УДК 546.07'273.48.54

СИНТЕЗ И ТЕРМОЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА КРИСТАЛЛОФОСФОРОВ НА ОСНОВЕ ТЕТРАБОРАТА КАДМИЯ

© 2021 г. Т. Н. Хамаганова*

Байкальский институт природопользования СО Российской академии наук, ул. Сахьяновой, 6, Улан-Удэ, 670047 Россия

> **e-mail: khama@binm.ru* Поступила в редакцию 04.02.2021 г. После доработки 26.03.2021 г. Принята к публикации 28.03.2021 г.

Методом твердофазного синтеза получены новые фазы CdB_4O_7 :х Cr^{3+} (x = 3, 5, 7 мол. %). Полученные фазы переменного состава изучены методами порошковой рентгенографии, дифференциальной сканирующей калориметрии. Установлена изоструктурность синтезированных образцов между собой и с тетраборатом CdB_4O_7 (пр. гр. *Pbca*). Исследованы термолюминесцентные свойства кристаллофосфоров CdB_4O_7 , легированных ионами Cr^{3+} и Mn^{2+} , возбуждаемых ультрафиолетом.

Ключевые слова: тетраборат кадмия, поликристаллы, термолюминофоры **DOI:** 10.31857/S0002337X21080182

введение

Материалы на основе неорганических кислородсодержащих соединений бора отличаются широким спектром практического использования. Среди них найдены лазерные, оптические, пьезо-, акустоэлектрические и люминесцентные материалы. Для создания эффективных люминофоров ведется интенсивный поиск новых твердотельных матриц. Бораты, обладающие широкой областью прозрачности наряду с высокой химической и термической устойчивостью, являются перспективными материалами для использования в светодиодах, электро- и плазменных панелях, трехмерных дисплеях и т.д. [1–3]. В качестве твердотельных матриц рассматриваются некоторые бораты одно- и двухвалентных металлов, активно исследуются их термолюминесцентные свойства [4-9]. Ведется поиск боратов, проявляющих люминесценцию при введении активаторов, в состав которых входят другие катионы.

Известно, что соединения кадмия проявляют эффективную люминесценцию при добавлении ионов Mn^{2+} [10, 11]. Ионы Mn^{2+} с электронной конфигурацией $3d^5$ показывают широкую полосу излучения и как центр свечения важны для создания новой светотехники. Так, спектры порошкового бората $Cd_2B_2O_5$, легированного ионами Mn^{2+} , показали термолюминесценцию при возбуждении ультрафиолетом [12], а бораты CdB_4O_7 и $Cd_2B_6O_{11}$ при введении ничтожно малых количеств этих ионов проявляли оранжевое свечение при возбуждении катодными лучами [13].

Положение низшего возбужденного состояния Mn^{2+} сильно зависит от напряженности кристаллического поля, что позволяет смещать цвет излучения замещенных центров с зеленого на красный. Тетраэдрически координированный Mn^{2+} (слабое кристаллическое поле) обычно дает зеленое излучение, тогда как октаэдрически координированный Mn^{2+} (сильное кристаллическое поле) — оранжево-красное излучение [14].

Настоящая работа является продолжением исследования [15] по синтезу и термолюминесценции твердых растворов тетраборатов CdB_4O_7 , активированных ионами Mn^{2+} и Tb^{3+} , проявляющих эмиссию при возбуждении излучением стронцийиттриевого β -источника.

Цель настоящей работы — получение поликристаллических образцов фаз на основе CdB_4O_7 , легированных ионами переходных металлов (Cr^{3+} , Mn^2), и установление областей их возможного использования.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Режимы синтеза CdB_4O_7 :х Mn^{2+} описаны нами ранее [15]. В настоящей работе получены и описаны фазы, активированные ионами Cr^{3+} .

