УДК 621.318:669.15'859'865

ВЛИЯНИЕ ВОДОРОДА НА СТРУКТУРУ И МАГНИТНЫЕ СВОЙСТВА ТВЕРДЫХ РАСТВОРОВ $(Sm_{1 - x}Er_x)_2Fe_{17}$ (x = 0.1, 0.4)

© 2021 г. С. В. Веселова^{1,} *, И. С. Терешина¹, В. Н. Вербецкий¹, К. В. Захаров¹, А. Н. Васильев¹

¹Московский государственный университет им. М.В. Ломоносова, Ленинские горы, 1, Москва, 119991 Россия *e-mail: sv veselova@mail.ru

Поступила в редакцию 15.09.2020 г. После доработки 21.12.2020 г. Принята к публикации 22.12.2020 г.

Методом индукционной плавки синтезированы твердые растворы $(Sm_{1-x}Er_x)_2Fe_{17}$ (x = 0.1, 0.4). В результате их гидрирования были получены образцы с высоким содержанием водорода: $Sm_{1.8}Er_{0.2}Fe_{17}H_{4.4}$ и $Sm_{1.2}Er_{0.8}Fe_{17}H_{4.6}$. Установлено, что основная фаза типа 2 : 17 в исходных образцах и продуктах их гидрирования кристаллизуется в структурном типе Th_2Zn_{17} . Внедрение водорода в кристаллическую решетку ($Sm_{1-x}Er_x)_2Fe_{17}$ (x = 0.1, 0.4) приводит к увеличению не только объема элементарной ячейки, но и температуры Кюри. Вследствие этого намагниченность насыщения в области комнатной температуры у гидридов значительно выше, чем у исходных соединений.

Ключевые слова: интерметаллическое соединение, гидриды, кристаллическая структура, намагниченность, температура Кюри

DOI: 10.31857/S0002337X21050109

введение

Благодаря высоким намагниченности насыщения, температуре Кюри и константе магнитокристаллической анизотропии (**МКА**) интерметаллические соединения редкоземельных и 3*d*-переходных металлов являются в настоящее время весьма перспективными для разработки на их основе новых магнитотвердых материалов [1]. Характеристики этих соединений обусловлены как действием кристаллического поля на редкоземельные ионы, так и сильными внутри- и межподрешеточными обменными взаимодействиями.

Соединения на основе железа, модифицированные атомами легких элементов внедрения, с общей формулой $R_2Fe_{17}(N,C,H)_x$ являются актуальными объектами исследования, несмотря на тот факт, что нитриды $Sm_2Fe_{17}N_x$ ($x \le 3$) с одноосным типом MKA и магнитными характеристиками выше, чем у Nd₂Fe₁₄B, были впервые синтезированы еще в 1990 году. $R_2Fe_{17}(N,C,H)_x$ остаются до сегодняшнего дня изученными лишь фрагментарно, хотя комплексное исследование их свойств может дать важную информацию об особенностях взаимодействия электронной и магнитной подсистем, о магнитокристаллических и обменных взаимодействиях между магнитоактивными ионами [2, 3].

В последние годы были проведены исследования структуры и магнитных свойств соединений на основе самария, а именно $Sm_2Fe_{17}(N,C,H)_x$, на предмет выяснения влияния различных замещений как в подрешетке P3M, так и в подрешетке Fe [4–7]. Установлено, что использование таких многокомпонентных систем открывает возможность создания новых магнитных материалов с необходимым комплексом магнитных свойств в заданной области температур и полей, что крайне важно для их применения в различных отраслях науки и техники [8].

Атомы внедрения (водород, азот и углерод) значительно повышают температуру Кюри соединений R₂Fe₁₇, а также могут оказывать влияние на намагниченность насыщения и константы МКА [9, 10]. Смена знака константы K_1 с отрицательного на положительный, которая наблюдается в нитридах $Sm_2Fe_{17}N_x$ и карбидах $Sm_2Fe_{17}C_x$, имеет место в ряде гидридов $R_2Fe_{17}H_x$ (R = Pr и Тb) [11]. Известно, что R₂Fe₁₇ способны максимально поглощать до 5 атомов водорода на формульную единицу (ат. Н/форм. ед.) в случае как тяжелых, так и легких РЗМ (тип кристаллической решетки – гексагональный (Th₂Ni₁₇) и ромбоэдрический (Th₂Zn₁₇) соответственно). Внедрение максимального количества водорода в кристаллическую решетку таких соединений приводит к увеличению объема элементарной ячейки. Гидрирование соединений R₂Fe₁₇ способствует значительному изменению их магнитных свойств по причине трансформации кристаллической, электронной и магнитной структур, что связано с объемными эффектами (увеличением/уменьшением расстояний в парах Fe–Fe, R–Fe), усилением магнетизма подрешетки железа, а также с хими-ческим эффектом при введении атомов внедрения [12].

