y	-lgSum _X	$-lgSum_Y$	-lgSum	±ΔlgSum
Все примеси массива	4.84	1.54	5.40	1.36	71	167	3.06	2.57	1.87	0.37
(без разбиения на классы)										
ГО и легкие	3.54	1.40	3.41	2.00	20	6	2.82	2.16	1.97	0.45
ПМ	5.02	1.04	5.18	1.37	24	73	4.25	3.16	3.54	0.38
ЩМ и ЩЗМ	4.64	1.36	5.49	1.38	12	18	3.28	4.24	3.89	0.60
р-Элементы	5.96	0.88	4.94	0.89	7	30	4.57	3.91	5.13	0.25
РЗЭ	6.78	0.80	6.11	1.19	8	40	5.53	5.16	6.11	0.33
Сумма классов примесей									1.95	0.44

Таблица 5. Интегральные характеристики примесного состава массива образцов оксидов ТМ. Разложение на классы примесей, (–lg) концентрации, мас. %

Примечания. Обозначения см. в табл. 2.

Рис. 4. Функции распределения содержания классов примесей в массиве наиболее чистых образцов оксидов TM (по оси ординат отложено число элементоопределений).

 7×10^{-6} и РЗЭ — 8×10^{-7} мас. %. Таким образом, оценка среднего суммарного содержания примесей как суммы классов в "типичном" образце оксида ТМ полностью определяется примесями класса ГО легкие и равна 1×10^{-2} мас. %.

На рис. 4 приведены функции распределения содержания примесей в классах и во всей совокупности примесей. Кривые смещены в сторону более низких концентраций и более размыты по сравнению с распределениями для массива оксидов РЗЭ. Первый факт обусловлен большей чистотой оксидов ТМ, а второй — меньшим числом экспериментальных данных для оксидов ТМ по сравнению с оксидами РЗЭ и их бо́льшим разбросом.

Сравним характеристики примесного состава массива образцов оксидов ТМ с характеристиками массива образцов ТМ (на Выставке-коллекции представлены высокочистые образцы всех тугоплавких металлов). В табл. 6 приведены оценки (–lg) среднего суммарного содержания и содержания различных классов примесей в массиве наиболее чистых образцов ТМ. Основной вклад в суммарное содержание примесей вносит класс примесей ПМ на уровне 2×10^{-3} мас. %, что на порядок выше, чем в оксидах ТМ. Оценка среднего суммарного содержания примесей классов ГО и легкие и ЩМ, и ЩЗМ существенно ниже, чем для оксидов ТМ, и составляет 3×10^{-4} и 5×10^{-6} мас. % соответственно. Содержание примесей р-элементов и РЗЭ находится на том же уровне, что и для оксидов ТМ. Оценка среднего суммарного содержания примесей как суммы классов в "типичном" образце ТМ определяется классом ПМ и составляет 2 \times 10⁻³ мас. %. Таким образом, ТМ в целом существенно чище, чем их оксиды, за счет более низкого содержания примесей класса ГО и легкие: так, среднее содержание примесей кремния, фтора и хлора в них составляет $3 \times 10^{-5} - 3 \times$ $\times 10^{-6}$ мас. %, что на несколько порядков ниже. чем в оксидах ТМ. Основной вклад в суммарное содержание примесей класса ПМ для обоих массивов вносят примеси ТМ (аналогов), при этом

Примеси	\overline{X}	S_X	\overline{Y}	S_Y	N _X	N_Y	-lgSum _X	-lgSum _Y	-lgSum	$\pm \Delta lgSum$
Все примеси массива (без разбиения на классы)	4.70	1.01	5.36	1.01	130	408	3.14	2.63	2.29	0.23
ПМ	4.48	1.03	5.31	0.92	73	126	3.34	3.76	2.62	0.26
ГО и легкие	4.92	1.01	4.41	1.43	38	39	3.79	3.00	3.59	0.21
РЗЭ	5.13		5.80	0.85	1	89	5.13	4.62	5.13	
р-Элементы	4.78	0.45	5.38	0.73	8	94	4.55	4.14	5.17	0.36
ЩМ и ЩЗМ	5.43	0.82	5.40	1.05	10	60	5.29	4.23	5.29	0.32
Сумма классов примесей									2.57	0.23