Серия из трех поликристаллических боратов составов CdB₄O₇:x Cr³⁺ (x = 3, 5, 7 мол. %) получе-

Фаза	a, Å	b, Å	<i>c</i> , Å	<i>V</i> , Å ³	<i>t</i> _{пл} , °С
CdB ₄ O ₇ [15]	8.229(1)	8.704(2)	14.1800(7)	1015.7	976
CdB ₄ O ₇ [16]	8.229(1)	8.704(1)	14.1760(2)	1015.4	
CdB ₄ O ₇ :Cr ³⁺ (3 мол. %)	8.2263(5)	8.7099(8)	14.174(1)	1015.6	974
CdB ₄ O ₇ :Cr ³⁺ (5 мол. %)	8.2222(5)	8.7080(9)	14.1612(7)	1013.9	
CdB ₄ O ₇ :Cr ³⁺ (7 мол. %)	8.2187(5)	8.7052(9)	14.1571(7)	1012.8	

Таблица 1. Кристаллографические и термические характеристики порошков CdB_4O_7 , активированных ионами Cr^{3+} (пр. гр. *Pbca*, Z = 8)

на твердофазными реакциями. Исходными реагентами служили Н₃ВО₃ квалификации "х. ч." и предварительно прокаленные CdO, Cr₂O₃ квалификации "ч. д. а.". Для компенсации потерь В₂О₃ в процессе отжига использовали незначительный избыток Н₃ВО₃. Реакционные смеси подвергали многоступенчатой термообработке на воздухе при 400-850°С в течение 230-250 ч. Ступенчатый нагрев чередовали с перетираниями через каждые 20-30 ч для гомогенизации смесей. После прокаливания образцы боратов медленно охлаждались в режиме остывания печи. Равновесие реакции считалось достигнутым, если фазовый состав прокаленных образцов не менялся при двух последовательных отжигах. Идентификацию продуктов синтеза выполняли методом рентгенофазового анализа (РФА). В результате синтеза получены однофазные поликристаллические порошки серо-зеленого цвета.

РФА образцов проводили по дифрактограммам, снятым на порошковом автодифрактометре Bruker D-8 ADVANCE AXS (Си K_{α} -излучение) с детектором VANTEC-1 в интервале углов 20 = $10^{\circ}-60^{\circ}$ с шагом 0.02°. Фазы идентифицировали с помощью базы данных PDF-2. Индицирование рентгенограмм синтезированных образцов проводили методом структурной аналогии с использованием кристаллографических данных CdB₄O₇ [16]. Параметры элементарных ячеек полученных фаз, уточненные по программе TOPAS-4, приведены в табл. 1.

Термический анализ бората CdB_4O_7 : Cr^{3+} (3 мол. %) проводили методом дифференциальной сканирующей калориметрии (ДСК) на термоанализаторе Jupiter STA 449С фирмы NETZSCH. Съемку осуществляли в интервале температур 25–1000°С при скорости нагрева 10°С/мин в атмосфере аргона.

Люминесцентные свойства полученных боратов изучали регистрацией кривых высвечивания по методике [17]. Кривые высвечивания снимали в интервале 25–400°С на оригинальной установке, описанной в [15]. В качестве возбуждающего радиационного источника использовали облучатель УФ кварцевый марки ОУФК-09-1 со спектральным диапазоном излучений 205–315 нм. Время экспозиции облучателя составляло 5–15 мин. Регистрация спектров осуществлялась с помощью фотоэлектронного умножителя (ФЭУ) с диапазоном регистрации 300–600 нм. Результаты измерений термолюминесцентной чувствительности нормировали по сигналу от эталона – LiF:Mg,Ti (TLD-100).

