УДК 546

ДИСПЕРГИРОВАНИЕ ЛИТЫХ МАТЕРИАЛОВ, ПОЛУЧЕННЫХ МЕТОДОМ СВС В СИСТЕМЕ Mn–Cr–Al–C

© 2021 г. В. А. Горшков^{1,} *, Н. Ю. Хоменко¹, Н. В. Сачкова¹

¹Институт структурной макрокинетики и проблем материаловедения им. А.Г. Мержанова Российской академии наук, ул. Академика Осипьяна, 8, Черноголовка, Московская обл., 142432 Россия

*e-mail: gorsh@ism.ac.ru Поступила в редакцию 30.11.2020 г. После доработки 18.12.2020 г. Принята к публикации 21.12.2020 г.

Исследован процесс самопроизвольного диспергирования литых материалов, состоящих из МАХфазы Cr_2AlC , допированной Mn, а также карбидов и алюминидов хрома, марганца и алюминия. Образцы получены в виде слитков методом CBC в реакторе объемом 3 л под давлением аргона p = 5 МПа. В качестве шихт использовали смеси порошков оксидов марганца(IV) и хрома(III) с алюминием (ACД-I) и углеродом. Обнаружено, что присутствие в литом материале карбида алюминия (Al₄C₃) приводит к самопроизвольному диспергированию (без механического или химического воздействия) литого материала в порошки с размером кристаллических частиц менее 100 мкм. Показано, что диспергирование происходит в результате взаимодействия карбида алюминия с влагой воздуха. Полученные продукты охарактеризованы методами рентгенографического и локального рентгеноспектрального анализов. Изучены структурно-фазовые состояния частиц целевых продуктов, полученных в результате самодиспергирования литого CBC-материала.

Ключевые слова: диспергирование, литой материал, CBC, MAX-фаза, карбиды, алюминиды, фазовый состав, микроструктура

DOI: 10.31857/S0002337X21060026

введение

Бинарные и тройные соединения марганца, хрома, алюминия и углерода относятся к тугоплавким материалам, которые обладают полезными практическими свойствами. Сплавы с большим содержанием Mn и Al имеют высокую удельную прочность и могут быть использованы в литейном и деформационном производстве как жаропрочные и износостойкие, а также в других отраслях промышленности. Они давно известны и хорошо изучены [1-3]. В последнее время возник большой интерес к композиционным материалам, состоящим из МАХ-фаз, карбидов и интерметаллидов переходных металлов, поскольку МАХ-фазы имеют уникальное сочетание особенностей как металлов, так и керамики и обладают отличными механическими, химическими, тепловыми и электрическими свойствами [4].

В настоящее время MAX-фаза Cr₂AlC является третьим широко изученным соединением после Ti₃SiC₂ и Ti₃AlC₂ среди семейства MAX-фаз. Имеется предположение, что при комнатной температуре Cr₂AlC может вести себя как парамагнетик [5–7]. Для повышения магнитосопротивления в Cr₂AlC вводят марганец, получая твердый раствор (Cr_{1-x}Mn_x)₂AlC. Для этого смеси необходимых элементов в стехиометрических отношениях сплавлялись методом дуговой плавки в атмосфере Ar с температурой дуги более 1000°C [8, 9].

Для получения материалов на основе МАХфазы Cr₂AlC наиболее часто используют методы горячего прессования; плазменно-искрового спекания; двухстадийного спекания, включающего реакцию жидкого алюминия с карбидами хрома [10, 11]. Перспективным способом получения таких материалов является одностадийный метод - самораспространяющийся высокотемпературный синтез (СВС). Он практически не требует затрат электроэнергии, обладает высокой производительностью и экологической чистотой [12]. Одним из технологических направлений этого метода является СВС-металлургия, позволяющая получать литые материалы за счет полного плавления компонентов в волне горения. В результате продукт в волне горения формируется в жидкофазном состоянии. Из-за различного удельного веса под действием гравитации происходит сепарация тяжелой металлоподобной и легкой оксидной фаз в образовавшихся продуктах [13, 14]. Большинство из вышеперечисленных процессов проводят при повышенных температурах (>1200°С), в результате чего конечные продукты представляют собой

Рис. 1. Кварцевый тигель с шихтой (а), внешний вид конечных продуктов (б): 1 -оксид (Al₂O₃), 2 -целевой продукт (Cr–Mn–Al–C).