Таблица 6. Интегральные характеристики примесного состава массива образцов ТМ. Разложение на классы примесей, (-lg) концентрации, мас. %

Образец	N _X	N_Y	—lgSum _X	—lgSum	±∆lgSum	Основные примеси с установленным содержанием (по убыванию концентрации)	Основные классы примесей	Содержание примесей в классах $-lgSum_{K} \pm \Delta lgSum_{K}$
SiO	36	35	0.77 1.70*	0.75 1.52*	0.04 0.04	$C - 1.5 \times 10^{-1}$; Cl, F, Al – (5-3) × 10 ⁻³ ; Na, K – 1 × 10 ⁻³	ГО и легкие	0.78** 1.83* [,] **
Al ₂ O ₃	21	52	2.17	1.65	0.66	$C < 2 \times 10^{-2}$; Cl, Si, Fe, Mg - 1 × 10 ⁻³	ПМ ГО и легкие	$\begin{array}{c} 1.82 \pm 0.97 \\ 2.20 \pm 0.34 \end{array}$
Bi ₂ O ₃	15	59	2.49	2.03	1.20	$C - 2 \times 10^{-3}$; $Cl - 1 \times 10^{-3}$; $Ca - 2 \times 10^{-5}$	ГО и легкие <i>p</i> -элементы ЩМ и ЩЗМ	2.03 ± 1.21 4.15^{***} 4.26 ± 0.80
Ві (сравнени с Ві ₂ О ₃)	8	65	4.34	4.01	0.55	$Cl - 2 \times 10^{-5}$; $Ca - 1 \times 10^{-5}$	<i>р</i> -элементы ГО и легкие ЩМ и ЩЗМ	4.45*** 4.56 ± 0.72 4.53***
TeO ₂	9	62	3.06	2.74	0.51	Cl $- 3 \times 10^{-4}$; Al $- 2 \times 10^{-4}$; K, Na, Si $- 1 \times 10^{-4}$	ГО и легкие <i>p</i> -элементы ЩМ и ЩЗМ	$\begin{array}{c} 3.01 \pm 0.68 \\ 3.23^{***} \\ 3.52 \pm 0.73 \end{array}$
P ₂ O ₅	7	13	4.41	3.48	0.14	Pb, Bi, $Mn - 1 \times 10^{-5}$		
ZnO	3	10	5.19	4.57	0.41	Cu, Mn – 3×10^{-6}		

Таблица 7. Характеристики примесного состава наиболее чистых образцов оксидов элементов 12–16-й групп ПС Выставки-коллекции, мас. %

Примечание. Обозначения см. в табл. 1.

* Без примеси углерода.

** Оценка по величине суммарного содержания примесей данного класса с установленной концентрацией.

*** Оценка по верхней границе суммарного содержания примесей данного класса (сумма пределов обнаружения; определялись все примеси в классе).

среднее содержание данных примесей для оксидов TM ниже, чем для самих TM.

ОКСИДЫ ЭЛЕМЕНТОВ 12-16-й ГРУПП ПС

Характеристика примесного состава образцов. Образцы ZnO, Al₂O₃, SiO, P₂O₅, Bi₂O₃, TeO₂ поступили на Выставку-коллекцию из ИХВВ РАН, ООО НПФ "Либрус" (г. Москва), ООО "Инновации Сарова", НИИ ОСЧМ (г. Москва), Пермского химзавода, ИНХ СО РАН (г. Новосибирск). В табл. 7 приведены характеристики примесного элементного состава наиболее чистых образцов данных оксидов, выделяются те же классы примесей, что и для оксидов РЗЭ и TM.

Обследованность образцов SiO, Al₂O₃, Bi₂O₃, TeO₂ составляет в среднем 90% (общая) и 25% для примесей с измеренной концентрацией, что позволило рассчитать интегральные характеристики примесного состава для 70% классов примесей в этих образцах. Во всех четырех образцах оксидов присутствуют в заметной концентрации примеси хлора и кислорода, являясь своего рода маркерами уровня чистоты образцов.

