УЛК 536.63

СТРУКТУРА И ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА ТИТАНАТОВ DyGaTi₂O₇ И EuGaTi₂O₇

© 2021 г. Л. Т. Денисова^{1, *}, М. С. Молокеев^{1, 2}, Ю. Ф. Каргин³, В. В. Рябов⁴, Л. Г. Чумилина¹, Н. В. Белоусова¹, В. М. Денисов¹

¹Сибирский федеральный университет, пр. Свободный, 79, Красноярск, 660041 Россия ²Институт физики им. А.В. Киренского ФИЦ КНЦ СО Российской академии наук, Академгородок, 50, Красноярск, 660036 Россия

³Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук, Ленинский пр., 49, Москва, 119991 Россия

⁴Институт металлургии УрО Российской академии наук, ул. Амундсена, 101, Екатеринбург, 620016 Россия *e-mail: ldenisova@sfu-kras.ru

> Поступила в редакцию 10.01.2021 г. После доработки 24.02.2021 г. Принята к публикации 25.02.2021 г.

Твердофазным синтезом из исходных оксидов Dy_2O_3 (Eu_2O_3), Ga_2O_3 и TiO_2 обжигом на воздухе при температурах 1273 и 1573 К получены титанаты $DyGaTi_2O_7$ и $EuGaTi_2O_7$. С использованием рентгеновской дифракции исследована их кристаллическая структура. Методом дифференциальной сканирующей калориметрии измерена высокотемпературная теплоемкость (350—1000 K). На основании экспериментальных данных $C_n = f(T)$ рассчитаны термодинамические свойства.

Ключевые слова: твердофазный синтез, титанаты редкоземельных элементов, кристаллическая структура, высокотемпературная теплоемкость, термодинамические свойства

DOI: 10.31857/S0002337X21070058

ВВЕДЕНИЕ

Титанаты редкоземельных элементов (РЗЭ) $R_2Ti_2O_7$ в течение длительного времени привлекают внимание исслелователей и практиков [1-4]. Для изменения их физико-химических свойств и расширения тем самым областей практического применения проводят как изоморфное замещение $(R'_x R''_{1-x})_2 Ti_2 O_7$ [4, 5], так и замещение части РЗЭ другими металлами RMTi₂O₇ (M = Ga, Fe) [6]. Свойства таких замешенных титанатов исследованы только для RFeTi₂O₇. Имеются сведения о кристаллической структуре и результатах магнитных измерений: SmFeTi₂O₇ [7], GdFeTi₂O₇ [8], TbFeTi₂O₇ и LuFeTi₂O₇ [9], DyFeTi₂O₇ [10], HoFeTi₂O₇ [11], TmFeTi₂O₇ [12], YbFeTi₂O₇ [13]. B paботе [6] сообщено о получении титанатов RGaTi₂O₇ (R = = Sm-Lu, Y), но кристаллическая структура определена только для одного их них — $GdGaTi_2O_7$. Отмечено, что соединения RMTi₂O₇ не образуются с M = Al, Cr, а также при замене Ti на Sn или Zr. Для оптимизации условий синтеза и уточнения фазовых равновесий в системах $R_2O_3-M_2O_3-TiO_2$ методами термодинамического моделирования необходимы сведения о термодинамических свойствах оксидных соединений, образующихся в таких системах. Такие данные для $RMTi_2O_7$ в литературе практически отсутствуют, за исключением $LuGaTi_2O_7$ [14].

Цель настоящей работы — исследование кристаллической структуры и теплофизических свойств замещенных титанатов $DyGaTi_2O_7$ и $EuGaTi_2O_7$.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Титанаты DyGaTi₂O₇ и EuGaTi₂O₇ получали твердофазным синтезом из исходных оксидов Dy₂O₃, Eu₂O₃ "x. ч.", Ga₂O₃ и TiO₂ "oc. ч." подобно [14]. Порошковые рентгенограммы титанатов снимали при комнатной температуре на дифрактометре D8 ADVANCE фирмы Bruker с использованием линейного детектора VANTEC и CuK_{α} излучения. Шаг сканирования составлял 0.016°, а время экспозиции на каждый шаг 2 с. Установлено, что после проведенного синтеза в образцах EuGaTi₂O₇ (суммарное время отжига 25 ч) содержались следы исходных компонентов. Поэтому для этого соединения время обжига при 1573 К было увеличено еще на 60 ч (с перетираниями через каждые 20 ч). Только после этого были получены однофазные образцы EuGaTi₂O₇.