спеченные блоки ("спеки") или слитки. Для дальнейшего использования проводят их передел (измельчение) в порошки определенных фракций.

Наиболее распространенными способами диспергирования являются механические и химические методы. При механическом измельчении твердых материалов частицы размером менее 60 мкм образуют конгломераты, а на поверхности зерен образуются микротрещины, что обуславливает загрязнение продукта материалом истирающих частей мельниц [15]. При химическом диспергировании [16-18] процессы проводят в агрессивных (кислотных или щелочных) средах, часто при повышенной температуре, что крайне нежелательно с экологической точки зрения. Под воздействием агрессивной среды происходит также частичное растворение целевого продукта. В работах [19–21] отмечено, что присутствие в составе композитов фазы Al₄C₃ приводит к разрушению материала под действием влаги воздуха вследствие гидролиза. В работе [21] обнаружено, что карбид алюминия гидролизуется со скоростью 1%/ч. Было установлено, что Al_4C_3 нестабилен на воздухе, поглощает воду из окружающей среды с образованием $Al(OH)_3$.

Целью данной работы является исследование процесса "самопроизвольного" диспергирования литого материала Cr–Mn–Al–C и получение мелкодисперсных порошков.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В экспериментах использовали порошки оксидов марганца(IV) квалификации "ч." и хрома(III) "ч.", алюминия (АСД-I) и углерода (графит марки ПГ). Составы исходных смесей выбирали из условий их термической стабильности и возможности реализовать высокую температуру горения (синтеза). Соотношения компонентов рассчитывали из следующих реакций и их сочетаний:

$$6MnO_2 + 11Al + 3C = 3Mn_2AlC + 4Al_2O_3$$
, (I)

$$Cr_2O_3 + 3Al + C = Cr_2AlC + Al_2O_3.$$
(II)

Исходные смеси готовили вручную в фарфоровой ступке. Готовые шихты помещали в прозрачные кварцевые тигли диаметром 20, высотой 50 мм. Масса смеси во всех экспериментах составляла 20 г (рис. 1а). Синтез проводили в СВС-реакторе объемом 3 л при начальном избыточном давлении аргона 5 МПа. Воспламенение смеси инициировали спиралью из молибденовой проволоки диаметром 0.5 мм.

Эксперименты со стехиометрической смесью II показали, что эта реакция слабоэкзотермическая. После воспламенения образцов фронт горения распространяется на 5-10 мм, после чего происходит его остановка. Поэтому в дальнейших экспериментах опыты проводили на составах I и I/II = = 0.5/0.5. Температуры горения (синтеза) таких смесей превышают температуры плавления исходных реагентов и конечных продуктов, получаемых в волне горения в жидкофазном состоянии. Конечные продукты состоят из двух фаз: целевой металлоподобной (Cr-Mn-Al-C) и оксидной (Al₂O₃). Из-за различных удельных весов происходит их сепарация – более тяжелая фаза оседает и формирует нижний слиток, а, более легкая формируется сверху (рис. 1б).

В экспериментах для оценки параметров синтеза использовали следующие величины: $u_{\rm r} = H_{\rm cm}/\tau_{\rm r}$ – средняя линейная скорость горения, $\eta_1 = M_{\rm cn}/M_{\rm cm} \times 100\%$ – выход продукта в слиток, $\eta_2 = (M_{\rm cm} - M_{\rm k})/M_{\rm cm} \times 100\%$ – потеря массы за счет разлета компонентов при горении, где $H_{\rm cm}$ – высота образца, $\tau_{\rm r}$ – время сгорания всей шихты, $M_{\rm cn}$ – масса слитка, $M_{\rm cm}$ – масса исходной смеси, $M_{\rm k}$ – общая масса продукта после горения.