Спектры возбуждения фотолюминесценции (**ВФЛ**) и фотолюминесценции (**ФЛ**) предварительно таблетированных образцов снимали на люминесцентном спектрометре LS 55 фирмы Perkin Elmer. Спектры ФЛ регистрировали при комнатной температуре в диапазоне длин волн от 200 до 900 нм. В качестве источника возбуждения использована импульсная ксеноновая лампа.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В кристаллической структуре CdB_4O_7 выделены двойные идентичные друг другу борокислородные сетки, содержащие однотипные боратные единицы [16]. Боратные единицы характеризуются как изолированный полианион, обнаруженный в структуре буры [18], который состоит из четырех искаженных боратных полиэдров. Атомы бора в структуре проявляют двоякую координацию, половина из них имеет $K\Psi = 4$. Координационное окружение атомов кадмия представлено четырьмя кислородными атомами, формирующими искаженные тетраэдры.

Анализ фазового состава синтезируемых образцов показал, что формирование боратов начинается в интервале 650—700°С и нарастает с повышением температуры до 800—850°С. По данным РФА, все исследованные образцы были однофазными, рефлексы примесных фаз не обнаружены.

Положения линий на рентгенограммах и относительные интенсивности искомых фаз, прокаленных при 850°С в течение 150 ч, соответствуют тетраборату кадмия, кристаллизующемуся в ромбической сингонии (пр. гр. *Pbca*) согласно Card # 01-071-2169 Международного центра дифракционных данных ICDD.

Рис. 1. Рентгенограммы Cd_{1-x}B₄O₇:x Cr³⁺ c x = 3 (1), 5 (2), 7 мол. % (3) и CdB₄O₇ (PDF-2 Data Base: Card # 01-071-2169).

На рис. 1 приведены рентгенограммы синтезированных боратов и эталона. Видно, что все линии полученных фаз соответствуют CdB₄O₇. В соответствии с этим рентгенограммы легированных фаз были проиндицированы в ромбической установке. По результатам индицирования дифрактограмм параметры ромбических ячеек CdB₄O₇:xCr³⁺ изменяются практически линейно в исследованном диапазоне концентраций ($0 \le x \le$ ≤ 0.07), что указывает на образование непрерывного ряда твердых растворов (табл. 1). Сопоставление вычисленных параметров кристаллических решеток твердых растворов, содержащих ионы хрома, с параметрами решеток фаз, легированных ионами марганца [15], показало их согласие. Параметры элементарных ячеек в обоих случаях монотонно сокращаются, что связано с величинами радиусов катионов, вводимых в структуру тетрабората кадмия. Полагаем, что меньший радиус ионов-активаторов по сравнению с размерами ионов матрицы (Cd²⁺) способствует их равномерному распределению по структурным позициям.

По результатам ДСК, на кривой нагревания имеется один эндотермический эффект при 974°С, отнесенный к процессу плавления образца (рис. 2). Масса образца оставалась неизменной на протяжении всего процесса подъема температуры вплоть до плавления. Температура плавления легированной хромом фазы близка к температуре плавления чистого тетрабората кадмия ($t_{пл} = 976^{\circ}$ С), установленной в [15].

Для фаз переменного состава $CdB_4O_7:x Cr^{3+}$ и $CdB_4O_7:x Mn^{2+}$ с x = 3, 5, 7 мол. % получены зависимости интенсивности термолюминесценции от содержания активатора при возбуждении ультрафиолетовым излучением.

Фазы CdB_4O_7 : Mn^{2+} дополнительно изучены после воздействия на них рентгеном. Физико-химический эффект, возникающий при взаимодействии излучения с веществом, состоит в следующем. Некоторые вещества под воздействием внешнего возбуждения способны люминесцировать. В них под

Рис. 2. Кривая нагревания CdB₄O₇:Cr³⁺ (3 мол. %).

Рис. 3. Кривые термического высвечивания образцов $CdB_4O_7:x Cr^{3+} c x = 3$ (*1*), 5 (*2*), 7 мол. % (*3*), TLD-100 (*4*) при возбуждении УФ в течение 20 мин.