Таблица 1. Параметры элементарных ячеек и плотность $DyGaTi_2O_7$ и $EuGaTi_2O_7$

Соединение	DyGaTi ₂ O ₇	EuGaTi ₂ O ₇
Пр. гр.	Pcnb	Pcnb
a, Å	9.77917(14)	9.78426(12)
$b, ext{Å}$	13.5581(2)	13.62120(15)
c, Å	7.37579(11)	7.45394(9)
V, Å ³	977.94(3)	993.42(2)
d , Γ/cm^3	5.98	5.74
R_{wp} , %	2.21	2.61
R_p , %	1.71	2.05
R_B , %	0.52	0.51
χ^2	1.35	1.32

Примечание. Факторы недостоверности: R_{wp} — весовой профильный, R_p — профильный, R_B — интегральный, χ^2 — качество полгонки.

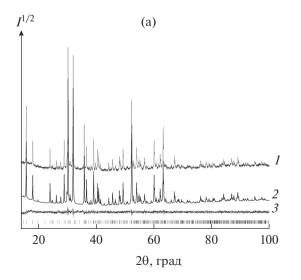
Теплоемкость синтезированных титанатов $DyGaTi_2O_7$ и $EuGaTi_2O_7$ измеряли на термоанализаторе STA 449 С Jupiter (NETZSCH, Германия). Методика экспериментов аналогична описанной в [15, 16]. Ошибка экспериментов не превышала 2%.

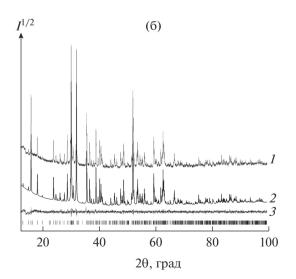
РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Все рефлексы на рентгенограммах были проиндицированы в ромбической сингонии (пр. гр. Pcnb) с параметрами, аналогичными GdGaTi₂O₇ [6]. Учитывая это, структуру данного титаната взяли в качестве исходной модели для уточнения методом Ритвельда в программе TOPAS 4.2 [17]. Результаты РФА приведены в табл. 1-3 и на рис. 1.

На рис. 2 показано влияние радиусов редкоземельных ионов на параметры элементарной ячейки и плотность титанатов RGaTi₂O₇. Видно, что зависимости $b(c,d) = f(r^{3+})$ имеют линейный характер. Эти данные хорошо описываются уравнениями

$$b = (11.7128 \pm 0.0639) + (1.7953 \pm 0.0623)r^{3+}, (1)$$


$$c = (5.5066 \pm 0.0515) + (1.8253 \pm 0.0502)r^{3+},$$
 (2)

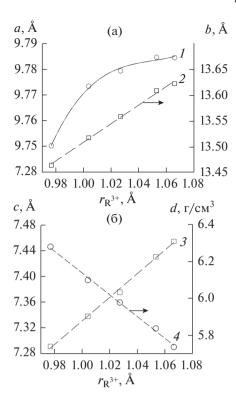

$$d = (12.0257 \pm 0.1903) + (5.8881 \pm 0.1855)r^{3+}.$$
 (3)

В то же время параметр a в зависимости от радиусов ионов РЗЭ меняется более сложным образом. Коэффициенты корреляции уравнений (1)—(3) равны соответственно 0.9982, 0.9989 и 0.9985. Значения параметров элементарных ячеек соединений RGaTi₂O₇ (R = Eu, Gd, Dy, Er, Lu) получены в настоящей работе, а величины ионных радиусов РЗЭ заимствованы из [18].

Влияние температуры на теплоемкость титанатов DyGaTi₂O₇ и EuGaTi₂O₇ показано на рис. 3. С повышением температуры от 350 до 1000 К значения C_p закономерно увеличиваются. На зависимостях $C_p = f(T)$ нет каких-либо экстремумов, что может свидетельствовать об отсутствии у этих соединений в исследованном интервале температур полиморфных превращений. Экспериментальные результаты хорошо описываются уравнением Майера—Келли [19]

$$C_p = a + bT - cT^{-2},$$
 (4)

Рис. 1. Экспериментальный (I), расчетный (I) и разностный (I) профили рентгенограмм DyGaTi₂O₇ (a) и EuGaTi₂O₇ (б) при комнатной температуре, полученные после уточнения методом Ритвельда; штрихи указывают расчетные положения рефлексов.