Взаимодействие Sm_2Fe_{17} с водородом изучено довольно обстоятельно [13], в то время как полностью отсутствует информация о взаимодействии водорода с твердыми растворами $(Sm,Er)_2Fe_{17}$.

Целью данной работы является исследование взаимодействия $(Sm_{1 - x}Er_x)_2Fe_{17}$ (x = 0.1 и 0.4) с водородом, а также изучение структуры и магнитных свойств исходных соединений и их гидридов $(Sm_{1 - x}Er_x)_2Fe_{17}H_x$. Кроме того, проведен сравнительный анализ полученных результатов с аналогичными данными для изученных ранее гидридов $(Sm,R)_2Fe_{17}H_z$.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Сплавы (Sm_{1 – x}Er_x)₂Fe₁₇ с x = 0.1 и 0.4 (1.1 и 4.2 ат. %) готовили методом индукционной плавки из металлов высокой чистоты (Sm, Er – 99.5%, Fe – 99.9%) в атмосфере аргона. Полученные образцы подвергались гомогенизирующему отжигу в вакуумированных кварцевых ампулах при температуре 1273 К в течение 8 суток. Контроль химического состава и однородности образцов проводили на сканирующем электронном микроскопе (**СЭМ**) LEO EVO 50 XVP.

Гидриды синтезировали на специальной установке прямой реакцией исходных сплавов (навески массой до 20 г) с водородом под давлением до 35 МПа. Для гидрирования использовался водород высокой чистоты (содержание примесей 10^{-3} — 10^{-4} мас. %). Поскольку реакция гидрирования при комнатной температуре не наблюдалась, образец в автоклаве нагревали до 200°С аналогично [14]. При расчете количества поглощенного водорода использовали уравнение Ван-дер-Ваальса. Установлено образование стабильных гидридов следующих составов: Sm_{1.8}Er_{0.2}Fe₁₇H_{4.4} и Sm_{1.2}Er_{0.8}Fe₁₇H_{4.6}. Относительная ошибка определения содержания водорода — $\pm 0.1 \text{ H/(Sm}_{1 - r} \text{Er}_{r})_{2} \text{Fe}_{17}$ (±0.05 мас. % Н₂). Чистоту фазового состава исходных и прогидрированных образцов исследовали методом стандартной рентгеновской дифракции на дифрактометре ДРОН-4-07 с использованием Со K_{α} -излучения ($\lambda = 1.07921$ Å) при комнатной температуре. Параметры элементарной ячейки определены методом полнопрофильного анализа Ритвельда с использованием программы RIETAN-2000. Ошибка в определении параметров составила $\pm (0.01 - 0.05)\%$.

Температурные и полевые зависимости намагниченности изучали с помощью установки измерения физических свойств материалов PPMS-9 (Quantum Design) на кафедре низких температур и сверхпроводимости физического факультета МГУ имени М.В. Ломоносова.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Рентгенофазовый и микроструктурный анализы литых сплавов $Sm_{1.8}Er_{0.2}Fe_{17}$ и $Sm_{1.2}Er_{0.8}Fe_{17}$ показали, что в дополнение к основной фазе типа 2:17 присутствовали α-Fe и самарий-обогащенная фаза типа 1:3. По данным РФА и СЭМ, в результате проведения высокотемпературной гомогенизации в сплавах наряду с основной фазой 2:17, кристаллизующейся в структурном типе Th₂Zn₁₇, осталась магнитомягкая фаза α-Fe (рис. 1а и 1б). Причем доля нерастворившегося α-Fe в образце $Sm_{1.8}Er_{0.2}Fe_{17}$ не превышает 8 мас. %, а в образце Sm_{1.2}Er_{0.8}Fe₁₇ – не более 5 мас. %. Значения периодов решетки основной фазы типа 2:17 в образцах до и после гидрирования представлены в табл. 1 в сопоставлении с данными для Sm₂Fe₁₇H_y [14, 15]. Рентгенографическое исследование гидридных фаз с высоким содержанием водорода показало, что продукты гидрирования $Sm_{1.8}Er_{0.2}Fe_{17}$ и Sm_{1.2}Ho_{0.8}Fe₁₇ сохраняют структуру исходного материала (стр. тип Th₂Zn₁₇), при этом объем элементарной ячейки увеличивается на 3.5%. Установлено, что абсорбция водорода сопровождается анизотропным расширением ячейки, происходящим преимущественно в базовой плоскости.

