УДК 546.776

АП-КОНВЕРСИОННЫЙ ЛЮМИНОФОР КВаҮ(MoO₄)₃:Er³⁺/Yb³⁺ В СИСТЕМЕ К₂MoO₄-BaMoO₄-Y₂(MoO₄)₃, ЛЕГИРОВАННЫЙ ЭРБИЕМ И ИТТЕРБИЕМ

© 2021 г. Н. М. Кожевникова*

Байкальский институт природопользования СО Российской академии наук, ул. Сахьяновой, 6, Улан-Удэ, 670047 Россия *e-mail nicas@binm.ru Поступила в редакцию 03.12.2020 г. После доработки 09.12.2020 г. Принята к публикации 29.12.2020 г.

Изучены фазовые отношения в субсолидусной области системы K_2MoO_4 – $BaMoO_4$ – $Y_2(MoO_4)_3$ по разрезам методами рентгенографического и дифференциального термического анализов, проведена триангуляция системы. Синтезирован тройной молибдат KBaY(MoO_4)₃, который кристаллизуется в моноклинной шеелитоподобной структуре (пр. гр. $P2_1/n$). При легировании ионами Er^{3+}/Yb^{3+} KBaY(MoO₄)₃ получен ап-конверсионный люминофор, обладающий антистоксовой люминесценцией в области 400–700 нм при возбуждении ИК-излучением ($\lambda_{возб} = 977$ нм). Синтезированный люминофор исследован методами рентгенографии, дифференциального термического анализа и колебательной спектроскопии.

Ключевые слова: фазовые равновесия, тройной молибдат, ап-конверсионная люминесценция, эрбий, иттербий

DOI: 10.31857/S0002337X21060063

введение

Молибдаты и вольфраматы, содержащие щелочноземельные и редкоземельные элементы, структуры которых производны от шеелита, обладая низким коэффициентом термического расширения, высокой химической и термической устойчивостью, находят широкое применение в таких областях, как квантовая электроника, волоконная оптика, люминофоры, лазерные устройства, ап-конверсионные материалы, преобразующие излучение с низкой энергией в излучение с более высокой энергией [1–4].

Поиск перспективных соединений и создание на их основе полифункциональных люминофоров, обладающих интенсивной люминесценцией при УФ- и антистоксовой люминесценцией при ИК-возбуждении, является актуальной задачей для материаловедения. Эффективным способом воздействия на люминесцентные свойства материалов является легирование их ионами Er^{3+} , Yb³⁺, способными поглощать ИК-излучение и преобразовывать его в видимую антистоксовую люминесценцию [5–18].

Обширность поля кристаллизации индивидуальных соединений и твердых растворов с шеелитоподобной структурой определяется возможностью изо- и гетеровалентных замещений щелочноземельных элементов катионами различных природы и размеров, которые заселяют кристаллографические позиции каркаса структуры и ее полости. Широкий изоморфизм катионов различной природы приводит к дисбалансу зарядов в структуре шеелита вследствие геометрических особенностей расположения ближайших полиэдров, возникновения локальных и кооперативных искажений и позволяет регулировать оптические свойства фаз. Такие особенности строения шеелитоподобных молибдатов определяют перспективы их использования в качестве люминесцентных и лазерных материалов, химических сенсоров, ап-конверсионных материалов, что определяет интенсивные теоретические и экспериментальные исследования этой группы неорганических соединений [1-4, 14-16].

Среди тройных молибдатов, содержащих щелочноземельные и редкоземельные элементы, известны ряды кальциевых, стронциевых соединений $M(Ca)SrLn(MoO_4)_3$ (M = K, Rb, Cs; Ln = Nd, Sm, Eu, Gd) [6, 15]. Возможность других комбинаций катионов металлов не была проанализирована.

Цель настоящей работы — изучение фазовых равновесий в субсолидусной области системы

Рис. 1. Фазовые отношения в системе K_2MoO_4 -Ва MoO_4 - $Y_2(MoO_4)_3$ при 800°С.