Рентгенофазовый анализ проводили на дифрактометре ДРОН-3 с графитовым монохроматором на вторичном пучке (излучение Cu K_{α}). Регистрация дифрактограмм велась в режиме пошагового сканирования в интервале углов $2\theta = 12^{\circ}-100^{\circ}$ с шагом

Таблица 1. Составы исходных смесей и параметры синтеза

Образец	Смесь	Расчетный состав слитка	<i>и</i> _г , см/с	η ₁ , мас. %	η ₂ , мас. %
1	Ι	Mn ₂ AlC	0.85	42	8.3
2	0.5I + 0.5II	$(Cr_{0.5}Mn_{0.5})_2AlC$	0.76	38	8.0

Рис. 2. Внешний вид порошков конечных продуктов после самодиспергирования: а – образец 1 (Mn–Al–C), б – образец 2 (Cr–Mn–Al–C).

 0.02° и экспозицией 4 с. Микроструктуру и элементный состав образцов исследовали на автоэмиссионном сканирующем электронном микроскопе сверхвысокого разрешения Zeiss Ultra plus на базе Ultra 55, Германия (Zeiss Ultra plus Field Emission Scanning Electron Microscope).

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

Визуальные наблюдения за процессом горения показали, что образцы 1 и 2 (табл. 1), составы которых рассчитывали из реакций (I) и (II), горят в нестационарных режимах с небольшим дымовыделением и потерей массы. Конечные продукты формируются в волне горения в жидкофазном состоянии и после сепарации и охлаждения получаются в виде двух слитков: вверху (более легкий) — Al₂O₃, внизу (более тяжелый) — целевой продукт Mn/Cr/Al/C. Составы исходных смесей и параметры синтеза приведены в табл. 1.

Из табл. 1 видно, что значения параметров синтеза (u_r , η_1 и η_2) для образца 2, рассчитанного на конечный продукт ($Cr_{0.5}Mn_{0.5}$)₂AlC, несколько

ниже, чем для образца 1, рассчитанного на конечный продукт Mn_2AlC . Это связано, по-видимому, с тем, что при добавлении в высокоэкзотермическую смесь I, низкоэкзотермической II снижается температура горения шихты, что приводит к уменьшению этих параметров. По данным РФА, конечные продукты в обоих случаях являются многофазными и состоят из карбидов и алюминидов хрома и марганца. Отмечено, что после хранения слитков на открытом воздухе они самодиспергировались в порошки с размером частиц менее 100 мкм (рис. 2).

Для образца 1 первоначально (до диспергирования слитка в порошок) РФА показал присутствие следующих основных фаз: Mn_3AlC , MnAl, $Al_{0.42}Mn_{0.545}C_{0.035}$, $AlCr_2$, Al_4C_3 и углерод (рис. 3).

После нахождения на открытом воздухе в течение 100 ч на дифрактограмме образованного порошка исчезли рефлексы Al_4C_3 и появились рефлексы Al_2O_3 (рис. 4). По-видимому, в данном случае фаза Al_4C_3 разлагается на воздухе за счет поглощения и реакции с влагой или кислородом воздуха.

Рис. 3. Дифрактограмма материала (слиток), полученного при горении смеси I ($MnO_2/Al/C \rightarrow Mn_2AlC + Al_2O_3$).

НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ том 57 № 6 2021

Рис. 4. Дифрактограмма порошка Mn–Al–C, полученного после нахождения на воздухе.

Рис. 5. Дифрактограмма материала (слиток), полученного при горении смеси I + II ($MnO_2/Cr_2O_3/Al/C \rightarrow Mn_2AlC/Cr_2AlC + Al_2O_3$).

Для образца 2 (табл 1), конечный продукт, полученный в виде слитка, также является многофазным. Основные фазы — Mn_3AlC , $(Cr_xMn_{1-x})_2AlC$ и интерметаллид $AlCr_2$ (рис. 5). Рефлексы MAX-фазы смещены относительно положения рефлексов Cr_2AlC (ICDD PDF2 # 65-3492), что, вероятно, связано с замещением части атомов хрома атомами марганца. В результате формулу MAX-фазы можно представить как $(Cr_xMn_{1-x})_2AlC$. На дифрактограмме также наблюдаются слабые рефлексы Al_4C_3 , Cr_5Al_8 , C, $Mn_{0.545}Al_{0.42}C_{0.035}$. Локальный рентгеноспектральный анализ (рис. 6, табл. 2) показал наличие зерен тройного карбида Mn_3AlC (1–4), MAX-фазы (Cr_xMn_{1-x})₂AlC (5, 6) и алюминида хрома $AlCr_2$ (7, 8).