На рис. 1в и 1г представлены дифрактограммы образцов Sm₁₈Er_{0.2}Fe₁₇ и Sm_{1.2}Ho_{0.8}Fe₁₇ после гидрирования, которые отличаются от дифрактограмм гомогенизированных сплавов: заметно уширены линии основной фазы и смещены в сторону малых углов по причине расширения решетки, вызванного внедренными атомами водорода. Это может свидетельствовать о качественных и количественных изменениях фазового состава. В частности, выявлено небольшое изменение объемных долей фаз 2 : 17 и α-Fe. Однако явные признаки протекания реакции гидрогенолиза полученных гидридов на α -Fe и (Sm,Er)_vH (y = 2, 3) отсутствуют. Содержание фазы α-Fe практически не изменилось после абсорбции водорода образцом Sm_{1.2}Er_{0.8}Fe₁₇. В образце Sm_{1.8}Er_{0.2}Fe₁₇H_{4.4} количество примесной фазы α-Fe уменьшилось до 4 мас. %, что, возможно, связано с взаимодействием невыявленной после отжига фазы (Sm,Er)Fe₃, которая могла остаться в слитке в виде следов после гомогенизации, с железом.

Внедрение атомов водорода в кристаллическую решетку соединений Sm_{1.8}Er_{0.2}Fe₁₇, Sm_{1.2}Er_{0.8}Fe₁₇ оказало влияние на магнитные свойства. На рис. 2 показаны результаты термомагнитного анализа для исходных соединений. Видно, что в зависимости от содержания Ег температура Кюри понижается

Рис. 1. Дифрактограммы порошков сплавов Sm_{1.8}Er_{0.2}Fe₁₇ (a), Sm_{1.2}Er_{0.8}Fe₁₇ (б) после гомогенизации при 1273 K в течение 8 дней и их гидридов Sm_{1.8}Er_{0.2}Fe₁₇H_{4.4} (в), Sm_{1.2}Er_{0.8}Fe₁₇H_{4.6} (г).

от значения 390 К для $Sm_{1.8}Er_{0.2}Fe_{17}$ до 360 К для $Sm_{1.2}Er_{0.8}Fe_{17}$. Возрастание температуры Кюри в результате гидрирования составляло в среднем 30 К/ат. Н, что хорошо согласуется с данными [10].

На рис. 3 представлены петли магнитного гистерезиса исходных образцов и их гидридов $Sm_{1.8}Er_{0.2}Fe_{17}H_{4.4}$, $Sm_{1.2}Er_{0.8}Fe_{17}H_{4.6}$, измеренные при комнатной температуре в полях напряженностью до 7 МА/м. Видно, что коэрцитивность по намагниченности (*jH_c*) как для исходных, так и для гидрированных образцов крайне мала. Полученные результаты находятся в соответствии с

x	Образец	Содержание фазы 2 : 17 в образце, %	a, Å	c, Å	c/a	<i>V</i> , Å ³	$\Delta V/V, \%$
0	Sm ₂ Fe ₁₇ [15]	Не указано	8.553	12.442	1.455	_	_
	Sm ₂ Fe ₁₇ H ₂ [15]	Не указано	8.653	12.506	1.445	—	2.9
0	Sm ₂ Fe ₁₇ [14]	Не указано	8.554	12.443	1.455	788.4	_
	Sm ₂ Fe ₁₇ H _{4.7} [14]	Не указано	8.682	12.550	1.446	819.2	3.9
0.1	$Sm_{1.8}Er_{0.2}Fe_{17}$	92	8.555(8)	12.453(9)	1.456	788.8	
	$Sm_{1.8}Er_{0.2}Fe_{17}H_{4.4}$	96	8.632(1)	12.511(7)	1.449	815.6	3.3
0.4	$Sm_{1.2}Er_{0.8}Fe_{17}$	95	8.518(2)	12.431(4)	1.459	791.3	_
	$Sm_{1.2}Er_{0.8}Fe_{17}H_{4.6}$	96	8.641(7)	12.520(1)	1.449	818.6	3.5