 K_2MoO_4 —BaMoO₄— $Y_2(MoO_4)_3$, синтез ап-конверсионного люминофора на основе тройного молибдата KBaY(MoO₄)₃:Er³⁺/Yb³⁺ с шеелитоподобной структурой и изучение его люминесцентных свойств.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исходными компонентами для изучения фазообразования в системе K_2MoO_4 –BaMoO₄– $Y_2(MoO_4)_3$ служили предварительно синтезированные твердофазным способом K_2MoO_4 , BaMoO₄ и $Y_2(MoO_4)_3$ из K_2CO_3 , BaCO₃, Y_2O_3 и MoO₃ в интервале температур 400–650°C с многократными промежуточными перетираниями через каждые 20–30 ч. Время прокаливания при каждой температуре составляло 100–120 ч. После обжига образцы медленно охлаждали вместе с печью. Неравновесные образцы отжигали дополнительно; равновесие считали достигнутым, если фазовый состав образцов оставался неизменным при двух последовательных отжигах.

Продукты синтеза идентифицировали методом рентгенофазового анализа на дифрактометре D8 Advance фирмы Bruker (Cu K_{α} -излучение). Расчет рентгенограмм проводили с использованием программ "Рентген". Колебательные спектры поликристаллических образцов KBaY(MoO₄)₃ зарегистрированы на спектрометрах Bruker FT-IR и Specord M-80 с использованием для возбуждения лазера с излучением в ближней ИК-области 1.06 мкм (геометрия обратного рассеяния, разрешение 3–5 см⁻¹). Образцы готовили в виде суспензии в вазелиновом масле на полиэтиленовой подложке и таблеток с KBr. Для приготовления изотопозамещенных по молибдену образцов использовали оксиды ${}^{92}MoO_3$ и ${}^{100}MoO_3$ с содержанием основного изотопа не менее 95%.

Дифференциальный термический анализ проводили на дериватографе ОД-103 фирмы МОМ (скорость подъема температуры 10°С/мин, навеска 0.3–0.4 г).

Для введения различных концентраций ионаактиватора оксид иттрия в KBaY(MoO₄)₃ эквимолярно заменялся на оксиды эрбия и иттербия. Таким способом были получены образцы люминофора, содержащие 1–6 мол. % Er_2O_3 и 1–9 мол. % Yb_2O_3 .

Спектры люминесценции образцов люминофора с различной концентрацией ионов эрбия и иттербия – KBaY_{0.97}Er_{0.01}Yb_{0.02}(MoO₄)₃, KBaY_{0.95}Er_{0.01}Yb_{0.04}(MoO₄)₃ KBaY_{0.90}Er_{0.01}Yb_{0.09}(MoO₄)₃ – измерены на спектрометре Ocean Optics QE 65000. Для возбуждения люминесценции в ИК-диапазоне использовали InGaAs-лазерный диод ($\lambda_{возб} = = 977$ нм).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Взаимодействие в системе $K_2MoO-BaMoO_4-Y_2(MoO_4)_3$ изучено методом перекрещивающихся разрезов в области 450–800°С. Исследование системы $K_2MoO_4-BaMoO_4-Y_2(MoO_4)_3$ проведено в две стадии. Первоначально изучали фазовый состав точек пересечения разрезов, исходящих из средних и двойных молибдатов, образующихся в ограняющих двойных системах. На второй стадии изучали выявленные квазибинарные до 800°С разрезы, что позволило провести триангуляцию системы. На рис. 1 представлены фазовые отношения в системе $K_2MoO_4-BaMoO_4-Y_2(MoO_4)_3$.

В ограняющей двойной системе K_2MoO_4 — $Y_2(MoO_4)_3$ установлено образование молибдатов состава 1 : 1, 5 : 1, кристаллизующихся в различных структурных типах [1, 6, 14]. При взаимодействии K_2MoO_4 с Ва MoO_4 зафиксировано образование двойного молибдата $K_2Ba(MoO_4)_2$, обладающего структурой пальмиерита. В системе $BaMoO_4$ — $Y_2(MoO_4)_3$ синтезирован молибдат $BaY_2(MoO_4)_4$, принадлежащий слоистой шеелитоподобной структуре с моноклинным искажением (пр. гр. C2/c) [2].

Наиболее подробно (через 1–2 мол. %) изучено взаимодействие на разрезе $BaMoO_4$ –KY(MoO_4)₂, где установлено образование тройного молибдата KBaY(MoO_4)₃ при 650–750°С. Для достижения равновесия необходимо прокаливание реакционных смесей в течение 150–170 ч с промежуточной гомогенизацией.