Таблица 2. Координаты атомов и изотропные тепловые параметры (Å)

Атом	x	у	z	B_{iso}	Occ
	1	D	yGaTi ₂ O ₇		1
Dy	0.2412(4)	0.13445(18)	0.0075(5)	0.39(18)	1
Ti1	0.2608(10)	0.3850(5)	0.4978(16)	1.0(2)	0.865(20)
Ga1	0.2608(10)	0.3850(5)	0.4978(16)	1.0(2)	0.135(20)
Ti2	0.5	0.25	0.252(2)	1.0(5)	0.592(71)
Ga2	0.5	0.25	0.252(2)	1.0(5)	0.408(71)
Ti3	0.0018(14)	0.4893(6)	0.2630(14)	1.0(4)	0.839(41)
Ga3	0.0018(14)	0.4893(60)	0.2630(14)	1.0(4)	0.161(41)
Ga	0	0.25	0.3461(14)	1.6(30)	0.78
Gai	0.090(5)	0.292(4)	0.315(7)	1.6(3)	0.11
O1	0.1625(14)	0.3977(14)	0.233(4)	0.3(2)	1
O2	0.406(2)	0.113(2)	0.257(4)	0.3(2)	1
О3	0.104(3)	0.1550(120)	0.231(4)	0.3(2)	1
O4	0.379(3)	0.287(2)	0.445(4)	0.3(2)	1
O5	0.368(3)	0.276(2)	0.052(4)	0.3(2)	1
O6	0.364(3)	0.488(2)	0.427(4)	0.3(2)	1
O7	0.381(4)	0.494(2)	0.058(4)	0.3(2)	1
!	'	E	uGaTi ₂ O ₇		1
Eu	0.2360(2)	0.13454(17)	0.0137(3)	0.45(19)	1
Ti1	0.2673(6)	0.3863(5)	0.4994(11)	1.4(2)	0.872(19)
Gal	0.2673(6)	0.3863(5)	0.4994(11)	1.4(2)	0.128(19)
Ti2	0.5	0.25	0.2523(13)	1.2(4)	0.609(59)
Ga2	0.5	0.25	0.2523(13)	1.2(4)	0.391(59)
Ti3	0.0061(11)	0.4874(5)	0.2786(9)	1.1(3)	0.824(35)
Ga3	0.0061(11)	0.4874(5)	0.2786(9)	1.1(3)	0.176(35)
Ga	0	0.25	0.3543(12)	1.5(3)	0.78
Gai	0.078(5)	0.286(4)	0.372(7)	1.5(3)	0.11
O1	0.1655(13)	0.4002(12)	0.222(2)	0.4(2)	1
O2	0.4102(18)	0.1175(18)	0.267(3)	0.4(2)	1
O3	0.109(2)	0.1562(11)	0.259(3)	0.4(2)	1
O4	0.376(2)	0.2795(18)	0.430(3)	0.4(2)	1
O5	0.379(2)	0.2888(16)	0.053(3)	0.4(2)	1
O6	0.373(3)	0.4891(15)	0.409(3)	0.4(2)	1
O7	0.373(2)	0.4901(14)	0.037(3)	0.4(2)	1

Таблица 3. Основные длины связей (Å)