Таблица 1. Рентгенографические данные образцов $(Sm_{1-x}Er_x)_2Fe_{17}$ (x = 0.1, 0.4) и продуктов их гидрирования (стр. тип Th₂Zn₁₇)

Примечание. Структурный тип и параметры решетки приведены для основной фазы (Sm,Er)₂Fe₁₇.

данными по магнитным свойствам гидридов $Sm_2Fe_{17}H_x$ ($2 \le x \le 5.2$) [13]. Низкие значения коэрцитивной силы гидридов обусловлены прежде всего магнитной анизотропией типа "легкая плоскость", при которой магнитные моменты атомов РЗМ и Fe ориентированы в базисной плоскости и достаточно легко вращаются под действием внешнего магнитного поля. Из рис. 3 также видно, что приложение внешнего магнитного поля способствует полному магнитному насыщению образцов.

В табл. 2 приведены полученные значения основных магнитных характеристик, а также данные [6, 15, 16] для $(Sm,R)_2Fe_{17}H_x$. Намагниченность насыщения (σ_s) образцов $Sm_{1.8}Er_{0.2}Fe_{17}$ и $Sm_{1.2}Er_{0.8}Fe_{17}$ значительно возрастает после гидрирования. Намагниченность насыщения образцов, приведенных в табл. 2, была пересчитана на мас. % фазы 2 : 17 по формуле

$$\sigma_s(2:17) = [\sigma_s(\alpha - Fe)] - \sigma_s(\alpha - Fe) \omega(\alpha - Fe)] / \omega(2:17) \times 100,$$
(1)

где $\sigma_s(\alpha$ -Fe) = 210 A м²/кг, ω – содержание фазы в образце (мас. %). После пересчета значения σ_s составляют 85 и 82 A м²/кг для Sm_{1.8}Er_{0.2}Fe₁₇ и Sm_{1.2}Er_{0.8}Fe₁₇, а для Sm_{1.8}Er_{0.2}Fe₁₇H_{4.4} и Sm_{1.2}Er_{0.8}Fe₁₇H_{4.6} – 110 и 113 A м²/кг соответственно. Намагниченность насыщения у гидрида Sm₂Fe₁₇H_{5.2} в области комнатной температуры намного выше, чем у Sm₂Fe₁₇, что связанно с увели-

Рис. 2. Термомагнитный анализ сплавов Sm_{1.8}Er_{0.2}Fe₁₇ (*1*) и Sm_{1.2}Er_{0.8}Fe₁₇ (*2*).

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 57 № 5 2021

Рис. 3. Петли магнитного гистерезиса исходных образцов $Sm_{1.8}Er_{0.2}Fe_{17}$ (*1*), $Sm_{1.2}Er_{0.8}Fe_{17}$ (*2*) и гидридов $Sm_{1.8}Er_{0.2}Fe_{17}H_{4.4}$ (*3*), $Sm_{1.2}Er_{0.8}Fe_{17}H_{4.6}$ (*4*), измеренные при комнатной температуре в полях до 7 МА/м.

Состав	σ_s , Ам ² /кг	<i>Т_С</i> , К	Источник
Sm ₂ Fe ₁₇	109	386	[16]
Sm ₂ Fe ₁₇	118	398	[15]
$Sm_2Fe_{17}H_{5.2}$	149.6	554	[15]
Sm _{1.8} Er _{0.2} Fe ₁₇	100 (85)	390	Данная работа
Sm _{1.8} Er _{0.2} Fe ₁₇ H _{4.4}	116 (110)	525	Данная работа
Sm _{1.6} Er _{0.4} Fe ₁₇	79	400	[6]
$Sm_{1.2}Y_{0.8}Fe_{17}$	108	375	[16]
Sm _{1.2} Tb _{0.8} Fe ₁₇	90.3	390	[16]
Sm _{1.2} Dy _{0.8} Fe ₁₇	77	429	[6]
Sm _{1.2} Er _{0.8} Fe ₁₇	77	391	[6]
Sm _{1.2} Er _{0.8} Fe ₁₇	90 (82)	360	Данная работа
$Sm_{1.2}Er_{0.8}Fe_{17}H_{4.6}$	120 (113)	490	Данная работа