Для системы K_2MoO_4 —Ba MoO_4 — $Y_2(MoO_4)_3$ квазибинарными разрезами являются: $KY(MoO_4)_2$ — $KBaY(MoO_4)_3$, $K_2Ba(MoO_4)_2$ — $KBaY(MoO_4)_3$, $K_2Ba(MoO_4)_2$ — $KY(MoO_4)_2$, Ba MoO_4 — $KBaY(MoO_4)_3$, Ba $Y_2(MoO_4)_4$ — $KBaY(MoO_4)_3$, Ba $Y_2(MoO_4)_4$ — $KY(MoO_4)_2$.

Puc. 2. Рентгенограммы α-KSm $(MoO_4)_2$ (*1*), KBaSm $(MoO_4)_3$ (*2*), KBaY $(MoO_4)_3$ (*3*).

Методом РФА установлено, что в тройном молибдате KBaY(MoO₄)₃ растворяется 4 мол. % BaMoO₄, растворимость тройного молибдата в BaMoO₄ составляет 13 мол. %. Системы K₂Ba(MoO₄)₂-KBaY(MoO₄)₃ и BaY₂(MoO₄)₄-KBaY(MoO₄)₃ характеризуются двухфазными областями, они эвтектические с областью гомогенности тройной фазы до 3 мол. %. Растворимость КУ(МоО₄)₂ в KBaY(MoO₄)₃ составляет 4.0 мол. %, в KY(MoO₄)₂ растворяется не более 1.5 мол. % KBaY(MoO₄)₃. Разрез $K_2Ba(MoO_4)_2 - K_5Y(MoO_4)_4$ не является квазибинарным из-за термической неустойчивости фазы К₅Y(MoO₄)₄, которая плавится инконгруэнтно при 715°С. Разрез К₂Ва(MoO₄)₂-КҮ(MoO₄)₂ является простым эвтектическим без заметной растворимости компонентов.

Рентгенографическое исследование показало, что тройной молибдат KBaY(MoO₄)₃ имеет шеелитоподобную структуру с моноклинным искажением и проявляет большое сходство в расположении наиболее интенсивных линий на рентгенограмме с α -KSm(MoO₄)₂, что свидетельствует об общности структурных мотивов тройного и двойного молибдатов. Для сравнения на рис. 2 приведены рентгенограммы α-KSm(MoO₄)₂ и KBaSm(MoO₄)₃. Рентгенограммы KBaSm(MoO₄)₃ и KBaY(MoO₄)₃ проиндицированы в моноклинной сингонии (пр. гр. $P2_1/n$, Z = 9). Соединения изоструктурны между собой, а также двойному молибдату α -KSm(MoO₄)₂ и принадлежат к структурному типу моноклинно искаженного шеелита. Структуру KBaY(MoO₄)₃ можно рассматривать как результат гетеровалентного замещения щелочноземельного элемента в структуре шеелита по схеме: $2Ba = K^+ + Y^{3+}$. Параметры кристаллической решетки КВаҮ(МоО₄)₃ равны: a = 12.169(3) Å, b = 11.807(2) Å, c = 16.933(3) Å, $\beta =$ = 94.90(3)°, V = 2419.1 Å³. Плавится KBaY(MoO₄)₃

Рис. 3. Результаты термического анализа КВаУ(MoO₄)₃.

инконгруэнтно при 985°С, не претерпевая полиморфных превращений (рис. 3).

Измеренные значения колебательных частот ИК- и КР-спектров KBaY(MoO₄)₃, KBaSm(MoO₄)₃, α -KSm(MoO₄)₂ приведены в табл. 1. Здесь же даны частоты колебаний BaMoO₄ и их отнесение к внутренним колебаниям групп MoO₄ и колебаниям кристаллической решетки (либрационным колебаниям MoO₄-групп (*R*) и трансляционным колебаний различных подрешеток кристалла (*T*)) [6, 19].

Представленные данные свидетельствуют о близости колебательных спектров BaMoO₄ и KBaY(MoO₄)₃, KBaSm(MoO₄)₃, α -KSm(MoO₄)₂, позволяющей дать удовлетворительную интерпретацию. Имеющиеся различия обусловлены изменениями в межатомных расстояниях и, как следствие, в энергиях связей Мо-О при гетеровалентном изоморфном замещении в катионных позициях. Так, границы области частот валентных колебаний групп МоО₄ заметно расширяются как в высокочастотную, так и в низкочастотную стороны, а число измеренных в этой области частот втрое больше, чем в спектре ВаМоО₄. Увеличение числа полос связано с понижением симметрии групп МоО₄, полным снятием вырождения трижды вырожденных колебаний и проявлением резонансного взаимодействия колебаний трансляционно-неэквивалентных групп МоО₄.

