УДК 541.13.544.65

ЭЛЕКТРИЧЕСКИЕ И ФОТОЭЛЕКТРОХИМИЧЕСКИЕ СВОЙСТВА ТОНКИХ ПЛЕНОК M₀S₂, ПОЛУЧЕННЫХ ЭЛЕКТРООСАЖДЕНИЕМ

© 2021 г. В. А. Меджидзаде^{1,} *, С. Ф. Джафарова¹, И. Касумоглы², Ш. О. Эминов², А. Ш. Алиев¹, А. Н. Азизова¹, Д. Б. Тагиев¹

¹Институт катализа и неорганической химии им. академика М. Нагиева Национальной академии наук Азербайджана, пр. Г. Джавида, 113, Баку, АZ 1143 Азербайджан

²Институт физики им. академика Г. Абдуллаева Национальной академии наук Азербайджана, пр. Г. Джавида, 131, Баку, AZ 1143 Азербайджан

*e-mail: vuska_80@mail.ru Поступила в редакцию 23.10.2020 г. После доработки 17.11.2020 г. Принята к публикации 19.11.2020 г.

Методом электрохимического осаждения из водных электролитов получены тонкие пленки MoS₂ с *n*-типом проводимости и с помощью современных методов анализа (РФА, СЭМ, рамановская спектроскопия) изучены их некоторые электрические и фотоэлектрохимические свойства. Исследованы вольт-амперная характеристика и температурная зависимость электропроводности, а также рассчитаны коэффициент температурной чувствительности B = 16376 K, температурный коэффициент электрического сопротивления при 400 K ($\alpha = 0.182$ K⁻¹), 500 K ($\alpha = 0.095$ K⁻¹) и ширина запрещенной зоны $E_g = 1.41$ эВ. Полученные результаты показывают, что тонкие пленки MoS₂ обладают полезными фотоэлектрохимическими свойствами и могут быть использованы для преобразования солнечной энергии.

Ключевые слова: электроосаждение, электропроводность, вольт-амперная характеристика, рамановская спектроскопия, фотоэлектрохимические свойства

DOI: 10.31857/S0002337X21040102

введение

В настоящее время в связи с развитием науки и техники потребность в синтезе и исследовании новых материалов для применения в тонкопленочных солнечных батареях с каждым годом интенсивно растет [1–9]. Дихалькогениды переходных металлов – важный класс двумерных материалов – в последнее время вызывают большой исследовательский и прикладной интерес благодаря своим уникальным электронным и химическим свойствам. В частности, дисульфид молибдена (MoS₂) был тщательно изучен для потенциальных применений в гибких электронных устройствах, наноэлектронике [10-12], а также в оптоэлектронике [13-15]. Дихалькогенид молибдена MoS₂, являющийся непрямозонным полупроводником с энергетическим зазором 0.9 эВ, в объемном состоянии является слоистым полупроводником, относящимся к классу соединений переходных металлов. Плоскость переходных атомов Мо этого соединения расположена между двумя плоскостями атомов халькогена S, связанных тригонально-призматической геометрией. Объемный MoS₂ построен

из ковалентно связанных слоев S-Mo-S, соединенных слабыми ван-дер-ваальсовыми связями.

Известно [16–19], что в зависимости от метода и режима получения тонкие пленки MoS₂ демонстрируют разные электрические и фотоэлектрохимические свойства. В [16] изучены фотоэлектрохимические свойства химически расслоенного MoS₂, осажденного на поверхности оксида олова, легированного фтором (SnO : F, FTO), и структуры TiO₂-MoS₂. Исследование пленок MoS₂, осажденных на FTO, показало, что фотовозбужденные электроны в MoS₂ могут быть переданы в электрод, в то время как дырки компенсируются анионами электролита, приводя к генерации фототока. Зависимость фототока от толщины пленки MoS₂ демонстрирует резкое падение эффективности с увеличением ее толщины, поэтому монослои MoS₂ производят самый высокий фототок.

В работе [17] тонкие пленки MoS₂ наносили методом электроосаждения на гибкую сетку из нержавеющей стали. Исследовано влияние отжига при температурах от 200 до 800°С в атмосфере

азота в течение 30 мин на структурные, морфологические, оптические и электрические свойства образцов. Рентгенофазовый анализ показал, что тонкая пленка MoS_2 , отожженная при 700°С, с предпочтительной кристаллографической ориентацией (002) обладает наилучшим качеством. Отжиг при температуре выше 800° С приводил к значительной агломерации MoS_2 . По данным спектров диффузного отражения в видимой области спектра ширина запрещенной зоны тонких пленок находится в диапазоне от 1.52 до 1.56 эВ. Эти результаты показывают, что такие тонкопленочные образцы MoS_2 наиболее перспективны среди халькогенидных материалов, подходящих для фотоэлектрохимических применений [17, 18].