Образец SiO получен высокотемпературным восстановлением высокочистого диоксида кремния в инертной среде [12]. Содержит в высокой концентрации примесь углерода (1.5×10^{-1} мас. %), суммарное содержание остальных определявшихся примесей из класса ГО и легкие на порядок ниже. Оценка среднего суммарного содержания примесей классов ЩМ, ЩЗМ и ПМ – 6×10^{-3} мас. %, класса p-элементов – 4×10^{-5} мас. % и класса РЗЭ – 8×10^{-6} мас. %. Таким образом, уровень чистоты образца (1.8×10^{-1} мас. %) обусловлен в основном примесью углерода; без учета данной примеси оценка суммарного содержания как сумма классов примесей составляет 3×10^{-2} мас. %.

Образец Al₂O₃ получен алкоксидным методом через изопропилат алюминия. Оценка среднего суммарного содержания примесей как суммы классов примесей в образце равна 2×10^{-2} мас. %. Основной вклад в суммарное содержание примесей вносят примеси классов ПМ (1.5×10^{-2} мас. %) и ГО и легкие (6×10^{-3} мас. %).

Образец Bi_2O_3 получен методом окисления высокочистого висмута [13]. В наибольшем количестве содержатся примеси С и Сl, определяя уровень чистоты образца (Sum = 9 × 10⁻³ мас. %). Суммарное содержание примесей металлов, вхо-

	Содержа-		Содержа-
Примесь	ние, мас. %	Примесь	ние, мас. %
	Газообразую	щие и легки	e
Cl	3×10^{-4}	F	$\le 1 \times 10^{-4}$
Al	2×10^{-4}	Ν	$\le 2 \times 10^{-5}$
Si	1×10^{-4}	В	$< 5 \times 10^{-6}$
S	$< 5 \times 10^{-4}$		
	р-эле	менты	
I	$\le 2 \times 10^{-4}$	As	$< 3 \times 10^{-5}$
Ge	$< 1 \times 10^{-4}$	Sn	$<2 \times 10^{-5}$
Sb	$< 6 \times 10^{-5}$	Pb	$<2 \times 10^{-5}$
Se	$< 5 \times 10^{-5}$	Ga	$\le 1 \times 10^{-5}$
Br	$< 5 \times 10^{-5}$	Bi	$< 6 \times 10^{-6}$
In	$< 4 \times 10^{-5}$	Tl	$\le 2 \times 10^{-6}$
Щ	елочные и ще	лочно-земел	ьные
K	1×10^{-4}	Sr	$< 2 \times 10^{-5}$
Na	1×10^{-4}	Rb	$<1 \times 10^{-5}$
Mg	2×10^{-5}	Li	$< 5 \times 10^{-6}$
Ca	$< 1 \times 10^{-4}$	Be	$\leq 2.0 \times 10^{-6}$
Ba	$< 3 \times 10^{-5}$	Cs	$\le 1 \times 10^{-6}$
	P	3Э	1
Ce	$< 1 \times 10^{-4}$	Eu	$< 1 \times 10^{-6}$
Pr	$< 8 \times 10^{-5}$	Tm	$< 9 \times 10^{-7}$
Nd	$< 3 \times 10^{-5}$	Но	$< 7 \times 10^{-7}$
La	$< 3 \times 10^{-5}$	Yb	$< 6 \times 10^{-7}$
Sc	$< 1 \times 10^{-5}$	Tb	$< 6 \times 10^{-7}$
Y	$<2 \times 10^{-5}$	Dy	$< 4 \times 10^{-7}$
Gd	$<2 \times 10^{-6}$	Lu	$< 4 \times 10^{-7}$
Sm	$< 2 \times 10^{-6}$	Er	$< 2 \times 10^{-7}$
-	Переходні	ые металлы	-
Fe	3×10^{-5}	Ti	$\leq 1 \times 10^{-5}$
Mn	7×10^{-6}	Hg	$\leq 9 \times 10^{-6}$
Ag	5×10^{-6}	Pd	$\leq 9 \times 10^{-6}$
Mo	$< 2 \times 10^{-4}$	Hf	$\leq 8 \times 10^{-6}$
Ru	$\leq 1 \times 10^{-4}$	Zr	$\leq 8 \times 10^{-6}$
Zn	$<1 \times 10^{-4}$	W	$< 7 \times 10^{-6}$
Cr	$\leq 1 \times 10^{-4}$	Nb	$<5 \times 10^{-6}$
V	$<5 \times 10^{-5}$	Re	$\leq 4 \times 10^{-6}$
Os	$<5 \times 10^{-5}$	Cd	$< 3 \times 10^{-6}$
Pt	$< 3 \times 10^{-5}$	Та	$\leq 2 \times 10^{-6}$
Au	$\leq 2 \times 10^{-5}$	Co	$\leq 2 \times 10^{-6}$
Ni	$< 2 \times 10^{-5}$	Ir	$\leq 1 \times 10^{-6}$
Cu	$< 2 \times 10^{-5}$	Rh	$\leq 1 \times 10^{-6}$
Cu	N4 A 10	i vii	1 ^ 10