После хранения на воздухе синтезированный продукт также "деградировал" из слитка в порошок. РФА показал присутствие в материале тех же основных фаз: Mn_3AlC , $(Cr_xMn_{1-x})_2AlC$, $AlCr_2$. При этом на дифрактограмме исчезли рефлексы Al_4C_3 и появились рефлексы фазы AlO(OH) и C (рис. 7). По-видимому, фаза Al_4C_3 также разлагается (гидролиз) на воздухе за счет поглощения влаги. В пользу такого механизма диспергирования слитка в порошок свидетельствуют характерный вид (рис. 8) и состав (табл. 3) частиц материала и оксигидроксида алюминия (рис. 9, табл. 4).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В работах [19–21] отмечено, что присутствие в составе композитов фазы Al_4C_3 приводит к разрушению материала под действием влаги воздуха

Рис. 6. Микроструктура поверхности излома литого (слитка) композиционного материала, полученного при горении смеси I + II ($MnO_2/Cr_2O_3/Al/C \rightarrow Mn_2AlC/Cr_2AlC + Al_2O_3$).

вследствие гидролиза, т.к. Al_4C_3 , поглощая воду из окружающей среды, реагирует с ней с образованием CH_4 и $Al(OH)_3$. При этом обнаружено [21], что карбид алюминия гидролизуется со скоростью ~1%/ч. Было высказано предположение,

Таблица 2. Элементный состав поверхности излома литого (слитка) композиционного материала, полученного при горении смеси I + II ($MnO_2/Cr_2O_3/Al/C \rightarrow Mn_2AlC/Cr_2AlC + Al_2O_3$)

		-	2 0		
№	С	Al	Mn	Cr	Фаза*
1	5.9	13.3	80.7	0.1	Mn ₃ AlC
2	5.7	13.6	80.3	0.4	Mn ₃ AlC
3	5.5	13.2	80.5	0.8	Mn ₃ AlC
4	5.3	13.5	80.8	0.4	Mn ₃ AlC
5	8.4	18.80	15.3	57.5	$(Cr_xMn_{1-x})_2AlC$
6	8.2	18.5	15.4	57.9	$(Cr_xMn_{1-x})_2AlC$
7	0.5	20.4	0.2	78.9	AlCr ₂
8	0.6	20.7	0.1	78.6	AlCr ₂

* Состав фаз рассчитывали по данным рентгенофазового и локального рентгеноспектрального анализов.

Таблица 3. Элементный и фазовый составы частиц порошка системы Mn-Cr-Al-C

№	С	0	Al	Cr	Mn	Фаза*
1	8.2	0.5	18.4	35.4	37.5	(Cr _{0.5} Mn _{0.5}) ₂ AlC
2	0.2	53.3	45.6	0.4	0.5	AlO(OH)

 * Состав фаз рассчитывали по данным рентгенофазового и локального рентгеноспектрального анализов.

Рис. 7. Дифрактограмма порошка Mn–Cr–Al–C, полученного после нахождения на воздухе.

что взаимодействие карбида алюминия с влагой воздуха происходит по следующим реакциям:

 $Al_4C_3 + 18H_2O \rightarrow 4Al(OH)_3 + 3CO_2 + 12H_2$, (1)

$$Al_4C_3 + 12H_2O \rightarrow 4Al(OH)_3 + 3CH_4.$$
 (2)

При CBC литых материалов конечные продукты (слитки) состоят, как правило, из зерен основных фаз: алюминидов и карбидов марганца и хрома, а фаза карбида алюминия располагается по границам этих зерен. Из анализа литературных данных [20, 21] и результатов проведенных экспериментов можно предположить следующие химические стадии механизма диспергирования литых материалов в системе Cr–Mn–Al–C:

$$\mathrm{Al}_4\mathrm{C}_3 + \mathrm{O}/\mathrm{H}_2\mathrm{O} \to \mathrm{Al}_2\mathrm{O}_3 + \mathrm{CO}_2/\mathrm{C}_2\mathrm{H}_2\uparrow, \qquad (3)$$

$$Al_4C_3 + H_2O \rightarrow AlO(OH) + C_2H_2\uparrow$$
. (4)