Таблица 2. Магнитные характеристики твердых растворов $(Sm_{1-x}Er_x)_2Fe_{17}$ (x = 0.1, 0.4) и гидридов на их основе $(Sm_{1-x}Er_x)_2Fe_{17}H_y$ (y = 4.4, 4.6)

* В скобках даны уточненные по формуле (1) значения намагниченности насыщения σ_{s} (2 : 17).

чением температуры Кюри. Частичная замена атомов самария ($\mu_{Sm} = 0.7 \, \mu_B$) на атомы тяжелого РЗМ эрбия ($\mu_{Er} = 9 \, \mu_B$) приводит к снижению намагниченности насыщения, т. к. атомы эрбия упорядочиваются антипараллельно атомам Fe и Sm. Другими словами, исследованные магнетики являются трехподрешеточными, а магнитная структура в них меняется с ферро- на ферримагнитную. Все три подрешетки (самария, эрбия и железа) дают свои аддитивные вклады в магнитные свойства. Магнитокристаллическая анизотропия соединений R_2Fe_{17} (как с магнитными (R = Sm, Er), так и с немагнитными РЗМ (Y, Lu)), а также (Sm,Er)₂Fe₁₇ является легкоплоскостной. Гидрирование не изменяет тип МКА, поэтому высококоэрцитивное состояние в материалах на основе гидридов не реализуется.

ЗАКЛЮЧЕНИЕ

Проведено комплексное исследование структурных и магнитных свойств соединений $Sm_{1.8}Er_{0.2}Fe_{17}$ и $Sm_{1.2}Er_{0.8}Fe_{17}$ и их гидридов с высоким содержанием водорода – $Sm_{1.8}Er_{0.8}Fe_{17}H_{4.4}$ и $Sm_{1.2}Er_{0.8}Fe_{17}H_{4.6}$. Установлено, что, хотя тип кристаллической структуры не изменяется, происходит анизотропное изменение параметров решетки с увеличением объема элементарной ячейки до 3.5%, в результате чего изменялись магнитные свойства. Наибольший эффект влияния водорода на намагниченность при T = 300 К был обнаружен для $Sm_{1.2}Er_{0.8}Fe_{17}H_{4.6}$: $\sigma_s = 113$ А м²/кг (для сравнения для $Sm_{1.2}Er_{0.8}Fe_{17}\sigma_s = 83$ А м²/кг). Варьируя содержание водорода и соотношение Sm/Er, можно изменять σ_s .

БЛАГОДАРНОСТЬ

Работа выполнена при частичной финансовой поддержке гранта Российского научного фонда (проект № 18-13-00135).

СПИСОК ЛИТЕРАТУРЫ

 Skomski R. Permanent Magnets: History, Current Research, and Outlook // Novel Functional Magnetic Materials / Ed. Zhukov A. Cham: Springer, 2016. P. 359–395.

https://doi.org/10.1007/978-3-319-26106-5_9

- Fujii H., Sun H. Interstitially-Modified Intermetallics or Rare-Earth and 3d Elements // Handbook of Magnetic Materials / Ed. Buschow K.H.J. Amsterdam: North Holland, 1995. V. 9. P. 303–404. https://doi.org/10.1016/s1567-2719(05)80007-1
- Tereshina I.S., Nikitin S.A., Skokov K.P., Palewski T., Zubenko V.V., Telegina I.V., Verbetsky V.N., Salamova A.A. Magnetocrystalline Anisotropy of R₂Fe₁₇H₃ (x = 0, 3) Single Crystals // J. Alloys Compd. 2003. V. 350. P. 264–270. https://doi.org/10.1016/S0925-8388(02)00957-X
- Lu Yi., Tegus O., Li Q.A., Tang N., Yu M.J., Zhao R.W., Kuang J.P., Yang F.M., Zhou G.F., Li X., de Boer F.R. Magnetic Anisotropy of (Sm,Y)₂Fe₁₇N_y Compounds // J. Phys.: Condens. Matter. 1992. V. 177. P. 243–246. https://doi.org/10.1016/0921-4526(92)90104-Z
- Zeng Yi, Lu Z., Tang N., Li X., Zhao R.W., Yang F.M. Structural, Magnetic and Microscopic Physical Properties of (Sm,Pr)₂Fe₁₇ and Their Nitrides // J. Magn. Magn. Mater. 1995. V. 139. P. 11–18. https://doi.org/10.1016/0304-8853(95)90023-3
- Tegus O., Lu Yi., Tang N., Wu J., Mingjun Yu., Li Q.A., Zhao R.W., Jian Y., Fuming Y. Magnetic Properties of (Sm_{1-x}R_x)₂Fe₁₇N_v (R = Dy, Er) Compounds // IEEE