Характеристика	Сумма содерж.	Логарифм	Погрешность
Измеренные	$8.6 imes 10^{-4}$	3.06	
Измеренные + пределы	$3.3 imes 10^{-3}$	2.49	
Оценка по сумме классов	$1.8 imes 10^{-3}$	2.74	0.51
Оценка по всем	3.0×10^{-3}	2.52	0.70

Рис. 5. Паспорт образца диоксида теллура.

дящих во все классы, составляет 2×10^{-4} мас. %. На Выставке-коллекции имеется образец висмута, поступившего из той же организации, что и его оксид (табл. 7). Уровень чистоты данного образца существенно выше (Sum = 1×10^{-4} мас. %) за счет меньшего содержания примесей класса ГО и легкие; суммарное содержание примесей металлов, входящих во все классы, составляет 7×10^{-5} мас. %. Таким образом, при окислении висмута происходит его загрязнение распространенными примесями и хлором.

Образец TeO₂ получен глубокой очисткой материала квалификации "х. ч." методом вакуумной дистилляции [14]. Основной вклад в суммарное содержание примесей вносит класс ГО и легкие (1×10^{-3} мас. %). Оценка суммарного содержания примесей класса ЩМ и ЩЗМ – 3×10^{-4} мас. %, класса ПМ – 8×10^{-5} мас. %. Концентрация всех примесей классов *p*-элементов и РЗЭ ниже предела обнаружения, сумма пределов обнаружения (верхняя граница содержания) для этих классов составляет 6×10^{-4} и 3×10^{-4} мас. % соответствен-

										13		14	15	16
										Al ₂ O	3 SiO	SiO ₂ *	P ₂ O ₅	
										5 N	6N	7N	4N3	
3	4	5	6	7	8	9	10	11	12	<u>4N</u>	4N4	<u>7N</u>	<u>5N6</u>	
Sc ₂ O ₃	TiO ₂								ZnO					
5N	5 N								5N5					
4N	<u>4N6</u>								<u>6N5</u>					
Y ₂ O ₃		Nb ₂ O ₅	MoO ₃											TeO ₂
5N		5 N	5N5											5N5
<u>5N3</u>		<u>4N5</u>	<u>5N</u>											<u>5 N</u>
La ₂ O ₃		Ta ₂ O ₅	WO ₃										Bi ₂ O ₃	
6N		5 N	5 N										5N8	
4N4		<u>4N7</u>	<u>7 N5</u>										<u>5 N8</u>	
-						·					•			·
CeO ₂	Pr_6O_1	1 Nd ₂ O	3		Eu_2O_3	Gd ₂ O ₃	Tb	$_{4}O_{7}$		Ho_2O_3	$\mathrm{Er}_{2}\mathrm{O}_{3}$	Tm_2O_3		
5 N	5N+	5N			6N	5N	5N			5N	5N	5 N		
<u>4N5</u>	3N5	<u>4N6</u>			4 N	4N	<u>4N</u>	7		4N 3	4 N	4 N		

Рис. 6. Уровень чистоты по металлам наиболее чистых образцов оксидов Выставки-коллекции в сравнении с достигнутым мировым уровнем (воспроизведена часть ПС). В ячейках: 2-я строка – актуальные данные зарубежных фирм; 3-я строка – уровень чистоты образцов Выставки-коллекции, <u>выделены</u> образцы, близкие к мировому уровню. *Образцы SiO₂ обсуждаются в [2,3].