В результате этих реакций происходит выделение ацетилена, о чем свидетельствует характерный запах, а зерна Al_4C_3 , расположенные между зернами основных фаз (карбидов и алюминидов марганца и хрома), превращаются в частицы Al₂O₃ или AlO(OH), что приводит к разрушению компактности литых материалов и диспергированию в порошки. Реакция (3) соответствует механизму диспергирования литых материалов в системе Mn–Al–C, а реакция (4) – механизму диспергирования литых материалов в системе Cr-Mn-Al-С. Следует отметить относительную корреляцию полученных результатов с литературными данными. Некоторые отличия (наличие в продуктах диспергирования Al_2O_3 , AlO(OH) и C_2H_2) можно объяснить различными объектами исследования.

Рис. 8. Характерный вид частиц порошка системы Mn-Cr-Al-C.

Рис. 9. Характерный вид частиц оксигидроксида алюминия.

Таблица 4. Элементный и фазовый составы частиц оксигидроксида алюминия

N⁰	С	0	Al	Cr	Mn	Фаза*
1	0.5	53.5	45.2	0.3	0.5	AlO(OH)
2	0.3	53.2	45.6	0.2	0.7	AlO(OH)
3	0.2	53.3	45.7	0.4	0.4	AlO(OH)

* Состав фаз рассчитывали по данным рентгенофазового и локального рентгеноспектрального анализов.

ЗАКЛЮЧЕНИЕ

Показана возможность получения мелкодисперсных порошков при самопроизвольном диспергировании (без механического или химического воздействия агрессивных сред) литых материалов в системе Mn–Cr–Al–C.

Изучено влияние содержания карбида алюминия в слитках на их деградацию в порошкообразное состояние.

На основании результатов проведенных исследований и анализа литературных данных предло-

2021

жены химические стадии механизма диспергирования.

Изучены структурно-фазовые состояния целевых продуктов, полученных в системах Mn-Al-C и Cr-Mn-Al-C.

СПИСОК ЛИТЕРАТУРЫ

- 1. Guilemagy J.M., Espallargas N., Suegama P.H., Benedetti A.V. Comparative Study of Cr₃C₂-NiCr Coating // Corros. Sci. 2006. V. 48. № 10. P. 2998-3013. https://doi.org/10.1016/j.corsci.2005.10.016
- 2. Бурханов Г.С., Миляев И.М., Юсупов В.С. Современное состояние и тенденции развития магнитотвердых материалов // Перспективные материалы. 2011. № 11. C. 208-215.
- 3. Алымов М.И., Миляев И.М., Нурисламов А.Х., Юсупов В.С. Магнитотвердые сплавы на основе системы Мп-А1 // Цв. металлы. 2015. № 1. С. 91-96.
- 4. Barsoum M.W. The MAX Phases: A New Class of Solids: Thermodynamically Stable Nanolaminates // Prog. Solid State Chem. 2000. V. 28. P. 201-281. https://doi.org/10.1016/S0079-6786(00)00006-6
- 5. Tian W.B., Wang P.L., Zhang G., Kan Y., Li Y., Yan D. Synthesis and Thermal and Electrical Properties of Bulk Cr₂AlC // Scr. Mater. 2006. V. 54. P. 841–846. https://doi.org/10.1016/j.scriptamat.2005.11.009
- 6. Lin Z., Zhou Y., Li M. Synthesis, Microstructure, and Property of Cr₂AlC // J. Mater. Sci. Technol. 2007. V. 23. № 6. P. 721–746.
- 7. Schneider J.M., Sun Z., Mertens R., Uestel F., Ahuja R. Ab-Initio Calculations and Experimental Determination of the Structure of Cr₂AlC // Solid State Commun. 2004. V. 130. № 7. P. 445-449. https://doi.org/10.1016/j.ssc.2004.02.047
- 8. Lin S., Huang Y., Zu L., Kan X., Lin J., Song W., Tong P., Zhu X., Sun Y. Alloying Effects on Structural, Magnetic and Electric/Thermal Transport Properties in MAX phase $Cr_{2-x}M_xGeC$ (M = Ti, V, Mn, Fe and Mo) // J. Alloys Compd. 2016. V. 680. P. 452-461. https://doi.org/10.1016/j.jallcom.2016.04.197
- 9. Hamm C.M., Bocarsly J.D., Seward G., Kramm U.I., Birke C.S. Non-Conventional Synthesis and Magnetic Properties of MAX Phases (Cr/Mn)₂AlC and (Cr/Fe)₂AlC // J. Mater. Chem. C. 2017. V. 5. № 23. P. 5700-5708. https://doi.org/10.1039/C7TC00112F