действием ионизирующего излучения высокой энергии выбиваются электроны, локализующиеся в центрах захвата (центры свечения), которыми обычно становятся дефекты кристаллической решетки [17]. Введенные в кристаллическую структуру активные ионы хрома и марганца становятся такими центрами свечения фосфора, в которых происходит накопление поглощенной энергии. При таком внешнем воздействии, как быстрый нагрев материала, вся поглощенная при УФ-возбуждении энергия высвобождается наружу. Процесс выброса накопленной энергии сопровождается свечением, которое фиксируется с помощью ФЭУ. В ходе настоящего исследования кривые свечения получены при продолжительностях воздействия УФ-облучателя в течение 5, 10, 15, 20 мин и рентгеном 6 мин. Максимальный выход люминесценции наблюдался при наиболее длительном воздействии УФ на образцы с активными ионами хрома.

На рис. 3 представлены кривые термического высвечивания порошков CdB_4O_7 :x Cr^{3+} (x = 3, 5, 7 мол. %) и эталона при облучении УФ в течение 20 мин. Анализ регистрируемых спектров выявил влияние концентрации активаторов на интенсивность люминесценции. Эффективная люминесценция уменьшается с ростом концентрации ионов Cr^{3+} , а максимум свечения соответствует фазе с минимальным содержанием хрома.

Кривые термического высвечивания образцов твердых растворов CdB_4O_7 : Mn^{2+} , возбужденных ультрафиолетом и рентгеном, приведены на рис. 4. Интенсивность люминесценции материалов сильно зависит от типа возбуждающего излучения. Свечение УФ-облученных образцов почти в 5 раз выше, чем образцов, облученных рентгеном. Сравне-

Рис. 4. Кривые термического высвечивания образцов CdB_4O_7 :x Mn^{2+} с x = 3 (*1*), 5 (*2*), 7 мол. % (*3*), TLD-100 (*4*) при возбуждении УФ в течение 10 мин (а) и рентгеном в течение 6 мин (б).

ние показывает, что независимо от источника возбуждения интенсивность люминесценции фаз CdB_4O_7 :Mn²⁺ имеет тенденцию роста при повышении содержания активатора. Она становится максимальной при 5 мол. % Mn и практически не изменяется с ростом содержания Mn²⁺. Отмечена разница в интенсивностях люминесценции УФоблученных боратов, допированных ионами Cr³⁺ и Mn²⁺. Интенсивность свечения марганецсодержащих боратов почти в три раза выше, чем хромсодержащих.

На рис. 5 приведены спектры ФЛ и ВФЛ СdB₄O₇:Mn²⁺ (5 мол. %). Узкая полоса около 210 нм в спектре ВФЛ (а) отнесена к УФ-поглощению решетки боратной матрицы. Для исходной матрицы край поглощения с $\lambda < 250$ нм благоприятен, поскольку не конкурирует с полосой ртутного резонанса (254 нм), используемого в люминес-

Рис. 5. Спектры ВФЛ (а), ФЛ (б) CdB₄O₇:Mn²⁺ (5 мол. %).

центных лампах [10]. Полоса возбуждения вблизи 400 нм связана с переходом между 3*d*-состояниями ионов Mn^{2+} . Она наблюдалась при излучении Mn^{2+} в других решетках, например MgGa₂O₄:Mn [19]. Спектр ФЛ представляет собой широкую "полосу" линий с максимумом ~875 нм. Сдвиг "полосы" в область больших длин волн, по-видимому, связан со значительным искажением тетраэдрического окружения Mn^{2+} в структуре тетрабората кадмия и усилением кристаллического поля замещенных центров, приводящим к расщеплению электронных уровней. Такого рода аномальное излучение Mn^{2+} обнаружено недавно в α -LiZnBO₃:Mn²⁺ [20], β -Zn₃B₂O₆:Mn²⁺ [21].

Полученные результаты показывают, что фазы CdB_4O_7 , легированные переходными металлами (Cr, Mn), можно рассматривать как перспективные в качестве термолюминофоров.