	D	yGaTi ₂ O ₇	
Dy-O2	2.46(3)	Ga-O3	1.84(2)
Dy-O2 ¹	2.36(3)	Ga-O5 ⁴	2.02(3)
Dy-O3	2.15(3)	Gai-O1	1.71(6)
Dy-O3 ¹	2.56(3)	Gai-O3	1.97(6)
Dy-O4 ¹	2.42(30)	Gai–O3 ⁶	2.12(6)
Dy-O5	2.31(3)	Gai–O5 ⁴	1.81(6)
Dy-O6 ²	2.28(3)	(Ti2/Ga2)-O4	1.92(3)
Dy-O7 ³	2.39(3)	(Ti2/Ga2)-O5	1.99(30)
(Til/Gal)–Ol	2.18(3)	(Ti3/Ga3)-O1	2.02(2)
(Ti1/Ga1)-)1 ⁴	1.90(3)	(Ti3/Ga3)-O2 ⁵	1.91(3)
(Ti1/Ga1)-O4	1.81(3)	(Ti3/Ga3)–O3 ⁶	2.22(2)
(Ti1/Ga1)-O5 ⁴	1.98(3)	(Ti3/Ga3)–O6 ⁷	1.97(3)
(Ti1/Ga1)-O6	1.80(3)	(Ti3/Ga3)-O7 ⁴	2.46(3)
(Ti1/Ga1)-O7 ⁴	2.08(3)	(Ti3/Ga3)–O7 ⁷	1.79(3)
(Ti2/Ga2)-O2	2.07(3)		
'	E	uGaTi ₂ O ₇	'
Eu-O2	2.553(19)	Ga-O3	1.811(19)
Eu-O2 ¹	2.343(19)	Ga-O5 ⁴	1.97(2)
Eu-O3	2.23(2)	Gai-O1	2.10(5)
Eu-O3 ¹	2.45(2)	Gai-O3	1.98(5)
Eu-O4 ¹	2.34(2)	Gai–O3 ⁶	2.17(6)
Eu-O5	2.54(2)	Gai–O5 ⁴	2.41(6)
Eu-O6 ²	2.32(2)	Gai–O5 ⁸	2.58(5)
Eu-O7 ³	2.41(2)	(Ti2/Ga2)-O4	1.84(2)
(Ti1/Ga1)-O1	2.302(19)	(Ti2/Ga2)-O5	1.97(2)
(Ti1/Ga1)-)1 ⁴	1.795(19)	(Ti3/Ga3)-O1	2.005(17)
(Ti1/Ga1)-O4	1.87(3)	(Ti3/Ga3)-O2 ⁵	1.98(3)
(Ti1/Ga1)-O5 ⁴	1.99(2)	(Ti3/Ga3)–O3 ⁶	2.263(18)
(Ti1/Ga1)-O6	1.87(2)	(Ti3/Ga3)–O6 ⁷	1.94(3)
(Ti1/Ga1)-07 ⁴	1.99(2)	(Ti3/Ga3)—O7 ⁴	2.26(2)
(Ti2/Ga2)-O2	2.01(2)	(Ti3/Ga3)—O7 ⁷	1.92(2)

Примечание. Элементы симметрии: (1) -x + 1/2, y, z - 1/2; (2) -x + 1/2, y - 1/2, -z + 1/2; (3) x, y - 1/2, -z; (4) -x + 1/2, y, z + 1/2; (5) -x + 1/2, y + 1/2, -z + 1/2; (6) -x, -y + 1/2, z; (7) x - 1/2, -y + 1, -z + 1/2; (8) x - 1/2, -y + 1/2, z + 1/2.

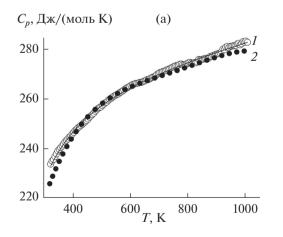
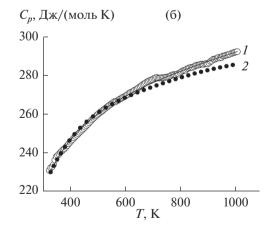


Рис. 2. Влияние значения радиуса редкоземельных ионов r^{3+} на параметры элементарной ячейки a (I), b (2), c (3) и плотность d (4) титанатов RGaTi₂O₇.

имеющим для DyGaTi₂O₇ и EuGaTi₂O₇ соответственно следующий вид:

$$C_p = (255.30 \pm 0.56) + (30.3 \pm 0.6) \times 10^{-3} T - (33.93 \pm 0.55) \times 10^5 T^{-2},$$
(5)

$$C_p = (259.10 \pm 0.90) + (37.6 \pm 0.9) \times 10^{-3} T - (43.96 \pm 0.78) \times 10^5 T^{-2}.$$
 (6)



Коэффициенты корреляции для уравнений (5) и (6) равны 0.9990 и 0.9988, а максимальные отклонения экспериментальных точек от сглаживающих кривых — 0.58 и 0.83% соответственно.