10. Tian W., Vanmeensel K., Wang P., Zhang G., Li Y., Vleugels J., Biest O. Synthesis and characterization of Cr₂AlC ceramics prepared by spark plasma sintering // Mater. Lett. 2007. V. 61. P. 4442-4445.

- 11. Xiao Li.O., Li S.B., Song G., Sloof W.G. Synthesis and Thermal Stability of Cr₂AlC // J. Eur. Ceram. Soc. 2011. V. 31. P. 1497-1502.
- 12. Levashov E.A., Mukasyan A.S., Rogachev A.S., Shtansky D.V. Self-Propagating High-Temperature Synthesis of Advanced Materials and Coatings // Int. Mater. Rev. 2017. V. 62. № 4. P. 203-239. https://doi.org/10.1080/09506608.2016.1243291
- 13. Горшков В.А., Милосердов П.А., Лугинина М.А., Сачкова Н.В., Беликова А.Ф. Высокотемпературный синтез литого материала с максимальным содержанием МАХ-фазы Cr₂AlC // Неорган. материалы. 2017. T. 53. № 3. C. 260-266. https://doi.org/10.7868/S0002337X1703006X
- 14. Горшков В.А., Милосердов П.А., Сачкова Н.В., Лугинина М.А., Юхвид В.И. СВС-металлургия литых материалов на основе МАХ-фазы Cr₂AlC // Изв. вузов. Порошковая металлургия и функциональные покрытия. 2017. № 2. С. 47-54. https://doi.org/10.17073/1997-308X-2017-2-47-54
- 15. Ребиндер П.А., Щукин Е.Д. Поверхностные явления в твердых телах в процессах их деформации и разрушения // Успехи физ. наук. 1972. Т. 108. № 1. C. 26-36.
- 16. Gorshkov V.A., Miloserdov P.A., Ignat'eva T.I., Semenova V.N., Kovalev I D. AION Powders by Aluminothermic SHS under Pressure: Synthesis and Characterization // Int. J. Self-Propag. High-Temp. Synth. 2017. V. 26. № 4. P. 240–243.
- 17. Игнатьева Т.И., Милосердова О.М., Семенова В.Н., Боровинская И.П. Химическое диспергирование как способ выделения ультра- и нанодисперсных порошков карбида титана // Перспективные материалы. 2009. № 3. С. 82-87.
- 18. Игнатьева Т.И., Баринова Т.В., Семенова В.Н., Баринов В.Ю. Выщелачивание порошков Si₃N₄ из продуктов СВС. Влияние процесса на морфологию и размер частиц // Междунар. журн. прикл. и фундаментальных исследований. 2017. № 11-1. C. 135-139.
- 19. Орданьян С.С., Несмелов Д.Д., Овсиенко А.И. Фазообразование в процессе реакционного спекания композитов B4C-SiC-Si(Al) // Новые огнеупоры. 2017. № 12. C. 42-48. https://doi.org/10.17073/1683-4518-2017-12-42-48
- 20. Laipeng Yan, Zhanqiu Tan, Gang Ji, Zhiqiang Li, Genlian Fan, D. Schryvers, Aidang Shan, Di Zhang. A Quantitative Method to Characterize the Al₄C₃-Formed Interfacial Reaction: The Case Study of MWCNT/Al Composites // Mater. Character. V. 112 (2016). P. 213-216. https://doi.org/10.1016/j.matchar.2015.12.031
- 21. Hihara L.H. Corrosion of Aluminum-Matrix Composites // Corros. Rev. 1997. V. 15. P. 361-386.