В измеренных спектрах увеличивается число либрационных колебаний MoO₄-групп, активных в ИК-спектрах. Их частоты практически не меняются по ряду исследованных соединений и близки соответствующим частотам BaMoO₄. Число наблюдаемых полос трансляционных колебаний отвечает предполагаемому теорией.

КОЖЕВНИКОВА

	v, cm ⁻¹							
KBaY(MoO ₄) ₃		KBaSm(MoO ₄) ₃		α -KSm(MoO ₄) ₂		BaMoO ₄		Отнесение
КР	ИК	KP	ИК	KP	ИК	KP	ИК	1
935	934	934		944	925	891		
920	916	919	915	929				ν_1
896		895		888				
868	855	867						
				869	845			
839		838	840	840		838	830	
816		815		815				
802	800		800	803		792		
772	758	774	760	795	795			ν ₃
747		746		767				
		737		746	760			
	680		682		682			
	474				455			
			417		417			
	385		386		386	360	371	
386	353	385	352	383	352	346		ν_2
362		364		332				
	326		327		327			
	316		300		300	325	324	
				320				ν_4
320	284	322	286		286		292	
								v ₂
			210		210			
227		229						R
					187			
						189		
				176			154	Т
				154	157			
				100	139	143		R
					125	136		R
								R
							105	
						107		Т
						76		
						79		Т

Таблица 1. Частоты колебаний в КР- и ИК-спектрах KBaYLn(MoO₄)₃, BaMoO₄

Соответствующие частоты в ряде случаев претерпевают закономерные изменения в ходе замещения катионов. Полученные данные свидетельствуют о том, что в трансляционных колебаниях KBaY(MoO₄)₃, KBaSm(MoO₄)₃, α -KSm(MoO₄)₂ в равной степени участвуют все катионы (рис. 4). Имеющее место понижение симметрии кристаллической решетки при гетеровалентном замещении катионов в структуре шеелита связано с искажениями молибден-кислородных тетраэдров.

Образцы люминофора $KBaY_{0.97}Er_{0.01}Yb_{0.02}(MoO_4)_3$ (1), $KBaY_{0.95}Er_{0.01}Yb_{0.04}(MoO_4)_3$ (2), $KBaY_{0.90}Er_{0.01}Yb_{0.09}(MoO_4)_3$ (3) обладают эффек-

тивной ап-конверсионной люминесценцией в видимой области при возбуждении ИК-излучением (рис. 5). Ионы иттербия-донора обладают высоким эффективным сечением поглощения в ИК-области. Энергетические состояния иона эрбия-акцептора обладают длительным временем жизни, поэтому ион-донор может безызлучательно передать на долгоживущее состояние акцептора сразу несколько поглощенных фотонов, что приведет к увеличению энергии возбужденного метастабильного состояния и, соответственно, уменьшению длины волны люминесценции KBaY(MoO₄)₃:Er³⁺/Yb³⁺ [7–13, 17, 18].

Происхождение наблюдаемых полос при возбуждении ($\lambda_{возб} = 977$ нм) в спектрах ап-конверсионной люминесценции можно объяснить следующим образом. После двухстадийного последовательного возбуждения ионов Er^{3+} до уровня ${}^{4}F_{7/2}$ в результате безызлучательных релаксаций происходит заселение возбужденных уровней ${}^{2}H_{11/2}$, ${}^{4}S_{3/2}, {}^{4}F_{9/2}, {}^{4}I_{9/2},$ что приводит к ап-конверсионной люминесценции в области 400-700 нм [7-13]. Спектр люминесценции обладает сильной полосой излучения при 525 нм, полосой средней интенсивности при 550 нм в зеленой области и двумя слабыми полосами излучения при 655 нм в красной области спектра. Полосы излучения при 525 и 550 нм в зеленой области спектра соответствуют переходам ${}^{2}H_{11/2} \rightarrow {}^{4}I_{15/2}$ и ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ в ионах Ег³⁺, а излучение при 655 нм в красной области спектра связано с переходом ${}^4F_{9/2} \rightarrow {}^4I_{15/2}$. Полоса при 490 нм соответствует переходу ${}^{4}F_{7/2} \rightarrow {}^{4}I_{15/2}$. Полоса излучения при 410 нм обусловлена переходом ${}^{2}H_{9/2} \rightarrow {}^{4}I_{15/2}$.