Сравнить полученные значения молярной теплоемкости титанатов DyGaTi₂O₇ и EuGaTi₂O₇ с данными других авторов не представлялось возможным вследствие их отсутствия. Сделать это можно, сопоставляя значения $C_{p, 298}$, рассчитанные по уравнениям (5) и (6) и в соответствии с модельными представлениями: аддитивным методом Неймана-Коппа (НК) [20, 21] и инкрементным методом Кумока (ИМК) [22]. Полученные результаты приведены в табл. 4. Видно, что в целом наблюдается удовлетворительное согласие рассчитанных значений теплоемкости с экспериментальными величинами. Необходимые для расчетов методом НК значения теплоемкостей бинарных оксидов Dy_2O_3 , Eu_2O_3 , Ga_2O_3 и TiO_2 взяты из работы [20].

На рис. 3 приведены экспериментальные и рассчитанные методом НК температурные зависимости молярной теплоемкости титанатов DyGaTi₂O₇ и EuGaTi₂O₇. Видно, что экспериментальные и рассчитанные зависимости $C_p = f(T)$ близки между собой. Необходимые для расчета значения $C_p = f(T)$ для Dy₂O₃ и Eu₂O₃ взяты из работы [23], Ga₂O₃ – из [24, 25], TiO₂ (рутил) – из [26].

С использованием уравнений (5) и (6) по известным термодинамическим соотношениям рассчитаны основные термодинамические функции ${\rm DyGaTi_2O_7}$ и ${\rm EuGaTi_2O_7}$ (табл. 5). При T>800 К значения C_p для этих титанатов превышают классический предел Дюлонга—Пти 3Rs, где R- универсальная газовая постоянная, s- число атомов в формульной единице оксидного соединения.

Рис. 3. Экспериментальные (*1*) и рассчитанные методом Неймана—Коппа (*2*) температурные зависимости молярной теплоемкости титанатов DyGaTi₂O₇ (a) и EuGaTi₂O₇ (б).

Таблица 4. Сравнение экспериментальных значений теплоемкости $C_{p,\,298}$ (Дж/(моль K)) с рассчитанными величинами для DyGaTi₂O₇ и EuGaTi₂O₇

Соединение	C_p (эксп.)*	C_p (HK)	$\Delta,\%$	C_p (ИМК)	$\Delta,\%$
DyGaTi ₂ O ₇	226.2	215.3	-4.8	220.5	-2.5
EuGaTi ₂ O ₇	220.8	219.5	-0.6	222.8	+0.9

^{*} Значения получены из уравнений (5) и (6) при T = 298 К.

Таблица 5. Термодинамические свойства титанатов DyGaTi₂O₇ и EuGaTi₂O₇

<i>T</i> , K	C_p , Дж/(моль K)	$H^{\circ}(T) - H^{\circ}(320 \text{ K}),$ кДж/моль	$S^{\circ}(T) - S^{\circ}(320 \text{ K}),$ Дж/(моль K)	$-(\Delta G^{\circ}/T),*$ Дж/(моль К)
	,	DyGaTi ₂ O ₇		
320	231.93	_	_	_
350	238.3	7.056	21.07	0.91
400	246.3	19.18	53.44	5.49
450	252.2	34.65	82.80	12.47
500	256.9	44.38	109.6	20.87
550	260.8	57.33	134.3	30.07
600	264.1	70.45	157.1	39.72
650	267.0	83.73	178.4	49.58
700	269.6	97.15	198.3	59.50
750	272.0	110.7	217.0	69.38
800	274.3	124.4	234.6	79.16
850	276.4	138.1	251.3	88.80
900	278.4	152.0	267.1	98.27
950	280.4	166.0	282.2	107.6
1000	282.3	180.0	269.7	116.6
	· ·	EuGaTi ₂ O ₇	!	!
320	228.2	_	_	_
350	236.3	6.97	20.82	0.90
400	246.6	19.06	53.09	5.44
450	254.3	31.59	82.60	12.40
500	260.3	44.46	109.7	20.79
550	265.2	57.60	134.6	30.03
600	269.4	70.97	158.0	39.73
650	273.1	84.54	179.7	49.68
700	276.4	98.27	200.1	59.70
750	279.4	112.1	219.2	69.71
800	282.3	126.2	237.4	79.62
850	284.9	140.4	254.6	89.42
900	287.5	154.7	270.9	99.05
950	289.9	169.1	286.5	108.5
1000	292.3	183.7	301.5	117.8