ЗАКЛЮЧЕНИЕ

Поликристаллические бораты CdB_4O_7 : $x Cr^{3+}$ (x = 3, 5, 7 мол. %) синтезированы твердофазным методом в интервале температур 400–850°С с использованием в качестве исходных компонентов оксидов CdO, Cr_2O_3 и борной кислоты H_3BO_3 . Установлено, что введение активных ионов приводит к образованию фаз переменного состава на основе тетрабората кадмия, кристаллизующихся в одном структурном типе (пр. гр. *Pbca*).

Показано, что энергия возбуждения УФ достаточна для проявления термолюминесценции изученными фазами CdB₄O₇:x Cr³⁺ и CdB₄O₇:x Mn²⁺ (x = 3, 5, 7 мол. %). Отмечено снижение эффективности свечения в ряду хромсодержащих боратов при увеличении концентрации активных ионов. Содержание ионов активатора в количестве 3 мол. % Cr³⁺ и 5 мол. % Mn²⁺ приводит к максимальной интенсивности излучения образцов. Спектры ФЛ показали, что CdB₄O₇:Mn²⁺ (5 мол. %) может возбуждаться при ~210 нм. Для тетраэдрически координированного Mn²⁺ наблюдается аномальное красное излучение вследствие расщепления его электронных уровней.

Таким образом, фазы CdB₄O₇, легированные переходными металлами (Cr, Mn), перспективны как твердофазные термолюминесцентные матрицы, эффективно возбуждаемые УФ.

БЛАГОДАРНОСТЬ

Работа выполнена в рамках государственного задания Байкальского института природопользования СО РАН проект № V.45.1.8 (№ ГР АААА-А17-117021310256-9) с использованием оборудования ЦКП БИП СО РАН (Улан-Удэ).

СПИСОК ЛИТЕРАТУРЫ

- Li P., Yang Z., Pang L., Wang Z., Guo Q. Luminescent Characteristics of Ba₃Y₂(BO₃)₄:Eu³⁺ Phosphor for White LED // J. Rare Earth. 2008. V. 26. P. 44–47. https://doi.org/10.1016/S1002-0721(08)60034-4
- Simura R., Kawai S., Sugiyama K., Yanagida T., Sugawara T., Shishido T., Yoshikawa A. Valence State of Dopant and Scintillation Properties of Ce-doped Sr₃Y(BO₃)₃ Crystal // J. Cryst. Growth. 2013. V. 362. P. 296–299.

https://doi.org/10.1016/j.jcrysgro.2011.11.089

- Santiago M., Grasseli C., Caselli E., Lester M., Lavat A., Spano F. Thermoluminescence of SrB₄O₇: Dy // Phys. Status Solidi A. 2001. V. 185. № 2. P. 285–289. https://doi.org/10.1002/1521-396X(200106)185:2<285: :AID-PSSA285>3.0.CO;2-9
- Wu L., Sun J.C., Zhang Y., Jin S.F., Kong Y.F., Xu J.J. Structure Determination and Relative Properties of Novel Chiral Orthoborate KMgBO₃ // Inorg. Chem. 2010. V. 49. № 6. P. 2715–2720. https://doi.org/10.1021/ic901963t

- Jiang L.H., Zhang Y.L., Li C.Y., Hao J.Q., Su Q. Thermoluminescence Properties of Ce³⁺-doped LiSr₄(BO₃)₃ Phosphor // Mater. Lett. 2007. V. 61. P. 5107–5109.
 https://doi.org/10.1016/j.metlat.2007.04.016
 - https://doi.org/10.1016/j.matlet.2007.04.016
- Liu L., Zhang Y., Hao J., Li C., Wang S., Su Q. Thermoluminescence Studies LiBa₂B₅O₁₀:Re³⁺ (Re = Dy, Tb, Tm) // J. Phys. Chem. Solids. 2007. V. 68. P. 1745–1748.
 https://doi.org/10.1016/j.ipgs.2007.04.020