Рис. 5. Спектры люминесценции образцов люминофора KBaY(MoO₄)₃:Er³⁺/Yb³⁺ с разной концентрацией ионов-активаторов: KBaY_{0.97}Er_{0.01}Yb_{0.02}(MoO₄)₃ (*1*), KBaY_{0.95}Er_{0.01}Yb_{0.04}(MoO₄)₃ (*2*), KBaY_{0.90}Er_{0.01}Yb_{0.09}(MoO₄)₃ (*3*) ($\lambda_{\text{возб}} = 977$ нм).

Ионы-активаторы Er³⁺ являются центрами люминесценции люминофора, а сенсибилизируюшее действие ионов Yb³⁺ увеличивает интенсивность ап-конверсионной люминесценции благодаря эффективной передаче энергии от Yb³⁺ к Er³⁺ и более высокому коэффициенту поглощения иттербия по сравнению с эрбием. Механизмом возбуждения ${}^{2}H_{9/2}$ -уровня может быть перенос энергии от возбужденного состояния Yb³⁺ на уровень ${}^{4}F_{9/2}$ иона ${\rm Er}^{3+}$, поскольку разность энергий между уровням
и ${}^4F_{9/2}$ и ${}^2H_{9/2}$ близка к энергии возбужденного иона иттербия [8–11]. Вследствие низкой населенности уровня ${}^{4}F_{9/2}$ наиболее вероятным каналом возбуждения является заселение вышележащих уровней из более заселенного ${}^{4}S_{3/2}$ -уровня через перенос энергии от иона Yb³⁺ с последующим распадом этих высоко лежащих уровней в ${}^{2}H_{9/2}$ [8–13]. При переходе с высоко лежащих уровней энергии может происходить видимая люминесценция.

Более высокая интенсивность обусловлена отношением концентраций ионов Yb³⁺: Er³⁺, равным 9 : 1 (рис. 5, спектр 3), другие отношения концентраций ионов иттербия и эрбия являются неоптимальными. Высокое содержание ионов иттербия и низкое содержание ионов эрбия способствует повышению интенсивности ап-конверсионной люминесценции, что обусловлено эффективным переносом энергии от иона иттербия к иону эрбия. Характер спектров обусловлен влиянием кристаллической решетки матрицы на штарковскую структуру основного и возбужденного уровней ионов-активаторов.

ЗАКЛЮЧЕНИЕ

Изучены фазовые равновесия в субсолидусной области системы K_2MoO_4 —Ba MoO_4 —Y₂(MoO₄)₃ по разрезам в интервале температур 450—800°С. Синтезирован тройной молбдат KBaY(MoO₄)₃, кристаллизующийся в моноклинной сингонии (пр. гр. $P2_1/n, Z=9$). Проведена триангуляция системы при 800°С.

Получен ап-конверсионный люминофор на основе тройного молибдата, активированного ионами эрбия и иттербия KBaY(MoO₄)₃:Er³⁺/Yb³⁺ при различном соотношении концентраций ионов активаторов. Оптимизировано соотношение концентраций ионов эрбия и иттербия, высокая интенсивность обусловлена отношением концентраций ионов Yb³⁺: Er³⁺, равным 9 : 1, другие отношения концентраций ионов иттербия и эрбия являются неоптимальными. Изучены его люминесцентные свойства. Люминофор KBaY(MoO₄)₃:Er³⁺/Yb³⁺ может найти применение в лазерах, в преобразователях ИК-излучения в видимое, в цветных дисплеях, в биомедицинской диагностике, в приборах оптической связи.