^{*} $\Delta G^{\circ}/T = (H^{\circ}(T) - H^{\circ}(320 \text{ K}))/T - (S^{\circ}(T) - S^{\circ}(320 \text{ K})).$

ЗАКЛЮЧЕНИЕ

Твердофазным методом выполнен синтез титанатов DyGaTi₂O₇ и EuGaTi₂O₇. Определена их кристаллическая структура. Методом дифференциальной сканирующей калориметрии исследовано влияние температуры на их молярную теплоемкость. Установлено, что в области температур $350-1000~{\rm K}$ зависимости $C_p=f(T)$ хорошо описываются уравнением Майера—Келли. На основании экспериментальных данных рассчитаны их основные термодинамические функции.

БЛАГОДАРНОСТЬ

Работа выполнена при частичной финансовой поддержке в рамках государственного задания на науку ФГАОУ ВО "Сибирский федеральный университет" (номер проекта FSRZ-2020-0013) на оборудовании Красноярского регионального центра коллективного пользования ФИЦ КНЦ СО РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Портной К.И., Тимофеева Н.И.* Кислородные соединения редкоземельных элементов. М.: Металлургия, 1986. 480 с.
- 2. Комиссарова Л.Н., Шацкий В.М., Пушкина Г.Я., Шербакова Л.Г., Мамсурова Л.Г. Соединения редкоземельных элементов. Карбонаты, оксалаты, нитраты, титанаты М.: Наука, 1984. 235 с.
- 3. Farmer J.M., Boatner L.A., Chakoumakos B.C., Du M.-H., Lance M.J., Rawn C.J., Bruan J.C. Structural and Crystal Chemical Properties of Rare-Earth Titanate Pyrochlores // J. Alloys Compd. 2014. V. 605. P. 63–70. https://doi.org/10.1016/j.jallcom.2014.03.153
- 4. *Chen C., Gao Z., Yan H., Reece M.J.* Crystallographic Structure and Ferroelectricity of $(A_x La_{1-x})_2 Ti_2 O_7$ (A = Sm and Eu) Solid Solutions with High T_c // J. Am. Ceram. Soc. 2016. V. 99. № 2. P. 523–530. https://doi.org/10.1111/jace.13970
- 5. $Gao\ Z$., $Shi\ B$., $Ye\ H$., $Yan\ H$., $Reece\ M$. Ferroelectric and Dielectric Properties of $Nd_{2-x}Ce_xTi_2O_7$ Ceramics // Adv. Appl. Ceram. 2014. V. 144. No 4. P. 191–197. https://doi.org/10.1179/1743676114Y.0000000221
- Генкина Е.А., Адрианов И.И., Белоконева Е.А., Милль Б.В., Максимов Б.А., Тамазян Р.А. Синтетический GdGaTi₂O₇ — новая полиморфная модификация полимигнита // Кристаллография. 1991. Т. 36. № 9. С. 1408—1414.
- 7. Петраковский Г.А., Дрокина Т.В., Шадрина А.Л., Великанов Д.А., Баюков О.А., Молокеев М.С., Карташев А.В., Степанов Г.Н. Состояние спинового стекла в SmFeTi₂O₇ // ФТТ. 2011. Т. 53. № 9. С. 1757—1760.
- Петраковский Г.А., Дрокина Т.В., Великанов Д.А., Баюков О.А., Молокеев М.С., Карташев А.В., Шадрина А.Л., Мацук М.С. Магнитное состояние соединения GdFeTi₂O₇ // ФТТ. 2012. Т. 54. № 9. С. 1701—1704.