https://doi.org/10.1016/j.jpcs.2007.04.020

- Huy B.T., Quang V.X., Chau H.T.B. Effect of Doping on the Luminescence Properties of Li₂B₄O₇ // J. Lumin. 2008. V. 128. P. 1601–1605. https://doi.org/10.1016/j.jlumin.2008.03.007
- Un A. Investigation of Dopant Effect on Some TL Dosimeters Containing Boron // Radiat. Phys. Chem. 2013. V. 85. P. 23–35. http://dx.org/10.1016/j.radphyschem.2012.10.016
- Cai G.M., Yang N., Liu H.X., Zhang Y.Q., Si J.Y. Singlephased and Color Tunable LiSrBO₃:Dy³⁺, Tm³⁺, Eu³⁺ Phosphors for White-Light-Emitting Application // J. Lumin. 2017. V. 187. P. 211–220. https://doi.org/10.1016/j.jlumin.2017.03.017
- Wanmaker W.L., Verriet J.C., ter Vrugt J.W. Manganese-Activatet Luminescence in Cd//2PO//4F // Phil. Res. Rep. 1972. V. 27. P. 350–357.
- Blasse G. The Luminescence of the Gd(II) Ion and of Cadmium Compounds // J. Alloys Compd. 1994. V. 210. P. 71–73.
- 12. *Dittmann R., Hahn D., Müller U.* On the Luminescence and Thermoluminescence of Manganese Activated Cadmium Borate // J. Lumin. 1970. V. 3. № 3. P. 230–239.

https://doi.org/10.1016/0022-2313(71)90060-3

 Hummel F.A., Subbarao E.C. The System Cadmium Oxide-Boric Oxide // J. Electrochem. Soc. 1957. V. 104. P. 616–618.

- Blasse G., Grabmaier B.C. A General Introduction to Luminescent Materials // Luminescent Materials. Berlin, Heidelberg: Springer, 1994. P. 232. https://doi.org/10.1007/978-3-642-79017-1_1
- Хамаганова Т.Н., Хумаева Т.Г., Субанаков А.К., Перевалов А.В. Синтез и термолюминесцентные свойства CdB₄O₇:Tb³⁺, Mn²⁺ // Неорган. материалы. 2017. Т. 53. № 1. С. 59–63. https://doi.org/10.7868/S0002337X17010109
- Ihara M., Krogh-Moe J. Crystal Structure of Cadmium Diborate CdO · 2B₂O₃ // Acta Crystallogr. 1966. V. 20. P. 132–134. https://doi.org/10.1107/S0365110X66000239
- Daniels F, Boyd C.A., Saunders D.F. Thermoluminescence as a Research Tool // Science. 1953. V. 117. P. 343–349. https://doi.org/10.1126/science.117.3040.343
- Morimoto N. The Crystal Structure of Borax // Mineral. J. 1956. V. 2. № 1. P. 1–18. https://www.jstage.jst.go.jp/article/minerj1953/2/1/ 2_1_1/_pdf
- Palumbo D.T., Brown J.J. Electronic States of Mn²⁺-Activated Phosphors: I. Green-Emitting Phosphors // J. Electrochem. Soc. 1970. V. 117. P. 1184–1188. https://doi.org/10.1149/1.2407765
- Wang H., Wu L., Yi H., Wang B., Wu L., Gua Y., Zhang Y. Abnormal Luminescent Property of Mn²⁺ in α-LiZn-BO₃:Mn²⁺// Dalton Trans. 2015. V. 44. P. 1427–1434. https://doi.org/10.1039/c4dt02626h
- Shi Y., Wen Y., Que M., Zhu G., Wang Y. Structure, Photoluminescent and Cathodoluminescent Properties of a Rare-Earth Free Red Emitting β-Zn₃B₂O₆:Mn²⁺ Phosphor // Dalton Trans. 2014. V. 43. P. 2418–2423. https://doi.org/10.1039/C3DT52405A