БЛАГОДАРНОСТЬ

Работа выполнена в рамках государственного задания БИП СО РАН (проект № 0339-2016-007).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Трунов В.К., Ефремов В.А., Великодный Ю.А.* Кристаллохимия и свойства двойных молибдатов и вольфраматов. Л.: Наука, 1986. 173 с.
- Morozov V., Arakcheeva A., Redkin V. et al. Na_{2/7}Gd_{4/7}MoO₄: a Modulated Scheelite-Type Structure and Condactivity Properties // Inorg. Chem. 2012. V. 51. № 9. P. 5313–5324. https://doi.org/10.1021/ic300221m
- 3. *Раскина М.В., Морозов В.А., Павленко А.В. и др.* Структура и люминесцентные свойства твердых растворов Sm_{2-x}Eu_x(MoO₄)₃ // Журн. неорган. химии. 2015. Т. 60. № 1. С. 89–97. https://doi.org/10.7868/S0044457X15010122
- Золотова Е.С., Рахманова М.И., Соколов В.В., Усков Е.М. Влияние висмута и кальция на интенсивность люминесцеции люминофора NaY_{1-x}Eu_x(MoO₄)₂ // Неорган. материалы. 2011. T. 47. № 11. С. 1368–1371.
- Каминсий А.А. Спектроскопия кристаллов. М.: Наука, 1975. 255 с.

- Кожевникова Н.М., Мохосоев М.В. Тройные молибдаты. Улан-Удэ: Изд-во Бурятского госуниверситета, 2000. 298 с.
- Манаширов О.Я., Сатаров Д.К., Смирнов В.Б. и др. Состояние и перспективы разработок антистоксовых люминофоров для визуализации ИК-излучений в области 0.8–1.3 мкм // Неорган. материалы. 1993. Т. 29. № 10. С. 1322–1325.
- Овсянкин В.В., Феофилов П.П. Кооперативная сенсибилизация люминесценции в кристаллах, активированных редкоземельными ионами // Письма в ЖЭТФ. 1966. Т. 4. Вып. 11. С. 471–474.
- Kuznetsov S., Ermakova Yu., Voronov V. et al. Up-conversion Quantum Yields of SrF₂:Yb³⁺,Er³⁺Sub-micron Particles Prepared by Precipitation in Water Solution // J. Mater. Chem. C. 2018. V. 6. № 3. P. 598–604.
- 10. Озель Ф.Е. Материалы и устройства, использующие антистоксовые люминофоры с переносом энергии // ТИИЭР. 1973. Т. 61. № 6. С. 87–120.
- Auzel F. Upconversion and Anti-Stokes Processes with f and d Ions in Solids // Chem. Rev. 2004. V. 104. № 1. P. 139–173.
- Lyapin A.A., Ermakov A.S., Kuznetsov S.V. et al. Upconversion Luminescence of CaF₂-SrF₂-ErF₃ Single Crystals Upon 1.5 μm Laser Excitation // J. Phys.: Conf. Ser. 2019. V. 1410. 012086. https://doi.org/10.1088/1742-6596/1410/1/012086
- Казарян А.К., Тимофеев Ю.Р., Фок М.В. Антистоксовое преобразование излучения в люминофорах с редкоземельными ионами // Тр. ФИАН. 1986. Т. 175. С. 4–65.
- Евдокимов А.А., Ефремов В.А., Трунов В.К. и др. Соединения редкоземельных элементов. Молибдаты, вольфраматы. М.: Наука, 1991. 267 с.
- Kozhevnikova N.M., Korsun V.P., Mursakhanova I.I., Mokhosoev M.V. Luminescence Materials Based on Re Molybdates // J. Rare Earth. 1991. V. 2. P. 845–849.
- Jiang Y., Liu Y., Liu G., Dong X., Wang J., Yu W., Dong Q. Surfactant-Assisted Hydrothermal Synthesis of Octahedral Structured NaGd(MoO₄)₂:Eu³⁺/Tb³⁺ and Tunable Photoluminescent Properties // Opt. Mater. 2014. V. 36. P. 1865–1870. https://doi.org/10.1016/j.optmat.2014.03.043
- Георгобиани А.Н., Грузинцев А.Н., Бартту К., Беналлул П. Инфракрасная люминесция соединений Y₂O₂S:Er³⁺ и Y₂O₃:Er³⁺ // Неорган. материалы. 2004. Т. 40. № 8. С. 963–968.
- Грузинцев А.Н. Антистоксовая люминесценция Y₂O₃:Er³⁺// Неорган. материалы. 2014. Т. 50. № 1. C. 64–69. https://doi.org/10.7868/S0002337X14010084
- Петров К.И., Полозникова М.Э., Шарипов Х.Т., Фомичев В.В. Колебательные спектры молибдатов и вольфраматов. Ташкент: ФАН, 1990. 135 с.