но. Оценка суммарного содержания примесей в образце — 1.8×10^{-3} мас. %. На рис. 5 представлен паспорт образца TeO₂ Выставки-коллекции, включающий таблицу с примесным составом образца, исходные гистограммы и функцию распределения примесей по концентрации.

Образцы P_2O_5 и ZnO проанализированы на 13–20 примесей металлов. В образце P_2O_5 содержание каждой из 7 примесей с измеренной концентрацией не превышает 1×10^{-5} мас. %. Образец ZnO получен путем гидролиза высокочистого диэтилцинка [15]; содержание каждой из 13 примесей не превышает $n \times 10^{-6}$ мас. %. Примеси классов ГO и легкие и P3Э в обоих образцах не определялись. Оценка суммарного содержания примесей в обоих образцах значимо превосходит суммарное содержание примесей с установленной концентрацией, что позволяет предположить вероятное присутствие неопределявшихся примесей на уровне 10^{-4} – 10^{-5} мас. % для P_2O_5 и 10^{-5} – 10^{-6} мас. % для ZnO.

ЗАКЛЮЧЕНИЕ

Мировой уровень чистоты оксидов. Оценены среднее суммарное содержание и относительный вклад различных классов примесей в отдельных образцах и массивах высокочистых оксидов Выставки-коллекции веществ особой чистоты. В табл. 8 сведена информация по всем исследованным объектам. Прослежен уровень влияния каждого класса примесей на величину их суммарного содержания в массивах и отдельных образцах. У большинства оксидов основное влияние оказывает класс ГО и легкие. Класс примесей-аналогов находится, как правило, на втором месте. В отличие от оксидов для рассмотренных простых веществ (ТМ и висмута) содержание класса ГО и легкие на два порядка ниже, чем для оксидов, примеси-аналоги выходят на первое место, определяя уровень чистоты данных простых веществ, на 1-2 порядка лучший чем у оксидов.

Величина суммарной концентрации различных классов примесей в образцах оксидов разнесена по оси концентраций на 5–7 порядков (табл. 8), основной вклад в сумму примесей дают один—два класса с максимальным суммарным содержанием примесей.

Содержание примесей металлов (Sum_{met}) в оксидах в большинстве случаев ниже содержания всех примесей (Sum) на 1-2 порядка (табл. 8).

	1	ĩ					
Macran	K	лассы примесей и их	суммарное содержани	ие в массивах и отде.	пьных образцах окси	цов, мас. %	
Identical	$n \times 10^{-1}$	$n \times 10^{-2}$	$n \times 10^{-3}$	$n \times 10^{-4}$	$n \times 10^{-5}$	$n \times 10^{-6}$	$n \times 10^{-7}$
Оксиды РЗЭ		Sum ГО и легкие	Sum _{met} РЗЭ, ЩМ и ЩЗМ ПМ		р-элементы		
Оксиды ТМ		Sum ГО и легкие		Sum _{met} ПМ, ЩМ и ЩЗМ		р-элементы	P3Э
TM (сравнение с окси- дами TM)			Sum Sum _{met} IIIM	ГО и легкие		РЗЭ <i>р</i> -элементы ЩМ и ЩЗМ	
Массив образцов кварце- вого стекла [2]					Sum Sum _{met}	ЩМ и ЩЗМ ПМ <i>р</i> -элементы	
Образцы оксидов элементи	ов 12—16-й груп	п ПС					
SiO	Sum ГО и легкие*		Sum _{met} ЩМ и Щ3М, ПМ		р-элементы	P39	
Al ₂ O ₃		Sum, Sum _{met} ПМ	ГО и легкие	ЩМ и ЩЗМ <i>р</i> -элементы	P3Э**		
Bi ₂ O ₃			Sum ГО и легкие	Sum _{mer}	<i>р</i> -элементы** ЩМ и ЩЗМ ПМ РЗЭ		
Ві (сравнение с В і ₂ О ₃)					Sum, Sum _{met} р-элементы ** ГО и легкие ЩМ и ЩЗМ	P39 P39	
TeO_2			Sum, Sum _{mer}	ГО и легкие <i>р</i> -элементы** ЩМ и ЩЗМ РЗЭ**	WII		
Примечание. Sum – оценка су меси-аналоги.	уммарного содеру	кания примесей; Sum _{mer}	_t – оценка суммарного с	одержания примесей	металлов; выделенным	прифтом обозна	ачены при-

Таблица 8. Сопоставление содержания классов примесей в массивах и отдельных образцах оксидов

* Оценка по величине суммарного содержания примесей данного класса с установленной концентрацией.
** Оценка по верхней границе суммарного содержания примесей данного класса (сумма пределов обнаружения; определялись все примеси в классе).