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 57 № 5 2021

Trans Magn. 1992. V. 58. P. 2581–2583. https://doi.org/10.1109/20.179563

- Kubis M., Gutfleisch O., Gesel B., Müller K.-H., Harris I.R., Schultz L. Influence of M = Al, Ga and Si on Microstructure and HDDR-Processing of Sm₂(Fe, M)₁₇ and Magnetic Properties of Their Nitrides and Carbides // J. Alloys Compd. 1999. V. 283. P. 296–303. https://doi.org/10.1016/S0925-8388(98)00861-5
- Hirosawa S., Nishino M., Miyashita S. Perspectives for High-performance Permanent Magnets: Applications, Coercivity, and New Materials // Adv. Nat. Sci: Nanosci. Nanotechnol. 2017. V. 8. P. 013002. https://doi.org/10.1088/2043-6254/aa597c
- Tereshina E.A., Yoshida H., Andreev A.V., Tereshina I.S., Koyama K., Kanomata T. Magnetism of a Lu₂Fe₁₇H Single Crystal under Pressure // J. Phys. Soc. Jpn. 2007. V. 76. P. 82–83. https://doi.org/10.1143/JPSJS.76SA.82
- Isnard O., Miraglia S., Fruchart D. Interstitial Insertion in R₂Fe₁₇, Volume Effects and Their Correlation with the Magnetic Properties // J. Magn. Magn. Mater. 1995. V. 140–144. P. 981–982. https://doi.org/10.1016/0304-8853(94)01458-2
- Tereshina E.A., Drulis H., Skourski Y., Tereshina I. Strong Room-Temperature Easy-Axis Anisotropy in Tb₂Fe₁₇H₃: An Exception among R₂Fe₁₇ Hydrides //

Phys. Rev. B. 2013. V. 87. P. 214425(5). https://doi.org/10.1103/PhysRevB.87.214425

- Nikitin S., Tereshina I., Tereshina E., Suski W., Drulis H. The Effect of Hydrogen on the Magnetocrystalline Anisotropy of R₂Fe₁₇ and R(Fe,Ti)₁₂ (R = Dy, Lu) Compounds // J. Alloys Compd. 2008. V. 451. P. 477–480. https://doi.org/10.1016/j.jallcom.2007.04.106
- Менушенков В.П., Вербецкий В.Н., Лилеев А.С., Саламова А.А., Боброва А.А., Аюян А.Г. Взаимодействие соединения Sm₂Fe₁₇ с водородом и азотом. Магнитные свойства образующихся гидридов и нитридов // Металлы. 1996. № 1. С. 95–100.
- Isnard O., Miraglia S., Soubeyroux J.L., Fruchart D., *l'Héritier P.* A Structural Analysis and Some Magnetic Properties of the R₂Fe₁₇H_x Series // J. Magn. Magn. Mater. 1994. V. 137. P. 151–156. https://doi.org/10.1016/0304-8853(94)90201-1
- Rengen X., Xinhua W., Jianmin W., Hongge P., Changpin C., Qidong W., Lichi D. Effects of Al Content on Structural Stability and Magnetic Properties of Sm₂(Fe, Al)₁₇ Compounds // J. Trans. Nonferrous Met. Soc. China. 1999. V. 9. № 1. P. 40–43.
- Huang M.Q., Zheng Y., Miller K., Elbicki J.M., Sankar S.G., Wallace W.E. Magnetism of (Sm,R)₂Fe₁₇N_y (R = Y, Tb or Mischmetal) // J. Appl. Phys. 1991. V. 7. P. 6024– 6026.

https://doi.org/10.1063/1.350081