- Drokina T.V., Petrakovskii G.A., Molokeev M.S., Arauzo A., Bartolomé J. Spin-Glass Magnetism in RFeTi₂O₇ (R = Lu and Tb) // Phys. Procedia. 2015. № 12. P. 580–588.
 - https://doi.org/10.1016/j.phpro.2015.12.074
- 10. Дрокина Т.В., Петраковский Г.А., Молокеев М.С., Великанов Д.А., Плетнев О.Н., Баюков О.А. Особенности кристаллической структуры и магнитные свойства соединения DyFeTi₂O₇ // ФТТ. 2013. Т. 55. № 10. С. 1922—1927.
- 11. Дрокина Т.В., Молокеев М.С., Великанов Д.А., Пертраковский Г.А., Баюков О.А. Соединение HoFeTi₂O₇: синтез, особенности кристаллической структуры и магнитные свойства // ФТТ. 2020. Т. 62. № 3. С. 413—420. https://doi.org/10.21883/FTT.2020.03.49006.630
- Drokina T.V., Petrakovskii G.A., Velikanov D.A., Molokeev M.S. X-ray and Magnetic Measurements of TmFeTi₂O₇ // Solid State Phenom. 2014. V. 215. P. 470–473. https://doi.org/10.4028/www.scientific.net/SSP.215.470
- 13. Дрокина Т.В., Петраковский Г.А., Молокеев М.С., Великанов Д.А. Синтез, кристаллическая структура
- *Великанов Д.А.* Синтез, кристаллическая структура и магнитные свойства соединения YbFeTi₂O₇ // ФТТ. 2018. Т. 60. № 3. С. 526—530. https://doi.org/10.21883/FTT.2018.03.45557.209
- 14. Денисова Л.Т., Молокеев М.С., Чумилина Л.Г., Кар-
- 14. Денисова Л.Т., Молокеев М.С., Чумилина Л.Г., Кар-гин Ю.Ф., Денисов В.М., Рябов В.В. Синтез. кристаллическая структура и термодинамические свойства LuGaTi₂O₇ // Неорган. материалы. 2020.Т. 56. № 12. С. 1311—1316. https://doi.org/10.31857/S0002337X20120052
- Денисов В.М., Денисова Л.Т., Иртюго Л.А., Биронт В.С. Теплофизические свойства монокристаллов Bi₄Ge₃O₁₂// ФТТ. 2010. Т. 52. № 7. С. 1274— 1277.
- 16. Денисова Л.Т., Иртюго Л.А., Каргин Ю.Ф., Белецкий В.В., Денисов В.М. Высокотемпературная теплоемкость Tb₂Sn₂O₇ // Неорган. материалы. 2017. T. 53. № 1. C. 71–73. https://doi.org/10.7868/S0002337X17010043
- 17. Bruker AXS TOPAS V4: General profile and structure analysis softwere for powder diffraction data. User's Manual. Bruker AXS, Karlsruhe, Germany. 2008.
- Shannon R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides // Acta Crystallog., Sect. A. 1976. V. 32. P. 751–767.
- 19. *Maier C.G., Kelley K.K.* An Equation for the Representation of High Temperature Heat Content Data // J. Am. Chem. Soc. 1932. V. 54. P. 3243–3246. https://doi.org/10.1021/ja01347a029
- Leitner J., Chuchvalec P., Sedmidubský D., Strejc A., Abrman P. Estimation of Heat Capacities of Solid Mixed Oxides // Thermochim. Acta. 2003. V. 395. P. 27–46. https://doi.org/10.1016/S0040-6031(02)00176-6
- 21. *Leitner J., Voňka P., Sedmidubský D., Svoboda P.* Application of Neumann-Kopp Rule for the Estimation of Heat Capacity of Mixed Oxides // Thermochim. Acta. 2010. V. 497. P. 7–13. https://doi.org/10.1016/j.tca.2009.08.002

- 22. *Кумок В.Н.* Прямые и обратные задачи химической термодинамики. Наука: Новосибирск, 1987. С. 108—123.
- 23. Гордиенко С.П., Феночка Б.В., Виксман Г.Ш. Термодинамика соединений лантаноидов. Киев: Наук. думка, 1979. 376 с.
- 24. *Zinkevich M., Aldinger F.* Thermodynamic Assessment of the Gallium-Oxygen System // J. Am. Ceram. Soc. 2004. V. 87. № 4. P. 683–691.
- Guo Z., Verma A., Wu X., Sun F., Hickman A., Masui T., Kuramata A., Higashiwaki M., Jena D., Luo T. Anisotropic Thermal Conductivity in Single Crystal β-Gallium Oxide // Appl. Phys. Lett. 2015. V. 106. P. 111909-1–111909-1. https://doi.org/10.1063/1.4916078
- 26. Физико-химические свойства окислов. Справочник / Под ред. Самсонова Г.В. М.: Металлургия, 1978. 472 с.