ПРИМЕСНЫЙ СОСТАВ ОБРАЗЦОВ ОКСИДОВ

303

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ

том 57 № 3

3 2021

Сравнение массивов образцов из различных разделов Выставки-коллекции, посвященных высокочистым твердым молекулярным веществам (оксидам, галогенидам [1], стеклам [2]), показывает, что уровень чистоты массивов по всем примесям возрастает в последовательности: оксиды и галогениды РЗЭ (Sum = $3 \times 10^{-2} - 2 \times 10^{-2}$ мас. %) \rightarrow оксиды ТМ (Sum = 1×10^{-2} мас. %) \rightarrow галогениды ЩМ, ЩЗМ и ПМ (Sum = $3 \times 10^{-3} - 2 \times 10^{-3}$ мас. %) \rightarrow халькогенидные и теллуритные стекла (Sum = 2×10^{-4} мас. %) \rightarrow кварцевое стекло (Sum = 9×10^{-6} мас. %). При этом суммарное содержание примесей в отдельных образцах варьируется в широких пределах, достигая минимальных значений $n \times 10^{-4} - n \times 10^{-6}$ мас. %).

На рис. 6 приведен достигнутый в настоящее время уровень чистоты оксидов по актуальным данным зарубежных фирм [16-21] и лучших образцов оксидов Выставки-коллекции. Уровень чистоты представлен числом девяток (6N = = 99.9999 мас. % основы и т.д.). Содержание основы для промышленных марок определяется как (100–Sum_{*mb*}) мас. %, где Sum_{*mb*} – измеренное суммарное содержание ограниченного набора лимитируемых примесей металлов (metals basis). С целью корректного сравнения промышленных марок и образцов Выставки-коллекции для последних на рис. 6 также приведен уровень чистоты по примесям металлов: указана величина (100-Sum_{met}), мас. %, где Sum_{met} – теоретическая оценка суммарного содержания всех примесей металлов, являющаяся частью общего содержания примесей.

Из рис. 6 следует, что более половины образцов оксидов Выставки соответствуют мировому уровню. Достигнутый мировой уровень чистоты оксидов РЗЭ 5N-6N, уровень образцов оксидов РЗЭ Выставки – 4N-5N. Достигнутый мировой уровень чистоты оксидов ПМ – 5N-6N, *p*-элементов – 5N-7N. Большинство наиболее чистых образцов оксидов ПМ и *p*-элементов, представленных на Выставке, соответствуют уровню зарубежных фирм. Необходимо продолжать формировать на Выставке-коллекции класс высокочистых оксидов, чтобы иметь ясную картину об уровне чистоты этих востребованных соединений у нас в стране.