Как видно из вышеизложенного, при исследовании полупроводниковых и фотоэлектрохимических свойств MoS₂ разные авторы получили различные результаты.

Цель настоящей работы состояла в определении некоторых электрических и фотоэлектрохимических характеристик тонких пленок MoS_2 , полученных методом электроосаждения на стеклянные пластины, покрытые прозрачными проводящими тонкими пленками оксида индия-олова $(In_2O_3)_{0.9} \cdot (SnO_2)_{0.1}$ (ITO), а также пленок, осажденных на никелевые подложки.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Пленки ITO наносились на стеклянные подложки методом реактивного высокочастотного магнетронного напыления на установке Z-550 Levbold-Heraouz в смеси аргона с кислородом внутри камеры. Предварительно химически очищенные стекла подвергались ионной очистке в магнетронном разряде аргона в вакуумной камере. Мощность ВЧ-разряда составляла 500 Вт, время очистки – 4 мин. Затем, не нарушая вакуума, проводили магнетронное распыление мишени ITO. Мощность разряда составляла 100 Вт, время осаждения варьировалось в зависимости от требуемой толщины пленки. Выращенные пленки подвергались дополнительному термическому отжигу в течение 10 мин в атмосфере аргона при 673 К для улучшения качества.

Тонкие пленки MoS_2 получали в стеклянной трехэлектродной электрохимической ячейке в потенциостате IVIUMSTAT Electrochemical Interface из электролитов состава 1М $Na_2MoO_4 \cdot 2H_2O + 0.1$ M Na_2SO_3 на Ni- (площадью 2 см²) и ITO- (~4 см²) электродах в интервале потенциалов от -0.55 до -1.0 В. Выращенные пленки подвергались термическому отжигу в течение 10 мин в атмосфере аргона при 623, 653 и 953 К. Зависимость электропроводности от температуры изме-

ряли в интервале 295—420 К. Для измерения температурной зависимости собственного электросопротивления тонкие пленки MoS₂ осаждали на Ni-электроды потенциостатическим и гальваностатическим методами.

Морфология, рельеф, а также элементный состав пленок MoS₂ изучали с помощью сканирующего электронного микроскопа (СЭМ) марки Carel Zeiss Sigma, а фазовый состав – с помощью рентгенофазового анализатора D2 Phaser (Bruker, Germany). Толщину пленок MoS₂ определяли посредством микроскопа Линника марки МИИ-4. Рамановские спектры образцов получали на установке Confocal Raman microscope Nanofinder 30-NM01 при длине волны возбуждения $\lambda =$ = 532 нм. После подтверждения получения химического соединения MoS₂ различными методами анализа были исследованы некоторые электрофизические и фотоэлектрохимические свойства пленок. Тип проводимости тонких пленок определялся с помощью термозонда [20].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Рентгенограммы тонких пленок Mo–S, полученных электроосаждением на Ni-электроде и отожженных при разных температурах, показаны на рис. 1. Видно, что в зависимости от условий термической обработки образцов, осажденных в одинаковых условиях, образуются разные соединения. Соединение, полученное после отжига при температуре 623 K, соответствует MoS_2 , в то время как в результате отжига при 653 и 923 K получены соответственно соединения Mo_3S_4 и NiMoO₄. Поскольку целью нашего исследования являлось изучение свойств MoS_2 , два других соединения не рассматривались.

Результаты СЭМ также показывают совместное осаждение двух соединений (рис. 2).

Получение MoS₂ также подтверждается результатами рамановской спектроскопии. В MoS₂, как и во всех слоистых полупроводниках, имеются два типа колебательных мод: колебательные моды внутри слоев (внутрислойные) и межслойные моды, возникающие в результате движений слоев. Внутрислойные моды колебаний в первую очередь связаны с химическим составом слоя, однако на них может влиять количество слоев в структуре. Из-за большой массы слоев межслойные моды наблюдаются на очень низких частотах, и их положение зависит от количества слоев. Как известно, рамановский спектр в MoS_2 характеризуется наличием четырех комбинационных активных мод первого порядка [21]: 32 см⁻¹ (E_{2g}^2), 286 см⁻¹ (E_{1g}), 383 см⁻¹ (E_{2g}^1) и 408 см⁻¹ (A_{1g}). Мода

Рис. 1. Рентгенограммы образцов тонких пленок Мо-S, полученных электроосаждением: состав электролита 1 М $Na_2MoO_4 \cdot 2H_2O + 0.1 \text{ M } Na_2SO_3, T = 338 \text{ K}, E_v = 0.03 \text{ B/c}.$

Рис. 2. СЭМ-изображение поверхности (а) и элементный состав (б) образца тонкой пленки Мо–S, полученной электроосаждением на Ni-электроде.

 E_{2a}^{2} возникает из-за колебаний слоя S–Mo–S относительно соседних слоев. В эксперименте с обратным рассеянием на базисной плоскости мода

 E_{1g} запрещена. Плоская мода E_{2g}^1 является результатом противоположной вибрации двух атомов S относительно атома Мо, в то время как мода A_{1g} связана с внеплоскостной вибрацией только атомов S в противоположных направлениях.

Из рис. 3 видно, что активный рамановский сдвиг для MoS₂ находится в интервале частот 350-450 см⁻¹. При этом пики, наблюдаемые при $350 \text{ и } 380 \text{ см}^{-1}$, соответствуют атомам серы, колеб-

лющимся в одном направлении, а пики при 420 см^{-1} соответствуют атому молибдена.

Температурная зависимость электропроводности тонких пленок MoS₂ показана на рис. 4. Видно, что в исследованном интервале температур наблюдаются 2 прямолинейных участка с различными наклонами, что характерно для полупроводников с примесной проводимостью. Первый из них соответствует температурному интервалу 290-360 К, в пределах которого электропроводность полупроводника определяется главным образом примесной составляющей удельной электропроводности, т.е. концентрацией и подвижностью основных носителей заряда. При температурах выше 360 К при-

МЕДЖИДЗАДЕ и др.

Рис. 3. Спектр комбинационного рассеяния тонких пленок Mo–S, полученных электроосаждением на поверхности ITO и термообработанных при 623 К: состав электролита 1 M Na₂MoO₄ · 2H₂O + 0.1 M Na₂SO₃, T = 338 K, $E_v = 0.03$ B/c; на вставке область активного смещения в диапазоне 350-450 см⁻¹.

Рис. 4. Температурная зависимость собственной проводимости тонких пленок MoS₂.

Таблица 1. Параметры тонких пленок MoS₂, полученных электроосаждением из водных электролитов

$E_g^{\text{собст}}$, эВ	$E_g^{\text{прим}},$ эВ	B, K	$\alpha^{400}, \mathrm{K}^{-1}$	$\alpha^{500}, \mathrm{K}^{-1}$
1.41	0.19	16376	1.82×10^{-1}	$9.5 imes 10^{-2}$

месные центры можно считать полностью ионизированными и происходит переход примесной проводимости в собственную.

На основе этой зависимости рассчитаны энергии активации примесных центров $E_a = 0.03$ и 0.23 эВ.

Ширина запрещенной зоны (E_g), вычисленная по температурным зависимостям электропроводности по формуле $E_g = 2k \text{tg}\alpha$, для собственной проводимости равна 1.41 эВ, а для примесной — 0.19 эВ. На основе полученных значений E_g вычислен коэффициент температурной чувствительности

по формуле $B = \frac{E_g}{k}$. По найденному значению *B* с помощью формулы $\alpha = \frac{B}{T^2}$ вычислены температурные коэффициенты электросопротивления α при разных температурах. Полученные значения E_g , *B* и α при 400 и 500 K приведены в табл. 1.

Вольт-амперная характеристика тонкослойного образца MoS_2 до и после термообработки при 623 К показана на рис. 5. Видно, что в отличие от массивных полупроводников ток в термообработанной пленке с ростом напряжения примерно до 0.9–1.0 В растет линейно, а затем наблюдается его постепенное насыщение. В этой области насыщения концентрации дырок и электронов равны. При малых значениях напряжения скорость генерации велика и ток с ростом напряжения растет. С дальнейшим ростом на-

Рис. 5. Вольт-амперные характеристики тонких пленок MoS₂: а – термообработанный образец, б – образец без термообработки.

Рис. 6. Спектральная зависимость тока фотопроводимости тонкого слоя MoS₂.

пряжения (1.0–1.2 В) вновь наблюдается рост тока. По мере увеличения напряжения поток носителей заряда из объема кристалла на его поверхность растет при достижении поверхности прекращается. Поскольку поверхность находится в контакте с воздухом, скорость поверхностной рекомбинации превышает скорость генерации. С ростом напряжения скорость генерации сравнивается со скоростью рекомбинации и наблюдается насыщение тока. Поэтому зависимость тока от напряжения линейная. Следует также отметить, что наличие этой прямой линии в вольт-амперной характеристике играет ключевую роль в конструкции устройства и называется "рабочей зоной". На рис. 6 показана спектральная зависимость тока фотопроводимости в диапазоне длин волн 300-700 нм.