БЛАГОДАРНОСТЬ

Работа выполнена в рамках темы № 0095-2019-0002 "Развитие Постоянно действующей Выставки-коллекции веществ особой чистоты. Базы данных по высокочистым веществам и материалам для микроэлектроники и фотоники" государственного задания ИХВВ РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. Лазукина О.П., Малышев К.К., Волкова Е.Н., Чурбанов М.Ф. Примесный состав высокочистых твердых галогенидов // Неорган. материалы. 2019. Т. 55. № 12. С. 1351–1362.
- 2. Лазукина О.П., Малышев К.К., Волкова Е.Н., Чурбанов М.Ф. Примесный состав образцов высокочистых стекол Выставки-коллекции веществ особой чистоты // Неорган. материалы. 2020. Т. 56. № 4. С. 429–437.
- 3. Лазукина О.П., Малышев К.К., Волкова Е.Н., Чурбанов М.Ф. Высокочистые оксиды, представленные на Выставке-коллекции веществ особой чистоты / Неорган. материалы. 2010. Т. 46. № 11. С. 1331– 1337.
- 4. Малышев К.К., Лазукина О.П., Волкова Е.Н., Чурбанов М.Ф. Новая методика оценки среднего и суммарного содержания примесей в образцах высокочистых веществ // Неорган. материалы. 2016. Т. 52. № 3. С. 356–366.
- Гасанов А.А., Юрасова О.В., Данилова Е.А., Арзманова А.Б. Разработка методов синтеза наноразмерных порошков оксидов церия и европия // XIII Российско-китайский симп. "Новые материалы и технологии". Сборник трудов в 2 т. М.: Интерконтакт Наука, 2015. С. 770–772.
- Данилова Е.А., Гасанов А.А., Горячева Е.Г., Юрасова О.В. Разработка методов синтеза наноразмерных порошков оксидов европия и гадолиния // II Тез. докл. Симп. и VII Школа молодых ученых "Новые высокочистые материалы" (29–30 октября 2013 г.) Нижний Новгород. С. 19–20.
- Абрамов А.М., Соболь Ю.Б., Галиева Ж.Н., Семенов А.А., Кулагин Б.Р., Галанцев А.В. Получение высокочистого оксида празеодима // Тез. докл. XV Всерос. конф. и VIII Школа молодых ученых "Высокочистые вещества и материалы. Получение, анализ, применение" (26–29 мая 2015 г.) Нижний Новгород. С. 50.
- Галиева Ж.Н., Семенов А.А., Кулагин Б.Р., Шулин С.С., Абрамов А.М., Соболь Ю.Б. Получение высокочистого оксида неодима для лазеров // XVI Тез. докл. Всерос. конф. и IX Школа молодых ученых "Высокочистые вещества и материалы. Получение, анализ, применение" (28–31 мая 2018 г.) Нижний Новгород. С. 32.
- Девятых Г.Г., Карпов Ю.А., Осипова Л.И. Выставкаколлекция веществ особой чистоты. М.: Наука, 2003. 236 с.
- Моисеев А.Н., Чилясов А.В., Дорофеев В.В., Краев И.А., Пименов В.Г., Евдокимов И.И. Способ очистки триоксида молибдена: Патент РФ № 2382736. Приоритет от 16.11.2008.
- Моисеев А.Н., Чилясов А.В., Дорофеев В.В., Краев И.А. Способ получения высокочистого оксида вольфрама(VI): Патент РФ № 2341461. Приоритет от 24.10.2007.
- Грибов Б.Г., Зиновьев К.В., Калашник О.Н., Герасименко Н.Н., Смирнов Д.И., Суханов В.И. Структура и фазовый состав монооксида кремния // Электроника. 2011. № 4(90). С. 3–8.

- 13. Новоселов И.И., Шубин Ю.В., Макаров И.В. Синтез особочистого оксида висмута при окислении расплава металла кислородом (опыт малотоннажного производства) // Тез. докл. XIII Всерос. конф. "Высокочистые вещества и материалы. Получение, анализ, применение" (28–31 мая 2007 г.) Нижний Новгород. С. 65–68.
- Моисеев А.Н., Чилясов А.В., Дорофеев В.В., Чурбанов М.Ф., Снопатин Г.Е., Краев И.А., Пименов В.Г., Липатова М.М. Способ очистки диоксида теллура: Патент РФ № 2301197. Приоритет от 11.07.2006.
- 15. Салганский Ю.М., Моисеев А.Н., Шакаров М.А., Гордеев А.М., Кустова Г.Н., Ролдугин Д.А., Лаза-

рев С.Е., Сенников П.Г. Получение высокочистого оксида цинка из диэтилцинка // Высокочистые вещества. 1991. № 4. С. 150–155.

- 16. American Elements (USA) https://www.americanelements.com/.
- 17. Alfa Aesar https://www.alfa.com/ru/.
- 18. abcr GmbH (Deutschland) https://www.abcr.de/.
- 19. Creschent Chemical Co. (USA) http://www.cre-schem.com/.
- 20. Strem Chemicals, Inc. (USA) https://www.strem.com/.
- 21. Advanced Technology & Industrial Co. Ltd (Hong Kong) http://www.advtechind.com/.