Фотоэлектрохимические свойства осажденных полупроводниковых тонких пленок MoS_2 также изучены на ITO-электродах в темноте и при освещении. Поляризационные кривые снимались в 0.5 М растворе Na_2SO_4 при потенциалах от 1.0 до – 1.0 В. Сравнение рис. 7а и 7б показывает, что под воздействием света тонкий слой MoS_2 проявляет фотоэлектрохимические свойства. Это четко отражено на анодной ветви кривой в диапазоне потенциалов от –0.5 до 0.5 В. Самая высокая фотоактивность проявляется при нулевом потенциале. Это указывает на то, что тонкие пленки MoS_2 могут быть использованы в преоб-

Рис. 7. Поляризационные кривые тонких пленок MoS_2 на ITO, снятые в темноте (a) и при освещении (б).

разовании солнечной энергии, в фотоэлементах, фототранзисторах и других устройствах. Увеличение тока в направлении анода указывает на то, что осажденные тонкие пленки MoS₂ имеют *п*-тип проводимости.

ЗАКЛЮЧЕНИЕ

Изучены электрические и фотоэлектрохимические свойства тонких полупроводниковых пленок MoS₂, осажденных из водных электролитов. Получение стехиометрических тонких пленок толщиной 4–6 мкм подтверждено методами СЭМ, РФА и рамановской спектроскопии. Установлено, что полученные пленки имеют *n*-тип проводимости.

Измерены вольт-амперная характеристика, температурная зависимость электропроводности тонких слоев и рассчитаны коэффициент температурной чувствительности B, температурный коэффициент электропроводности α , ширина запрещенной зоны E_g . При освещении и в темноте сняты поляризационные кривые и изучены фотоэлектрохимические свойства пленок MoS_2 .

Результаты показывают, что тонкие пленки MoS_2 фотоэлектрохимически активны и могут быть использованы в преобразовании солнечной энергии, в фотоэлементах, транзисторах и других устройствах.

БЛАГОДАРНОСТЬ

Работа выполнена при финансовой поддержке Национальной академии наук Азербайджана в рамках научно-исследовательских программ по приоритетным направлениям в 2019—2020 годах.

СПИСОК ЛИТЕРАТУРЫ

- Shin S.Y., Cheong B., Choi Y.G. Local Structural Environments of Ge Doped in Eutectic Sb–Te Film Before and After Crystallization // J. Phys. Chem. Solids. 2018. V. 117. P. 81–85. https://doi.org/10.1016/j.jpcs.2018.02.021
- Aliyev A.Sh., Elrouby M., Cafarova S.F. Electrochemical Synthesis of Molybdenum Sulfide Semiconductor // Mater. Sci. Semicond. Proc. 2015. V. 32. P. 31–39. https://doi.org/10.1016/j.mssp.2015.01.006
- Munshi A.H., Sasidharan N., Pinkayan S., Barth K.L., Sampath W.S., Ongsakul W. Thin–Film CdTe Photovoltaics–the Technology for Utility Scale Sustainable Energy Generation // J. Sol. Energy. 2018. V. 173. P. 511–516. https://doi.org/10.1016/j.solener.2018.07.090
- Aliyev A.Sh., Majidzade V.A., Soltanova N.Sh., Tagiyev D.B., Fateev V.N. Some Features of Electrochemically Deposited CdS Nanowires // Chem. Problems. 2018. V. 16. № 2. P. 178–185. https://doi.org/10.32737/2221-8688-2018-2-178-185
- Chen C., Bobela D.C., Yang Y., Lu Sh., Zeng K., Ge C., Yang B., Gao L., Zhao Y., Beard M.C., Tang J. Characterization of Basic Physical Properties of Sb₂Se₃ and its Relevance for Photovoltaics // Front. Optoelectron. 2017. V. 10. № 1. P. 18–30. https://doi.org/10.1007/s12200-017-0702-z
- 6. *Majidzade V.A*. The Effect of Various Factors on the Composition of Electrolytic Thin Films Sb-Se // Chem. Prob. 2018. V. 16. № 3. P. 331–336. https://doi.org/10.32737/2221-8688-2018-3-331-336
- Henríquez R., Vasquez C., Briones N., Muñoz E., Leyton P., Dalchiele E.A. Single Phase FeS₂ (Pyrite) Thin Films Prepared by Combined Electrodeposition and Hydrothermal Low Temperature Techniques // Int. J. Electrochem. Sci. 2016. V. 11. P. 4966–4978. https://doi.org/10.20964/2016.06.17
- Fateev V.N., Alexeeva O.K., Korobtsev S.V., Seregina E.A., Fateeva T.V., Grigoriev A.S., Aliyev A.Sh. Problems of Accumulation and Storage of Hydrogen // Chem. Probl. 2018. V. 16. № 4. P. 453–483. https://doi.org/0.32737/2221-8688-2018-4-453-483

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 57 № 4 2021

- 9. Kulova T.L., Nikolaev I.I., Fateev V.N., Aliyev A.Sh. Modern Electrochemical Systems of Energy Accumulation // Chem. Probl. 2018. V. 16. № 1. P. 9–34. https://doi.org/10.32737/2221-8688-2018-1-9-34
- Kim S., Konar A., Hwang W.S., Lee J.H., Lee J., Yang J., Jung C., Kim H., Yoo J.B., Choi J.Y., Jin Y.W., Lee S.Y., Jena D., Choi W., Kim K. High-Mobility and Low-Power Thin-Film Transistors Based on Multilayer MoS₂ Crystals // Nat. Commun. 2012. № 3. 1011. https://doi.org/10.1038/ncomms2018
- Choi W., Cho M.Y., Konar A., Lee J.H., Cha G.-B., Hong S.C., Kim S., Kim J., Jena D., Joo J., Kim S. High-Detectivity Multilayer MoS₂ Phototransistors with Spectral Response from Ultraviolet to Infrared // Adv. Mater. 2012. V. 24. P. 5832–5836. https://doi.org/10.1002/adma.201201909
- Radisavljevic B., Whitwick M.B., Kis A. Integrated Circuits and Logic Operations Based on Single-Layer MoS₂ // ACS Nano. 2011. № 5. P. 9934–9938. https://doi.org/10.1021/nn203715c
- Wang H., Yu L., Lee Y.-H., Shi Y., Hsu A., Chin M.L., Li L.-J., Dubey M., Kong J., Palacios T. Integrated Circuits Based on Bilayer MoS₂ Transistors // Nano Lett. 2012. № 12. P. 4674–4680. https://doi.org/10.1021/n1302015v
- Yin Z.Y., Li H., Jiang L., Shi Y.M., Sun Y.H., Lu G., Zhang Q., Chen X.D., Zhang H. Single-Layer MoS₂ Phototransistors // ACS Nano. 2012. № 6. P. 74–80.
- 15. Lee H.S., Min S.W., Chang Y.G., Park M.K., Nam T., Kim H., Kim J.H., Ryu S., Im S. MoS₂ Nanosheet Pho-

totransistors with Thickness-Modulated Optical Energy Gap // Nano Lett. 2012. № 12. P. 3695–3700. https://doi.org/10.1021/n1301485q

- King L.A., Zhao W., Chhowalla M., Riley D.J., Eda G. Photoelectrochemical Properties of Chemically Exfoliated MoS₂ // J. Mater. Chem. A. 2013. V. 31. № 1. P. 8935–8941. https://doi.org/10.1039/c3ta11633f
- 17. Lamouchi A., Assaker I.B., Chtourou R. Effect of Annealing Temperature on the Structural, Optical, and Electrical Properties of MoS₂ Electrodeposited onto Stainless Steel Mesh// J. Mater. Sci. 2017. V. 52. № 8. P. 4635–4646. https://doi.org/10.1007/s10853-016-0707-9
- Anand T.S. Synthesis and Characterization of MoS₂ Films for Photoelectrochemical Cells // Sains Malays. 2009. V. 38. № 1. P. 85–89.
- 19. Lee S.K., Chu D., Song D.Y., Pak S.W., Kim E.K. Electrical and Photovoltaic Properties of Residue-Free MoS₂ Thin Films by Liquid Exfoliation Method // Nanotechnology. 2017. V. 28. № 19. 195703. https://doi.org/10.1088/1361-6528/aa6740
- Гаркуша Ж.М. Основы физики полупроводников. М.: Высш. школа, 1982. 243 с.
- Li H., Zhang Q., Ray Yap C.C., Tay B.K., Edwin T.H.T., Olivier A., Baillargeat D. From Bulk to Monolayer MoS₂: Evolution of Raman Scattering // Adv. Funct. Mater. 2012. V. 22. P. 1385–1390. https://doi.org/10.1002/adfm.201102111